Quantum measurement and control in optomechanical systems Instituto de Física Gleb Wataghin - UNICAMP

Exercises of the first lecture

1. The damped quantum harmonic oscillator.

The mean energy is determined by

$$\langle a^{\dagger}(t)a(t)\rangle = \langle a^{\dagger}(0)a(0)\rangle e^{-\gamma t}$$

$$+\gamma e^{-\gamma t} \int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2} e^{-i(\omega_{0}+i\gamma/2)t_{1}} e^{i(\omega_{0}-i\gamma/2)t_{2}} \langle a_{in}^{\dagger}(t_{1})a_{in}(t_{2})\rangle$$

where $\langle a_{in}^{\dagger}(t_1)a_{in}(t_2)\rangle = N\delta(t_1 - t_2).$

Using the Stochastic calculus rule:

$$\int_0^{t_1} dt' \int_0^{t_2} dt'' f^*(t') f(t'') \langle a_{in}^{\dagger}(t') a_{in}(t'') \rangle = \int_0^{\min(t_1, t_2)} dt' |f(t)|^2 N$$

show that

$$\langle a^{\dagger}(t)a(t)\rangle = \langle a^{\dagger}(0)a(0)\rangle e^{-\gamma t} + N(1 - e^{-\gamma t})$$

In the steady state, $\langle a^{\dagger}(t)a(t)\rangle \to N$... thermal equilibrium.

2. The driven damped quantum harmonic oscillator.

Show that in the steady state,

$$\langle a \rangle_{ss} = \frac{-\epsilon}{i\delta + \gamma/2}.$$

Calculate the mean displacement and momentum in the steady state in the original laboratory frame.

3. The driven damped quantum harmonic oscillator.

The noise power spectrum for the driving force is defined as the Fourier transform of the two-time correlation function $G(\tau)$:

$$S_f(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\tau e^{-i\omega\tau} G(\tau)$$

Show that for

$$G(\tau) = De^{-\kappa|\tau|}$$

the noise power spectrum is Lorentzian.

4. The driven damped quantum harmonic oscillator.

The steady state response to the force can be most easily calculated in the frequency domain:

$$\tilde{a}(\omega) = \frac{\sqrt{\gamma}\tilde{a}_{in}(\omega) + \tilde{\epsilon}(\omega)}{\gamma/2 + i(\delta - \omega)}$$

where $\tilde{\epsilon}(\omega)$ is the Fourier transform of $\epsilon(t)$.

Assume that $\epsilon_0 = 0$, so that the oscillator is subject to a classical fluctuating force. Show that the steady state photon number is then determined by

$$\langle \tilde{a}^{\dagger}(\omega)\tilde{a}(\omega)\rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \frac{\gamma N + 2\pi S_f(\omega)}{\gamma^2/4 + (\delta - \omega)^2}.$$

5. Oscillator displacement.

Define

$$G_x(\tau) = \langle x(t)x(t+\tau)\rangle_{t\to\infty}$$

and

$$S_x(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\tau e^{-i\omega\tau} G_x(\tau)$$

Show that

$$S_x(\omega) = \frac{\gamma(2N+1)\Delta_0^2}{\gamma^2/4 + (\omega_0 - \omega)^2}.$$

On resonance and for zero temperature, this result gives the standard quantum limit (SQL) $\,$

$$S_x^{SQL} = \frac{2\hbar}{m\omega_0\gamma}.$$