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Abstract

Thanks to powerful and advanced techniques based on physics, we are

capable to extract information from the human brain with high temporal

and spatial resolution. Among several techniques capable to image the

brain, magnetic resonance imaging (MRI) and near-infrared spectroscopy

(NIRS) are highlighted due to their intrinsic noninvasiveness. In other

words, with any of these techniques, one can estimate neural activity

without damaging the cerebral tissue. In this work, we extensively discuss

the most important physical principles behind each technique, MRI and

NIRS.
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Chapter 1

Introduction

The human brain is probably the most complex system at hand. It is optimized, being

capable to perform difficult tasks quickly and very effective. Understanding its mech-

anisms is crucial to improve treatments of neurological diseases, such as epilepsy and

Alzheimer [2, 3]. Thanks to powerful and advanced techniques grounded on physics,

chemistry and biology, we are capable to extract information from the human brain

with high temporal and spatial resolution. Among several neuroimaging techniques,

electroencephalography (EEG), magnetic resonance imaging (MRI) and near-infrared

spectroscopy (NIRS) are highlighted due to their intrinsic noninvasiveness, ease of use

and reliability.

EEG was developed more than one century ago, being the first technique capable

to image the brain. The English physician Richard Caton (1842-1926) is pointed to be

the first one to successfully employ EEG to measure electrical activity of the brain in

1875. Cato’s studies were performed in cats, monkeys and rabbits. Although Berger

showed in the 1920s that the EEG could be recorded from the human scalp, the

acceptance of EEG as a method to investigate brain function in healthy and diseased

brains only started in 1934. At that time, Adrian and Mathews showed that electrical

signals measured in the occipital lobe in man were reliable and not generated due to

residual artefacts [4].

The EEG signal consists in measuring the summed of activities from populations

of neurons. Neurons are cells that produce electrical and magnetic fields when they

are activated. The electrical fields can be recorded by displacing electrodes right in

the region of interest, inside the brain, in the surface of the cerebral cortex or in the

scalp. In noninvasiveness EEG experiments, the electrodes are generally placed in

the scalp of volunteers; thereby the acquired signal lacks spatial resolution. It is the

main disadvantage of the EEG technique.
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In the beginning of 1990, MRI started to become the principal neuroimaging tech-

nique [5]. It had an exponential growth since its invention. The growth of MRI can

be associated to the robustness, versatile and high spatial resolution of this technique.

MRI was primarily used to anatomically investigate the structure of the brain based

on density of protons mainly from water and fat molecules. Succinctly, its mecha-

nisms consist on an external and constant magnetic field to break the degeneracy of

the hydrogen atoms then applying a sequence of radio frequency (RF) electromag-

netic waves to extract information from the brain structure. There are several radio

frequency pulse sequences available, which are sensible to different aspects of the

healthy and diseased brain tissue. For example, to construct a high contrast between

gray matter and white matter, T-1 weighted sequence can be successfully employed.

This sequence is a combination of a short time repetition and short echo time. Time

repetition refers to the time between successive RF pulses, and echo time stands to

the time in which the electrical signal induced by the spinning protons is measured.

More recently, near-infrared spectroscopy has appeared as a promising technique

to image the brain function [6, 7]. In the NIRS technique, low level lights in the NIR

spectra (from 650 to 900nm) are used to estimate optical absorption changes in the

human brain. This can be acquired by displacing optodes in the heads surface non-

invasively. The optodes emit and receive light, recording light intensity variations.

In the NIR spectra window, light is greater scatter than absorber by the biological

tissue. Therefore, the light can penetrate up to the cerebral cortex, 5-10 mm in the

brain, then come back to the head surface, carrying optical information from the

brain [8]. The optical measurements from different wavelengths can be used to esti-

mate concentrations changes of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR)

due to their differences regarding absorption of light. HbO and HbR concentration

changes are related to local brain activity, thereby it is possible to image the brain

function.

In the present work, we aim to describe the physical principles behind magnetic

resonance imaging and near-infrared spectroscopy. Although the content is developed

for being understood for any student in the last year of the undergraduate physics

course, it should provide useful knowledge for new researchers to the neuroscience

field. In Chapter 2, we start by briefly discussing the concept of nuclear spin then

we investigate the interaction of spins with an external magnetic field. Next, we

model the interaction of a macroscopic ensemble of protons subjected to an external

magnetic field and being excited by electromagnetic waves in the radio frequency. To

do so, we considered that the system of protons were in contact with a thermal bath
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so that we could use the canonical ensemble combined with quantum mechanics. In

the end of chapter 2, we used a classical approach by defining a net magnetization.

As a result, we could derive the well-known phenomenological Bloch equations. Next,

we investigated the interaction of the system under the influence of RF fields, using

the Bloch equations.

In chapter 3, we studied the physical principles of near-infrared light propagation

through the biological tissue. We started by discussing basic yet crucial concepts

of light-matter interaction, scattering and absorption. Next, we used the Radiative

Transport (RT) Theory as an approximation to the Maxwell’s equations for describing

NIR light propagation. For doing that, we defined a physical quantity called radiance

so that we could derive the well-known Radiative Transport equation (RTE). Latter,

we expanded the RTE in spherical harmonics to derive a photon diffusive approxima-

tion, which provides us valuable physical insights regarding NIR light propagation.

In the end of the chapter, we summarized all assumptions behind each approxima-

tion that we had to do to derive the photon diffusive approximation as well discussed

under which circumstances our results are valid.
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Chapter 2

Nuclear Magnetic Resonance
Imaging

In this chapter, we study the physical principles behind nuclear magnetic resonance

imaging. We start by introducing the concept of nuclear spin and defining the Hamil-

tonian of a proton under the influence of a constant external magnetic field. Next,

we model the interaction of a macroscopic system of protons under the influence of

a constant external magnetic field and being excited by electromagnetic waves in the

radio frequency. In the end, we could derive the phenomenological Bloch equations,

using a classical approach.

2.1 Principles of Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is a quantum phenomenon related to the total

spin of a nucleus. All nuclei present the intrinsic property of “nuclear spin”, which is

the sum of the orbital spin and the angular momentum of all particles that compose

the nucleus, denoted by J. J has unity of ~ in which ~ is the Planck constant over

2π. We can define a dimensionless angular momentum operator, I, by dividing J by

~:

J = ~I→ I =
J

~
. (2.1)

Due to the nuclear charge and nuclear spin, nuclei have a magnetic momentum,

µ, which is proportional to J,

µ = γJ = γ~I; (2.2)

where γ is the Lande factor.
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In the presence of a external magnetic field, B, the interaction between the nuclear

spin and the external field is given by the Hamiltonian:

H = −µ ·B→ H = −γ~(I ·B). (2.3)

Defining the external magnetic field as a constant and only with component in

the k̂ direction, we have B = B0k̂ and, consequently,

H = −γ~IzB0 → Energy = E = −γ~B0mz; (2.4)

where Iz is the projection of I in the ẑ direction. The eigenvalues mz vary such that

mz = −Iz,−Iz + 1, ..., Iz − 1, Iz. In the present work, we will deal only with the

proton, which has nuclear spin 1/2. Considering protons, all possible values for mz

are 1/2 and −1/2. In addition, I will denote by |α〉 and |β〉 the eigenstates with spins

+1/2 and −1/2, respectivelly. Hence, the energy of the states |α〉 and |β〉 are given

by:

Eα = −1

2
γ~B0,

Eβ = +
1

2
γ~B0. (2.5)

Thus, the fundamental and excited states corresponds respectivelly to the kets |α〉
and |β〉. The energy difference between the states |α〉 and |β〉 is given by Eβ −Eα =

∆E = γ~B0. Note that the energy difference is linearly proportional to the magnitude

of the external magnetic field, B (Figure 2.1).

A proton in the |α〉 state can be excited to the |β〉 state by absorbing an electro-

magnetic wave, or a photon, in the radio frequency (rf). The absorption will occur

under two conditions. First, the electromagnetic wave frequency, ν, should match the

energy difference between the two allowed states. Second, the oscillating vector field

from the rf wave should be perpendicular to the external magnetic field B then

Ephoton = γ~B0, (2.6)

but Ephoton = hν and ν = ω
2π

, thus:

ν =
γB0

2π
. (2.7)

ω = γB0. (2.8)
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Figure 2.1: Energy from the interaction of proton with an external magnetic field. In
region one,B = 0, the energy interaction is zero because there is no external magnetic
field. As a consequency, spins in the up and down directions have same energy. In
region two, the magnitude of the external magnetic field is increased linearly, which
splits the two spin states and increases proportionally to the external field the energy
gap between them. In the third region, the external magnetic field is constant and
different from zero, thereby there is a constant energy gap.

From equations 2.7 and 2.8, we can conclude that it is possible to observe nuclear

absorption by resonance by varying the frequency of the rf waves or by varying the

intensity of the external magnetic field. In pratice, the choice depends on what is

more convinient to the scientist. To characterize a solid, one usually works with a

fixed frequency ν and varies the external magnetic field around the resonance point.

We should also realize that the NMR technique is only sensitive to the protons on

the fundamental states. We are not capable to excite protons in the highest level of

energy via resonance by rf waves.

2.2 Thermal Equilibrium and Spin Relaxation Time

In this section, we will investigate consequences of applying an external magnetic

field B = B0k̂ to a macroscopic spin system. We approach this problem by using

the canonical emsemble, which means that we assumed the system is in thermal

equilibrium with a heat bath at some fixed temperature. In this ensemble, we can

use the Boltzmann’s distribution, which states that the number of microstates decays

exponentially with the increase of the energy associated with each state, i.e.:

Number of states = A exp(−E/(κT )), (2.9)

where κ is the Bolztmann constant, T is the temperature of the system, and A is a

constant of normalization.

Using equation 2.9, we can calculate the ratio between the number of protons in

the |α〉 and |β〉 states, which is given by:
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Nα

Nβ

=
A exp(−Eα/(κT ))

A exp(−Eβ/(κT ))
= exp (

Eβ − Eα
κT

). Therefore,

Nα

Nβ

= exp(
γ~B0

κT
). (2.10)

Equation 2.10 is by itself a very interesting result. In the last section, I argued

that nuclear magnetic experiments are only sensitive to protons in the fundamental

states. Note that if B is increased, the ratio Nα/Nβ also increases. However, the

total number of spins, N = Nα + Nβ, is constant. Thus, there is an increasement

in the number of spins in the lower energy state, implying that there are more spins

to be flipped. This relation is the only mechanism capable to explain why stronger

external magnetic fields provide nuclear magnetic resonance images with a higher

spatial resolution.

Let us verify the effect of aplying an oscilatting magnetic field (rf field) to the

spin system. To do so, I will use a result from time-dependent perturbation theory.

Suppose that a pertubation V (t) is applied to a system with discrete energy levels,

the rate change from one level to the other is given by:

Pab =
2π

~
| 〈b|V (t)|a〉 |2δ(Eb − Ea − hν), (2.11)

where Pab is the probability of transition from state a to state b, measured by the

number of transitions per second, and δ is the Dirac delta function. The delta func-

tions impose that there are no transitions if hν is different from Eb−Ea. Although we

are supposing that absorption only occurs for a specific frequency ν, we will discuss

later that it is not entirelly correct. Due to the energy-time uncertainty principle,

absorption occurs for a frequency range. The most important point for us regard-

ing equation 2.11 is that | 〈b|V (t)|a〉 |2 is equal to | 〈a|V (t)|b〉 |2, which implies that

Pab = Pba. We will call transitions that were caused by the rf filed by stimulated

transitions, and transitions that occured because of other reasons by spontaneous.

Therefore, The rate change in the number of protons in the fundamental state can

be modeled by:

dNα

dt
= NβPβα −NαPαβ = P (Nβ −Nα), (2.12)

where the first term accounts for the spins that decay from the excited state to the

fundamental state, the second term accounts for the spins that were excited from the

fundamental state to the excited one, and P ≡ Pαβ = Pβα.
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Changing variables in equation 2.12 of n = Nα − Nβ and substituiting Nα =
1
2
(N + n) and Nβ = 1

2
(N − n). We have:

dNα

dt
=

1

2

dn

dt
= −Pn→ dn

dt
= −2Pn. (2.13)

Therefore,

n(t) = n(0)e−2Pt, (2.14)

where n(0) is the difference in the states in t = 0. Another quantity of interest is the

rate of absorption of energy from the radiation field, dE
dt

:

E = Esystem = NαEα +NβEβ →
dE

dt
=

=
dNα

dt
Eα +

dNβ

dt
Eβ,

but dNα
dt

is given by equation 2.12 and
dNβ
dt

= −dNα
dt

. Therefore,

dE

dt
= NαPαβ(Eβ − Eα) +NβPβα(Eα − Eβ) = nP∆E. (2.15)

Equation 2.14 tells us that after a long time that the rf field perturbates the

system of spins, the difference between the population of spins on the excited and

fundamental states will become zero, n(t)→ 0. This configuration is called saturation.

It is characterized by the absence of resonance absorption.

In addition, we should note that the developed model to the spin dynamics lacks

some other interactions. Note that in the presence of the external magnetic field, we

used the Boltzmann’s distribution to infer that there were a population diference in

the system, Nα > Nβ. However, in the absence of the external magnetic field Nα

should be equal to Nβ via the same distribution. Therefore, there are other interac-

tions between the nuclei and their surroudings which cause the spin orientation to

change. The excess of magnetic energy is converted to other degrees of freedom. This

nonradiative transitions are called spin-lattice relaxation. The physical key behind

spin-lattice relaxation is that the whole system of spins is in thermal equilibrium in

which the probabilities of spontaneous spin transitions are not equal as it were for

the rf field.

To properly model the spin transition dynamics, we should also consider the re-

laxation probabilities Wαβ ≡ Wα→β and Wβα ≡ Wβ→α due to the interaction between

the nuclei and their surroundings. Let us considere the case without the rf field:
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dNα

dt
= NβWβα −NαWαβ. (2.16)

At thermal equilibrium, we should have dNα
dt

= 0→ N0
β/N

0
α = Wαβ/Wβα. Chang-

ing again variables to n = Nα −Nβ and N = Nα +Nβ:

dn

dt
= −n(Wβα +Wαβ) +N(Wβα −Wαβ) (2.17)

that may be written as:

dn

dt
= −(n− n0)

T1
; (2.18)

where n0 (n0 = N [(Wβα−Wαβ)/(Wβα+Wαβ)]) is the population difference at thermal

equilibrium (N0
α−N0

β), and 1/T1 is equal to Wαβ +Wβα. Note that T1 has dimension

of time, and it is called the spin-lattice relaxation time. T1 provides an idea of how

long it takes for the lattice to approach thermal equilibrium. Different systems can

have different spin-lattice relation time. For example, cerebral cortex, or gray matter,

presents T1 aprroximattely 950ms and white matter 600ms, while blood has T1 around

1200ms.

We are now able to combine the effects of the rf field and the spin relaxation time

by combining equations 2.13 and 2.18:

dn

dt
= −2Pn− (n− n0)

T1
. (2.19)

At equilibrium, dn/dt = 0, the population difference will be given by:

n =
n0

1 + 2PT1
, (2.20)

which implies that the rate of absorption of rf energy (recall equation 2.15) is given

by:

dE

dt
= n0∆E

P

1 + 2PT1
, (2.21)

this equation indicates that if T1 is larger, the system will easily saturate.

To investigate the dynamics of the macroscopic system of spins, we basically

considered that the width and shape of the absorption line could be represented

by a δ function. However, it is a quite unreallistic approach. First of all, there is

an uncertatinty in the energy that can be absorbed by the spin in the process of

resonance. From the uncentainty principle of time and energy, we know that:

∆t∆E ≥ ~/2→ ∆t(h∆ν) = ~/2→ ∆t∆ν ∼ 1

9



.

Besides, there are other mechanisms that affect the relative energies of the spin

levels. These mechanisms are characterized by a relaxation time T2, which is known

as the transverse relaxation time. The transverse relaxation time is closely linked to

the spin-lattice relaxation time due to the fact that they are both related to sim-

ilar interactions between the spin and their surroundings. To take in account the

transverse relaxation time, we should replace the Delta distribution function by an-

other one such as the Lorentzian and Gaussian function. One detailed approach to

resonance absorption can be found on [9] (chapter 13 and section C).

2.3 Bloch Equations

In this section, we will model the interaction of spins with their surroungings in the

presence of an external field by the phenomenological Bloch’s equations [10]. In this

approach, we should use the concept of a net magnetization vector, M(r, t) that is

the sum of the individual magnetic moments of all protons inside a fixed volume V.

Suppose that there were an external magnetic field for some period of time then the

external field is turned to zero. Right after turning off the system, the configuration

is given by Nα protons in the |α〉 state and Nβ in the |β〉 state. Therefore, the

magnetization inside the volume is given by:

Mz = γ~(Nα −Nβ) = γ~n. (2.22)

However, due to the protons interactions with their surroundings, the magnetization

will decrease exponentially to zero, equation 2.18. Differentiating the magnetization

in respect to time, we have:

dMz

dt
= γ~

dn

dt
= −γ~ n

T1
= −Mz

T1
. (2.23)

Note that there is no difference between the z, x, and the y direction. Hence,

dMz

dt
= −Mz

T1
;

dMx

dt
= −Mx

T1
;

dMy

dt
= −My

T1
.

When the external magnetic field is turned on such that B = B0ẑ, z, x, and y

directions are no longer similar and the magnetization in the z direction does not
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tend to zero anymore. However, the magnetization is still given by Mz = γ~n then

according to equation 2.18, we should have:

dMz

dt
= −Mz(t)−Mz(0)

T1
. (2.24)

The magnetization in the other directions will still decay exponentially to zero,

but the spin relaxation time from them do not have necessarily to be equal to the

one from the z direction in which the external field has been applied. Thus,

dMx

dt
= −Mx

T2

dMy

dt
= −My

T2
(2.25)

To finish the whole description, we should add the contribution from the spin

angular momentum of the entire volume V. Here, we assume that the angular mo-

mentum of each nucleus obeys the classical mechanics. The torque in each magnetic

moment due to the external magnetic field is given by:

~τ = ~µ×B, (2.26)

but dL
dt

= ~τ then

dL

dt
=
d(~I)

dt
= ~µ×B. (2.27)

Multiplying both sides by γ:

d~µ

dt
= γ~µ×B. (2.28)

The total magnetization M is the sum of all magnetic moment within a fixed

volume V, thereby M behaves similarly to each magnetic moment:

dM

dt
= γM×B, (2.29)

which implies that:

dMx

dt
= ω0My

dMy

dt
= −ω0Mx (2.30)

dMz

dt
= 0

11



in which ω0 is the nuclear resonance frequency, (γB0), which is also known as the

Larmor frequency. Combining equations 2.24, 2.25, and 2.30, we find the Bloch

equations:

dMx

dt
= ω0My −

Mx

T2

dMy

dt
= −ω0Mx −

My

T2
(2.31)

dMz

dt
= −Mz(t)−Mz(0)

T1
.

Therefore, on one hand, the net magnetization vector performs a damped prec-

cesion in which its longitudinal component Mz relaxes to its equilibrium M0 with a

decay characteristic time T1. On the other hand, the transverse components of M

decay to zero with a time T2.

2.3.1 Radio Frequency Field

With the Bloch’s equations, we can investigate the macroscopic result of apply-

ing an rf oscillating field to the sample of spins. For simplicity, I will solve this

problem for a rotating magnetic filed B1. However, note that a field of strength

2B1 cosωt in the x direction can be understood as the sum of two counter-rotating

fields, (B1 cosωt,−B1 sinωt, 0) and (B1 cosωt,+B1 sinωt, 0). Regarding these two

rotating magnetic fields, only the first one can be in resonance with the nuclear spins

because the external steady magnetic field B0 is pointed to the z direction. The

other has no significant effect. Therefore, a rotating field (B1 cosωt,−B1 sinωt, 0) is

approximately equal to an oscillating field of strength 2B1.

If we apply a radio frequency field B1 that oscillates in the Larmor frequency, the

net magnetization will feel a torque, which is synchronized to the free precession of

the net magnetization, thereby a large oscillating magnetic field will be induced in

the sampple. Instead, a field which oscillates at other frequencies will have only small

effects on the sample. Therefore, to investigate the resonance in detail, let us apply a

circurlarly polarized rf filed B1 which rotates clockwise in the xy plane with angular

velocity ω.

B1 = B1(x̂ cosωt− ŷsin(ωt)). (2.32)

12



Hence, we have to add in the Bloch’s equations a new torque because of the

interaction between B1 and the magnetization vector:

dM

dt
= γM×B + γM×B1 −

x̂Mx + ŷMy

T2
− ẑ(Mz −M0)

T1
. (2.33)

We can define a new coordinate system that rotates with B1 at angular velocity

ω. In the new system, S ′, we set x′ on the direction of B1, z′ on the direction of B,

and y′ such that x′× y′ = z′. We also define u and v to be the transverse components

of the magnetic moment along the x′ and y′ directions, respectively. Thus,

M′ = ux̂′ + vŷ′ +Mzk̂
′.

B1
′ = B1x̂

′.

~ω′ = −ωk̂′.

In respect to S ′ system, the change rate of M′ is given by:

dM′

dt
=
du

dt
x̂′ +

dv

dt
ŷ′ +

dMz

dt
k̂′.

However, for an observer in the fixed system, the x′ axis changes with time such that:

x′ = x̂cos(ωt)− ŷ sinωt→ dx′

dt
= −x̂sin(ωt)ω − ŷ cos(ωt)ω.

The magnetization would be:

M = ux̂′ + vŷ′ +Mzk̂
′, (2.34)

but the axis are rotating, so:

dM

dt
=
du

dt
x̂′ +

dv

dt
ŷ′ +

dMz

dt
k̂′ +

dx′

dt
u+

dy′

dt
v, (2.35)

which leads to:
dM

dt
=
dM′

dt
+ ~ω′ ×M′. (2.36)

Assuming that at time t = 0, the systems S and S ′ coincide, and using equations

2.33 and 2.36, we should have:

dM′

dt
+ ~ω′ ×M′ = γM′ ×B′ + γM′ ×B1

′ − x̂′Mx + ŷ′My

T2
− ẑ′(Mz −M0)

T1
. (2.37)

13



The separation of components yields:

du

dt
= (ω0 − ω)v − u

T2
;

dv

dt
= −(ω0 − ω)u+ γB1Mz −

v

T2
; (2.38)

dMz

dt
= −γB1v −

Mz −M0

T1
.

After the rf field has been on for a long time, the spin precession reaches a sta-

tionary state such that the solutions of equations 2.38 are given by:

u = M0
γB1T

2
2 (ω0 − ω)

1 + T 2
2 (ω0 − ω)2 + γ2B2

1T1T2
;

v = M0
γB1T2

1 + T 2
2 (ω0 − ω)2 + γB2

1T1T2
; (2.39)

Mz = M0
1 + T 2

2 (ω0 − ω)2

1 + T 2
2 (ω0 − ω)2 + γB2

1T1T2
.

In the beginning of this section, we discussed that the solution for an oscillating

field is equivalent to a rotating field with strength of 2B1. From now on, we will use

the oscillating magnetic field which is basically (2B1 cos(ωt), 0, 0). The components

of the oscillating external field and the net magnetization in the fixed coordinates

become:

B1x = 2B1 cos(ωt).

Mx = u cos(ωt) + v sin(ωt). (2.40)

Therefore, note that u is component of M that oscillates in phase with H1, while

v presents a phase delay of π
2
. Bloch described this phase shift by introducing a

complex magnetic suceptibility χ(ω). In this perspective, H1x and Mx are descibed

respectively as 2H1exp(−iωt) and 2H1χ(ω)exp(−iωt). χ(ω) is equal to χ(ω)′+iχ(ω)′′,

and the real magnetic moment is given by the real part of 2H1χ(ω)exp(−iωt), which

implies that u and v are proportional to χ′(ω) χ′′(ω):

Mx = H1[χ(ω)e−iωt + χ∗(ω)eiωt] =

= 2H1χ
′(ω) cosωt+ 2H1χ

′′(ω) sinωt. (2.41)
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Comparing equation 2.40, 2.39 and 2.41 and writting M0 as χ0H0, we can express the

sample’s susceptibilities as:

χ(ω)′ =
1

2
χ0ω0

T 2
2 (ω0 − ω)

1 + T 2
2 (ω0 − ω)2 + γ2B2

1T1T2
;

χ(ω)′′ =
1

2
χ0ω0

T2
1 + T 2

2 (ω0 − ω)2 + γ2B2
1T1T2

. (2.42)

By holding B1 constant, we can investigate the behavior of χ(ω)′ χ(ω)′′ as function

of (ω − ω0)T2 in units of 1
2
χ0ω0T2. From figure 2.2, we note that at the resonance

frequency, ω0, χ(ω)′′ becomes very large and χ(ω)′ changes sign. However, far from

the resonance point, χ(ω)′′ approaches zero very quickly. At high frequencies, χ(ω)′

is negative what makes the M to be π (out of phase). The rotating H1 produces a

torque on the magnetic moments of the spins with magnitude vH1 in the ẑ direction.

It does work on the precessing rate spins at a rate ωvH1. Comparing again equations

2.40 and 2.41, the average power absorbed by the sample of spins is given by:

dE

dt
= 2ωH2

1χ(ω)′′. (2.43)

Therefore, at the resonance frequency, there is a strong absorption of energy since

χ(ω)′′ increases significantly.
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Figure 2.2: Behavior of the susceptibilities as function of (ω − ω0)T2.
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Chapter 3

Near-Infrared Spectroscopy

In this chapter, we investigate the physical principles behind NIR light propagation

through the biological tissue. First, we introduce basic concepts of light-matter in-

teraction, scattering and absorption. Next, we use the Radiative Transport Theory

as an approximation to the Maxwell’s equations for describing NIR light propagation

through the biological tissue, resulting in the Radiative Transport Equation. To pro-

vide valuable physical insights regarding NIR light propagation, we derive a photon

diffusive approximation by expanding the Radiative Transport Equation in spherical

harmonics. In the end, we discuss the validity of our findings.

3.1 Absorption and Scattering

In order to properly extract and interpret optical information from a medium, one

must be familiar with two basic concepts regarding light-matter interaction: scatter-

ing and absorption.

Scattering is related to the change in the direction of the light inside a medium.

In this process, photons are absorbed by molecules from the tissue then they are

re-emitted. The re-emitted photon may have the same energy and momentum as

the incident photon, same energy and different momentum or different energy and

momentum. Using low power sources in the NIR spectra, scattered photons by the

biological tissue predominantly have the same energy as the incident photons. There-

fore, we can restrict ourselves to study only elastic scattering, i.e. scattering in which

energy is conserved. Elastic scattering can provide structural information about cells

and surrounding fluids because it is originated due to spatial differences on the scale

of the light wavelength, 0.6µm . Tissue presents several regions of greater and lesser

density on a length scale comparable to the NIR wavelengths (600-950nm). For exam-
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(a) Hydrogen Spectrum

(b) Absorption Coefficient
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Figure 3.1: The hydrogen spectrum has only very specific wavelengths in which ab-
sorption is observed, while the absorption coefficients for oxy- and deoxy-hemoglobins
are different from zero in a basically continuum spectrum. Data for 3.1a were acquired
in the learning experimental physics lab from the University of Campinas, and data
for 3.1b were extracted from http://omlc.org/spectra/.

ple, the size of a red blood cell is about 7.8µm; thereby this medium is very scattering

to the NIR light.

Absorption refers to the process in which electromagnetic energy is converted into

internal energy of the medium, usually thermal energy. Typically, in the undergradu-

ate physics courses, students work only with interactions between light and electrons

or atoms. In those cases, the frequencies in which one can observe absorption events

are very limited. To observe absorption, the incident photon energy should basi-

cally match the energy difference between the electronic states of a bound electron.

These energy differences are discrete, limiting the interactions to specific wavelengths,

Figure 3.1a.

However, in the biological tissue, an incident photon to be absorbed may also

match the energy differences in the rotational or vibrational modes of one of the

molecules that constitute the medium. These energy gaps depend on the temper-

ature of the medium, making the absorption spectrum basically continuum due to

thermal fluctuations. In the NIR spectra, the main absorbing constituents of the

tissue are oxy-hemoglobin, deoxy-hemoglobin, water and lipid, figure 3.1b b). With

measurements of absorption using different wavelengths, it is possible to extract con-

centrations of each one of these chromophores.
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Figure 3.2: Light radiance traveling in the direction Ω̂. The amount of radiant power
crossing an element of area dσ is given by L cos θdσdΩ in which θ is the angle between
Ω̂ and the vector n̂, normal to the infinitesimal area dσ. This figure is adapted from
[1].

3.2 Radiative Transport Equation

Light propagation in the biological tissue could be modeled by using directly the

Maxwell’s equations. To do so, we would have to account for every interaction of the

light with the medium, which makes this approach not viable. One alternative method

is to use the Radiative Transport (RT) Theory as an approximation to Maxwell’s

equations for describing light propagation through tissue [11, 12]. A very formal and

detailed derivation of the Radiative Transport Equation (RTE) can be found on [13].

The most important physical quantity in the RT theory is the light radiance,

L(r, Ω̂, t, λ) [14]. The units of L are [Wcm−2sr−1], i.e. L is basically the light power

per unit area per unit solid angle traveling in the Ω̂ direction at position r and time

t. With L, we can directly express the amount of radiant power, W (Ω̂), crossing an

element of area dσ in direction within an element of solid angle dΩ, dΩ = sin θdθdφ

(Figure 3.2):

W (Ω̂) = L cos θdσdΩ, (3.1)

where θ is the angle between Ω̂ and the unit vector n̂ normal to the differential area

dσ.

We can use the radiance to characterize the interaction of the light with the tissue

by defining two probability densities: µa(Ω̂, r, t, λ) and p(Ω̂, Ω̂′, ~r, t, λ). µa is the

probability density for light absorption in the direction Ω̂, while p is the probability

density of light scattering into the direction Ω̂ given the incident direction Ω̂′ at (r, t).
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Figure 3.3: Radiance varying after passing through a infinitesimal volume. After
traveling a distance dr in the tissue, L may be absorbed or scattered by the infinites-
imal volume. The scattered radiance from direction Ω̂ to a specific direction Ω̂′ is
proportional to p(Ω̂′, Ω̂, r, t, λ)× L(Ω, r, t, λ)× dr.

With these definitions, the amount of radiance that is absorbed by light propagation

through an infinitesimal path, dr, is µa(Ω̂, r, t, λ) × L × dr , while the amount of

radiance that is scattered from the direction Ω̂ to the direction Ω̂′ is p(Ω̂′, Ω̂, r, t, λ)×
L×|dr|, see figure 3.3. Hence, we can integrate the last expression over all solid angles

in order to find an expression, called scattering coefficient (µs), which accounts for

scattering events into all directions of the incident light in the direction Ω̂.∫ 2π

0

∫ π

0

p(Ω̂′, Ω̂, r, t, λ)× L(Ω, r, t, λ)× dr × dΩ′ =

= L(Ω̂, r, t, λ)× dr ×
∫ 2π

0

∫ π

0

p(Ω̂′, Ω̂, r, t, λ)dΩ′, (3.2)

then the amount of radiance that is scattered from the direction Ω̂ to any other

direction is given by:

L(Ω̂, r, t, λ)µsdr, (3.3)

where µs is defined as
∫ 2π

0

∫ π
0
p(Ω̂′, Ω̂, r, t, λ)dΩ′. This coefficient is well-known as the

scattering coefficient.

The coefficients µa and µs have similar meanings; µa and µs stand to the wavelength-

dependent probability for absorption of light in the Ω̂ direction and scattering of light

from the Ω̂ direction to any other one, respectively. With the aforementioned coef-

ficients, we can calculate the mean distance a photon travels between two events of
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scattering and two events of absorption. First of all, the number of photons that were

not scattered after traveling a distance of r + dr is given by:

N(r + dr) = N(r)−N(r)µsdr, (3.4)

expanding the last side of the equation in Taylor up to the first order:

N(r) +
dN

dr
dr = N(r)−N(r)µsdr, (3.5)

then
dN

N
= −µsdr → N(r) = N0e

−µsr. (3.6)

To find the mean distance that a photon propagates through the tissue without

scattering, we should realize that two phenomena happen for a photon scattering after

a distance r without being scattered before: (1) it did not scatter during a distance

r and; (2) it scattered after the distance r. Therefore, the density probability for a

photon to scatter after traveling a distance r without scattering should be the density

probability of not scattering in the distance r (N(r)
N0

) times the probability of scattering

(µsdr). Hence,

< rs >=

∫ ∞
0

r
N(r)

N0

µsdr =

∫ ∞
0

re(−µsr)µsdr =
1

µs
, (3.7)

in which the index s refers to scattering. Using the same approach, one can calculate

the mean distance that a photon propagates between two events of absorption, finding

that < ra >= 1
µa

.

< rs > and < ra > are important for our approach since the RT theory only

works for media in which both are significantly greater than the light wavelength. In

the NIR spectra, this requirement is acquired, considering the interaction with the

biological tissue.

The infinitesimal light radiance change, dL, after passing through an infinitesimal

volume is given by:

dL = L(r + dr, Ω̂, t+ dt)− L(r, Ω̂, t).

Expanding again in Taylor:

dL =
∂L(r, Ω̂, t)

∂t
dt+ dr · ∇L(r, Ω̂, t)

but v = dr·Ω̂
dt
→ dr = vdtΩ̂. v is the light velocity between interactions. Therefore,
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dL =
∂L(r, Ω̂, t)

∂t
dt+ vdtΩ̂ · ∇L(r, Ω̂, t). (3.8)

Moreover, we can also construct another and equivalent expression to dL based

on µa and p:

dL = −µa(Ω̂, r, t)L(r, Ω̂, r)dr − L(r, Ω̂, r)

∫
Ω̂ 6=Ω̂′

p(Ω̂′, Ω̂, r, t)dΩ̂′dr+

∫
Ω̂6=Ω̂′

p(Ω̂, Ω̂′, r, t)L(r, Ω̂′, r)dΩ̂′dr +Q(r, Ω̂, t, λ)dr. (3.9)

To clarify, in equation 3.9, the first term corresponds to the radiance that is

absorbed by the media in the direction Ω̂. The second and third terms stand to the

radiance that are scattered to a different direction Ω̂ and from any other direction

Ω̂′ to the direction Ω̂, respectively. Finally, the last term accounts for light sources

that emit power per unit volume at position r and time t in the direction Ω̂. If

we take a careful look again in the equation 3.3, we can see that µs is defined by

integrating the second term of equation 3.9 over all solid angles. Therefore, by adding

−p(Ω̂, Ω̂, r, t, λ)L(r, Ω̂′, r)dr+p(Ω̂, Ω̂, r, t, λ)L(r, Ω̂′, r)dr, which is zero, we will have:

dL = −µa(Ω̂, r, t)L(r, Ω̂, t)dr − L(r, Ω̂, t)dr

∫
4π

p(Ω̂′, Ω̂, r, t)dΩ̂′

∫
4π

p(Ω̂, Ω̂′, r, t)L(r, Ω̂′, t)dΩ̂′dr +Q(r, Ω̂, t, λ)dr;

changing dr by vdt and using the definition of µs,

dL = −µa(Ω̂, r, t)L(r, Ω̂, t)vdt− L(r, Ω̂, t)µs(Ω̂, r, t)vdt+

+

∫
4π

p(Ω̂, Ω̂′, r, t)L(r, Ω̂′, t)dΩ̂′vdt+Q(r, Ω̂, t, λ)vdt, (3.10)

Finally, combining equations 3.8 and 3.10, we have:

∂L(r, Ω̂, t)

∂t
dt+ vdtΩ̂ · ∇L(r, Ω̂, t) = −

[
µa(Ω̂, r, t) + µs(Ω̂, r, t)

]
L(r, Ω̂, t)vdt+

+

∫
4π

p(Ω̂, Ω̂′, r, t)L(r, Ω̂′, t)dΩ̂′vdt+Q(r, Ω̂, t, λ)vdt, (3.11)

dividing both sides by vdt:
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1

v

∂L(r, Ω̂, t)

∂t
+ Ω̂ · ∇L(r, Ω̂, t) = −

[
µa(Ω̂, r, t) + µs(Ω̂, r, t)

]
L(r, Ω̂, t)+

+

∫
4π

p(Ω̂, Ω̂′, r, t)L(r, Ω̂′, t)dΩ̂′ +Q(r, Ω̂, t, λ). (3.12)

Equation 3.12 is the well-known radiative transport equation (RTE). However, it

is not in the most common form. To express it in the commonly used form, we should

define the total transport coefficient, µt ≡ µa(Ω̂, r, t)+µs(Ω̂, r, t), and the normalized

scattering phase function,f ≡ p(Ω̂,Ω̂′,r,t,λ)

µs(Ω̂,r,t,λ)
. Hence,

1

v

∂L(r, Ω̂, t)

∂t
= −Ω̂ · ∇L(r, Ω̂, t)− µt(Ω̂, r, t, λ)L(r, Ω̂, t)+

+Q(r, Ω̂, t, λ) + µs(Ω̂, r, t, λ)

∫
4π

f(Ω̂, Ω̂′, r, t, λ)L(r, Ω̂′, t)dΩ̂′. (3.13)

RTE is the main result of this section, and it is important to note that to derive

this equation, we only defined the radiance as the light power per unit area per unit

solid angle traveling a specific direction. Next, we investigated its interaction with the

medium, considering the capability of tissue to absorb and scatter radiance, or light.

Another important note is that our derivation of the RTE considers only unpolarized

light. Otherwise, we would have to use absorption and scattering coefficients that

accounts for each direction of polarization. In that case, the radiance L should be

replaced by a 4×1 vector, and we would have to replace µs, µa and p by 4×4 tensors

[15].

The radiative transport equation is an approximation to the Maxwell’s equations

to the propagation of light through the tissue. However, the equation 3.13 is only

analytically solvable for very simple geometries which is not the case at hand. In the

case of NIR light and biological tissue, we can still approximate the 3.13 by a diffusive

process under some assumptions that will be discussed in the next section.

3.3 Photon Diffusive Approximation

In this section, we will find an approximation to the RTE by: (1) finding the continuity

relation between photon fluence and flux and; (2) expanding the radiance in spherical

harmonics up to the first order. Dividing L(r, Ω̂, t) by v in which v is the velocity of

light between tissue interaction, scattering or absorption, we can make the following

dimensional analysis:
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L(r, Ω̂, t)

v
=

[Wcm−2sr−1]

[cmt−1]
=

[Wsr−1]× [t]

[cm3]
=

[Energy][sr−1]

[V olume]
. (3.14)

Therefore, L(r,Ω̂,t)
v

is basically the component of the photon energy concentration

(Energy/volume) traveling in the Ω̂ direction. To find the total photon energy

concentration, denoted by Γ(r, t), we can integrate L/v over all solid angles. Thus,

Γ(r, t) =
1

v

∫
4π

L(r, Ω̂, t)dΩ =
1

v
Φ(r, t), (3.15)

where Φ(r, t) = [W ]
cm−2 is the photon fluence rate. With the definition of the photon

fluence rate, we can come back to equation 3.13 and integrate it in both sides over

all solid angles. Hence,

1

v

∂

∂t

∫
4π

L(r, Ω̂, t)dΩ = −
∫
4π

∇ · [L(r, Ω̂, t)Ω̂]dΩ−
∫
4π

µt(Ω̂, r, t, λ)L(r, Ω̂, t)dΩ+

+

∫
4π

Q(r, Ω̂, t, λ)dΩ +

∫
4π

µs(Ω̂, r, t, λ)

∫
4π

f(Ω̂, Ω̂′, r, t, λ)L(r, Ω̂′, t)dΩ′dΩ. (3.16)

Now, if we assume that the medium is isotropic, i.e. the scattering and the

absorption coefficients do not depend on the direction of light, the gradient of L in

spherical coordinates, µs and µa, become:

∇L =
∂L

∂r
r̂ +

1

r

∂L

∂r
θ̂ +

1

r sin θ

∂L

∂r
φ̂→ ∂L

∂r
r̂,

µs(Ω̂, r, t, λ)→ µs(r, t, λ), and

µa(Ω̂, r, t, λ)→ µa(r, t, λ).

From now on, I will omit the dependence on the wavelength λ for simplicity of

notation. Therefore,

1

v

∂Φ(r, t)

∂t
= −∇ ·

∫
4π

L(r, Ω̂, t)Ω̂dΩ− µt(r, t)Φ(r, t)+

+ S(r, t) + µs(r, t)

∫
4π

∫
4π

f(Ω̂, Ω̂′, r, t)L(r, Ω̂′, t)dΩ′dΩ; (3.17)
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where S(r, t) is the concentration of an arbritary radiant source power. It has units

of [W/cm−3]. Further, we can assume that the scattering phase function (f) depends

only on the angle between the incident and scattered wave vectors, i.e.

f(Ω̂, Ω̂′, r, t) = f(Ω̂ · Ω̂′, r, t),

then

1

v

∂Φ(r, t)

∂t
= −∇ ·

∫
4π

L(r, Ω̂, t)Ω̂dΩ− µt(r, t)Φ(r, t)+

+S(r, t) + µs(r, t, λ)

∫
4π

{∫
4π

f(Ω̂ · Ω̂′, r, t)dΩ

}
L(r, Ω̂′, t)dΩ′.

Where ∫
4π

f(Ω̂ · Ω̂′, r, t)dΩ = 1.

Thus,

1

v

∂Φ(r, t)

∂t
= −∇ ·

∫
4π

L(r, Ω̂, t)Ω̂dΩ− µa(r, t)Φ(r, t) + S(r, t).

Defining the photon flux as

J(r, t) =

∫
4π

L(r, Ω̂, t)Ω̂dΩ, (3.18)

we have the continuity relation between the photon fluence rate and the photon flux,

which is given by:

1

v

∂Φ(r, t)

∂t
+∇ · J(r, t) + µa(r, t, λ)Φ(r, t) = S(r, t, λ). (3.19)

Note that there is a crucial difference between the fluence rate, Φ(r, t), and the

photon flux, J(r, t). Φ(r, t) is the scalar sum over all angles of the radiance emerging

from the infinitesimal volume centered at (r, t), while J(r, t) is the vector sum of the

radiance over all angles. For example, for an incandescent light bulb, Φ(r, t) is much

larger than ||J(r, t)|| (Figure 3.4a), while for a colimated laser both are approximately

the same (Figure 3.4b) since in the first case the light propagates approximately

equally over all directions and in the second it travels mostly over one direction.
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(a) Incandescent light bulb

(b) Colimated Laser

Figure 3.4: Example of two sources to illustrate the intrinsic difference between pho-
ton fluence rate and photon flux. The photon fluence rate is defined as the scalar sum
over all solid angles of radiance emerging radially from a infinitesimal volume, while
the photon flux is the vector sum. For an incandescent light, ||J(r, t)|| → 0, and for
a laser ||J(r, t)|| ∼ Φ(r, t).

3.3.1 Spherical Harmonics Expansion of the Light Radiance

The next step to find the diffuse approximation to the RTE is to expand the light

radiance L as a series of spherical harmonics, Y m
l . Before doing that, let us remember

some properties of spherical harmonics and some mathematical relations that will be

useful.

1. f(θ, φ) =
∑∞

l=0

∑+l
m=−l

√
2l+1
4π
fml Y

m
l (θ, φ). Spherical harmonics expansion se-

ries.

2. 2l+1
4π

∫
4π
Y m
l Y

m′

l′ dΩ = δll′δmm′ . Ortogonality.

3. Ω̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ. Unit vector in cartesian coordinates.

4.
∫
4π

Ω̂(Ω̂ ·A)dΩ = 4π
3

A and
∫
4π

Ω̂[Ω̂ · ∇(A · Ω̂)]dΩ = 0. For any vector A.

With property 1, we can write the light radiance as:

L(r, Ω̂, t) =
∞∑
l=0

+l∑
m=−l

√
2l + 1

4π
fml (r, t)Y m

l (θ, φ), (3.20)

substituiting equation 3.20 into the definition of the photon fluence rate:

Φ(r, t) =

∫
4π

L(r, Ω̂, t)dΩ =
∞∑
l=0

+l∑
m=−l

√
2l + 1

4π
fml (r, t)

∫
4π

Y m
l (θ, φ)dΩ; (3.21)
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Φ(r, t) =
∞∑
l=0

+l∑
m=−l

√
2l + 1fml (r, t)

∫
4π

1

4π
Y m
l (θ, φ)dΩ, (3.22)

but Y 0
0 = 1√

4π
then

Φ(r, t) =
∞∑
l=0

+l∑
m=−l

√
2l + 1fml (r, t)

∫
4π

Y 0∗
0 Y m

l (θ, φ)dΩ. For property 2:

Φ(r, t) = f 0
0 (r, t). (3.23)

We can also expand the photon flux by the same way.

J(r, t) =

∫
4π

L(r, Ω̂, t)Ω̂dΩ =
∞∑
l=0

+l∑
m=−l

√
2l + 1

4π
fml (r, t)

∫
4π

Y m
l (θ, φ)Ω̂dΩ =

=
∞∑
l=0

+l∑
m=−l

√
2l + 1

4π
fml (r, t)

∫
4π

Y m
l (θ, φ)[sin θ cosφx̂+ sin θ sinφŷ + cos θẑ]dΩ =

∞∑
l=0

+l∑
m=−l

√
2l + 1

4π
fml (r, t)

∫
4π

Y m
l (θ, φ)[

√
2π

3
(Y −1∗1 −Y 1∗

1 )x̂−i
√

2π

3
(Y −1∗1 +Y 1∗

1 )ŷ+2

√
π

3
Y 0∗
1 ẑ].

In the last equation, I used property 3 and the definition of Y −11 , Y 1
1 , and Y 0

1 .

Using again property 2, the photon flux can be written as:

J(r, t) =

√
1

2

{
f−11 (r, t)− f 1

1 (r, t)
}
x̂− i

{
f−11 (r, t) + f 1

1 (r, t)
}
ŷ + f 0

1 (r, t)ẑ. (3.24)

Now, we can express the net power per area traveling in the Ω̂ by projecting

J(r, t), i.e. computing the scalar product between J(r, t) and Ω̂. Hence,

J(r, t) · Ω̂ =

√
4π

3

{
f 0
1 (r, t)Y 0

1 + f−11 (r, t)Y −11 + f 1
1 (r, t)Y 1

1

}
. (3.25)

It has been argued in the literature that for the diffuse approximation, L can be

expanded up to the first order in the spherical harmonics series [1, 16]. It is known

as the P1 approximation. Therefore,

L(r, Ω̂, t) =

√
1

4π
f 0
0 (r, t)Y 0

0 +

√
3

4π
[f−11 (r, t)Y −11 + f 0

1 (r, t)Y 0
1 + f 1

1 (r, t)Y 1
1 ]. (3.26)
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With equations 3.23, 3.25, and 3.26, we can conclude that P1 is a linear combina-

tion of the photon fluence rate and the photon flux.

L(r, Ω̂, t) =
1

4π
Φ(r, t) +

3

4π
J(r, t) · Ω̂. (3.27)

If we substitute equation 3.27 in the radiative transport equation 3.13 given by:

1

v

∂L(r, Ω̂, t)

∂t
= −Ω̂ · ∇L(r, Ω̂, t)− µt(r, t)L(r, Ω̂, t)+

+Q(r, Ω̂, t) + µs(r, t)

∫
4π

f(Ω̂ · Ω̂′, r, t)L(r, Ω̂′, t)dΩ̂′,

we will have:

1

v

∂

∂t
[

1

4π
Φ(r, t) +

3

4π
J(r, t) · Ω̂] = −Ω̂ · ∇[

1

4π
Φ(r, t) +

3

4π
J(r, t) · Ω̂]+

−µt(Ω̂, r, t)[
1

4π
Φ(r, t) +

3

4π
J(r, t) · Ω̂] +Q(r, Ω̂, t)+

+ µs(Ω̂, r, t)

∫
4π

f(Ω̂ · Ω̂′, r, t)[ 1

4π
Φ(r, t) +

3

4π
J(r, t) · Ω̂′]dΩ̂′, (3.28)

The last term can be evaluated defining the direction of Ω̂ to be ẑ so that Ω̂′ ·Ω̂ =

cos θ′. Therefore,∫
4π

f(cos θ′)[
1

4π
Φ +

3

4π
J · Ω̂′]dΩ̂′ =

1

4π
Φ

∫
4π

f(cos θ′)dΩ̂′+

+
3

4π

∫
4π

f(cos θ′)[sin θ′ cosφ′x̂+ sin θ′ sinφ′ŷ + cos θ′ẑ]dΩ̂′J, (3.29)

but
∫
4π
f(cos θ′)dΩ̂′ = 1 and

∫ 2π

0
cosφ′dφ′ = 0. Consequently,

∫
4π

f(cos θ′)[sin θ′ cosφ′x̂+ sin θ′ sinφ′ŷ + cos θ′ẑ]dΩ̂′J =

∫
4π

f(cos θ′) cos θ′dΩ̂′ẑ · J =

∫
4π

f(cos θ′)Ω̂′ · Ω̂dΩ̂′Ω̂ · J = gΩ̂ · J

in which

g =

∫
4π

f(cos θ′)Ω̂′ · Ω̂dΩ̂′ =< cos θ > . (3.30)
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g is the scattering anisotropy factor. For an isotropic light tissue interaction, g is

equal to 0.5. The equation 3.28 becomes:

1

v

∂

∂t
[Φ + 3J · Ω̂] = −Ω̂ · ∇Φ + 3Ω̂∇(J · Ω̂)+

− 3µtΩ̂ · J + 4πQ(Ω̂)− (µt − µs)Φ + 3µsgΩ̂ · J; (3.31)

for simplicity, I ommitted the dependence of (r, t) from µt, µs, Φ, J, and Q. Multi-

plying both sides of equation 3.31 by Ω̂, integrating it over all solid angles and using

the mathematical property 4, we have:

∇Φ =
−3

v

∂J

∂t
− 3(µt − µsg)J + 3

∫
4π

Q(Ω̂)Ω̂dΩ. (3.32)

Now, supposing that all sources Q are isotropic and that the photon flux varies

very slowly with time, we have:

Q(Ω̂) = Q→
∫
4π

Q(Ω̂)Ω̂dΩ = Q

∫
4π

Ω̂dΩ = 0, and

−3

v

∂J

∂t
∼ 0 then

∇Φ = −3(µt − µsg)J→ J(r, t) =
∇Φ(r, t)

−3(µt(r, t)−µs(r, t)g)
. (3.33)

Defining the reduced scattering coefficient, µ′s = (1−g)µs, and the photon diffusion

coefficient, D = v
3(µs′+µa)

, we have

J(r, t) =
−D(r, t)

v
∇Φ(r, t). (3.34)

Finally, replacing J(r, t) in the continuity equation 3.19, we find the diffusion

equation to the photon fluence:

1

v

∂Φ(r, t)

∂t
+∇ · [−D(r, t)

v
∇Φ(r, t)] + µa(r, t, λ)Φ(r, t) = S(r, t, λ). (3.35)
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3.4 Summary

In the present chapter, we investigated the physical process behind NIR light propa-

gation trough the biological tissue. We started our study by discussing fundamental

concepts of light-matter interaction: scattering and absorption. Next, we chose to

model light propagation by using the radiative transport theory, which is an approx-

imation to the Maxwell’s equations. In the end of the last section 3.3, we found the

photon diffusive approximation to the photon fluence through the biological tissue.

It is important to highlight that we had to make several assumptions regarding the

nature of light transport. These assumptions are the meaningful physical aspects of

this chapter because they assure the validity of the diffusive photon fluence equation.

The validity of our findings are assured under:

• Radiative transport theory works. The radiative transport equation 3.13

can be applied to model light propagation in which both < rs > and < ra >

are significantly greater than the light wavelength. In the NIR spectra, this

requirement is acquired, considering the interaction with the biological tissue.

• The scattering and absorption coefficients do not depend on the direc-

tion of the light. To derive the continuity relation between photon fluence rate

and photon flux (equation 3.19), we supposed that the medium was isotropic.

It means that there is no direction in which light is more scattered or absorbed

by the tissue.

• The normalized phase function depends only on the angle between

the incident and scattered wave vectors. This assumption was also made

to derive equation 3.19. The physical meaning of it is that the change on the

light direction does not depend on the incident wave-vector.

• The light radiance can be satisfactorily expanded up to the first order

of spherical harmonic series. If the light radiance is not isotropic after some

scattering events it will become at least nearly isotropic. Therefore, the P1

approximation works properly for systems in which the scattering coefficient is

much greater than the absorption coefficient.

• The photon fluence varies slowly with time. It implies that the light

radiance as a function of time does not change abruptly. In other words, the

light radiance interaction with the tissue is stable over time.
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Chapter 4

Conclusions

In this work, we discussed the physical principles behind two neuroimaging techniques,

nuclear magnetic resonance imaging and near-infrared spectroscopy. Our main goal in

this work was to provide a didactic material that could be helpful for new researchers

to the neuroscience field and that could be understood by any student in the last year

of a physics major.

Chapter 2 is dedicated to the study of nuclear magnetic resonance imaging. By

introducing and briefly discussing the concept of nuclear spin, we could model the

interactions of hydrogen atoms, or protons, subjected to an external and constant

magnetic field and being excited by electromagnetic waves in the radio frequency.

We observed that the nuclear magnetic resonance technique is only sensitive to pro-

tons on the fundamental states. This is the only mechanism capable to explain why

stronger external magnetic fields can provide images with higher contrast and spatial

resolution. As the external magnetic field increases, the ratio between protons in the

fundamental and excited states also increases.

In addition, we analyzed the effect of applying an oscillating magnetic field to a

system of spins under the influence of an external magnetic field. One of our main

findings is that to properly model such system, we also had to take into account

the thermal equilibrium between the spin lattice and its surroundings. We inferred

that magnetic energy were converted to other degrees of freedom of the spin lattice.

This process of nonradiative transitions are called spin-lattice relaxation. In the last

section from chapter 2, we used a phenomenological approach to derive the Bloch

equations. To do so, we used the concept of net magnetization, which is the sum

of the individual magnetic moments of each proton within a macroscopic volume.

With these equations, we could investigate the impact of applying a radio frequency

oscillating field to a macroscopic sample of spins. As a result, we could provide

physical insights to the longitudinal and transverse spin relaxation times.
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In Chapter 3, we investigated the physical principles behind near-infrared light

propagation through the biological tissue. We started by discussing scattering and

absorption. We argued that under the circumstances of NIRS, we could restrict our-

selves to study only elastic scattering, which is characterized by energy conservation

of the scattered photon. We also discoursed in which conditions an incident photon

could be absorbed by the biological tissue.

Next, we used the Radiative Transport (RT) Theory as an approximation to

Maxwell’s equations for describing light propagation through tissue. By using the

concept of light radiance and defining two probability densities related to absorption

and scattering, we could model the light propagation and derive the Radiative Trans-

port equation. By making several reasonable assumptions regarding the nature of

light transport, we found that NIR light propagation in the biological tissue could be

modeled by a photon diffusive equation.

The validity of our findings in Chapter 3 are assured under several conditions.

First, the mean path between two events of scattering and absorption must be signif-

icantly higher than the light wavelength. Second, the scattering and absorption coef-

ficients do not depend on the directions of the light, which implies that the medium is

isotropic. Third, the change in the direction of light due to scattering do not depend

on the incident wave-vector. Fourth, the light radiance is nearly isotropic, which

means that the scattering coefficient is much greater than the absorption coefficient.

Finally, the light radiance as a function of time does not change abruptly. Under

these conditions, it is possible to estimate absorption and scattering coefficients from

the diffuse equation and monitor their changes in biological tissue.
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