
## **QUIZ: Fibre Gratings**

#### Raman KashyapPolytechnique Montreal

# Long Period Grating QUIZ 1



$$\beta_{core}$$
 -  $\beta_{clad}$  =  $2\pi/\Lambda_{grating}$   
=  $2\pi(n_{core} - n_{clad})/\lambda$ 

Weak Disturbance: Long Period Grating

Calculate the approximate period of a LP grating for a fibre with a core-cladding index difference is  $4 \times 10^{-3}$ 

17<del>-29 July 2016</del>

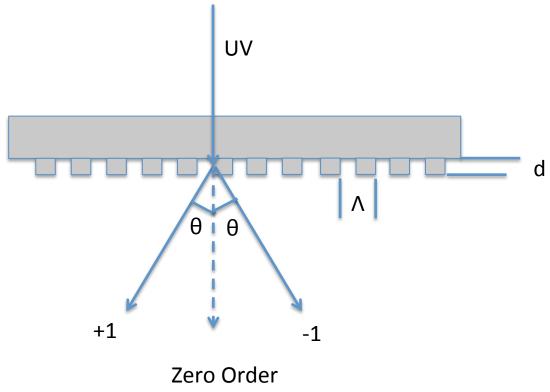
### Fibre Bragg Grating QUIZ 2

Show that the bandwidth to the first zeroes of a weak refractive index modulation grating is:

$$\Delta f \approx \frac{c}{2n_{eff}L_g}$$

#### FBG QUIZ 3

An FBG in SMF28 (Standard) fibre has a 3dB reflectivity at a Bragg wavelength of 1550nm. Assuming that the overlap of the mode with the grating is 80%, calculate kL and the length of the grating if the bandwidth to the first zeroes is 0.2nm. What is the refractive index modulation amplitude?


Additional definition:

$$\kappa_{ac}L=2\Delta n\pi n_{eff}\eta L/\lambda_{B}$$

 $\eta$  = overlap factor  $n_{eff}$  = mode index  $2\Delta n$  = ac peak-peak refractive index modulation L = length of grating

### Diffraction: QUIZ 4

Calculate the depth, d, of a grating made in silica glass for the zero-order diffraction to be zero at a UV wavelength of 213nm. Assume the refractive index of silica at the UV wavelength is 1.5. Calculate the diffraction angle,  $\theta$ , of the +/- 1 diffraction orders if the period,  $\Lambda$  of the grating is 0.5 microns.

