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‘We-have found novel aspects of the spin—boson system in a fully classical ‘analysis of the
system. The finiteness of the spin phase space is shown to strongly influence the systematic.
behaviour of periodic orbits. We also give a detalled account of the comsequences of the
chaotic dynanucs and of the superradlaut phase transrtron © 1997 Academrc_Press, Inc.

- 1. INTRODUCTION

In order to understand the behaviour of atoms coupled to a classical rad1auou

field many- 1nvestrgat10us have been performed in the last four decades. Fast

development in experlmental studies as well as n technologlcal applications give an
additional motivation for further theoretical investigations. Since the full quantum
“mechanical description of this system given by the Dicke Maser model [1], much
work has been devoted to the constructlon of its classical analogue [2—-4] In the
classical framework Arecchl et al [5] were ‘the. first to observe chaotlc rnouon n

* Partially supported by CNPq, F INEP and FAPESP.
" Supported by CNPq-Brazﬂ -

291 . o
10003-4916/92 $9.00

Copyright © 1992 by Academic Press, Inc.
All nights of reproducuon In any form reserved



292 AGUIAR ET AL.

this interacting spin—boson system. On the other hand, more recently, full quantum
mechanical calculations showed this system to exhibit typical manifestations of
classical chaos [6, 7]. Chaos and its implications is the main target of this paper.

In this work we set up the corresponding classical Hamiltonian by means of
coherent states for both spin and boson (or particle) degrees of freedom and report
on the novel aspects brought on by the spin. One essential difference between boson
and spin phase spaces is that the latter is finite. This has consequences for the struc-
ture of the periodic orbits and tori; the first will be the main point of our analysis.
In order to exploit such differences a numerical method capable of handling
periodic orbits for generic analytic Hamiltonians (not only of the form
H=p*/2m+ V(q)) is needed. We therefore develop an extension of the method by
Baranger er al. [8]. Another interesting feature of the Maser model is its well-
known superradiant phase transition. In the classical limit such transition can be
viewed as bifurcations of equilibria with a simple geometrical interpretation in
phase space [9].

In terms of periodic orbits we show that such bifurcations introduce a new family
of periodic orbits with very distinct features of the previous one. Generally speaking
we also find that the presence of classical chaos tends to introduce deformation on
the corresponding stable periodic orbits. The amount of distortion clearly depends
on the strength of the nonintegrable term. Aiso the stable regions in all families of
periodic orbits diminish considerably when chaos is increased. The effect of the
finiteness of the spin phase space (which we call border effect) is present in both
integrable and nonintegrable regimes. We show that the border has a strong
influence on the systematic behaviour of the periodic orbits as a function of
increasing energy. Specifically, the families which cover large enough energy ranges
show the following behaviour: as the spin projection of the periodic orbits approach
the border of the spin phase space the rate of increase of the mean radius of such
orbits with the energy becomes very slow, whereas the opposite occurs with the
particle projection.

Investigation of the classical limit of spin-boson coupled systems in terms of
periodic orbits 1s still far from being complete. We believe that this detailed
numerical study is an important step towards a thorough understanding of such
systems and hope that better understanding of the classical phase space will bring
some new insights for the quantum mechanical problem.

The structure of the paper is as follows: In Section 2 we obtain the classical
Hamiltonian of the Maser model, using standard coherent state techniques. In
Section 3 the bifurcations of equilibria are presented in both integrable and
nonintegrable limits. Section 4 contains the exact numerical solutions and linear
analysis of the equations of motion. Generalization of the numerical method in [8]
15 described in Appendix A for the sake of clarity. Finally, our conclusions are
presented 1n Section 5.
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2. THE CLASSICAL HAMILTONIAN

The simplest quantum system which realizes the Dicke Maser model is given by

ﬁ=£afa+&fz+i[w'++a*J_)+i(H*J++aJ_), (1)
N W
where a', a are the Bose operators of the quantized radiation mode with frequency
¢. The spin operators represent ¥ = 2J (J is the total spin) two-level atoms with
separation energy ¢, couled to spin J and J_, J_ are the usual SU(2) raising and
lowering operators corresponding to total spin J and J_, its z-component.
The classical limit of this model 1s unique and a nigorous proof of its existence
has been given in Ref [2]. Therefore we use the normalized coherent states
representation in order to obtain the classical Hamiltoman (we use fi=1)

H,(z,Z, w,w)= {zw| H |zw). (2)
The coherent states [zw > are defined as
lzw) =1z>® |w), (3)
where |z ) represents the usual boson coherent state (for the Weyl group)

2D = e~ %2 |0 (4)

with |0) being the harmonic oscillator ground state; [w) is the Bloch state
assoclated with the SU(2) group [ 10],

W =(1+ww) ‘e |J—-J>, (5)
with |J—J) the state with spin J and J.= —J. In this manner, the following
relations hold:

{z|a|z)==z
T (6)
(zla'|z)=z2
2Jw
el T Wy =
2Jw
ol J N = _ 7
i g =12 (7)
I —ww
J_ = —J
Wz w) (1 +'.1:1If)

The classical analogue of the Dicke Hamiltonian is then obtained by substituting
{1} into (2) and using {6} and (7):

B | —ww 2T _ _ , __
Hcl = E£2Z2 — EJ(]_ + “*lri‘) ‘l' l + wﬂ‘ [G{H-_ + H_)+ G {1'1-'-’.- + W.&.)]. (8}
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The classical equations of motion [11] below follow straightforwardly,

= —1
‘ 0z
: oH
=1
0z
(9)
cH
W= —1! 81;]
oH
_ Q'_l Cl,
W=l oW
where
Q=2J/(1 + ww)’. (10)

It is convenient to define real canonical variables in the classical study. For the
particle degree of freedom the action and angle variables 7,, 8§, are defined as usual

by
z=1/I, " | (11)

For the spin cdordinates, on the other hand, the most natural way i1s to relate J.

with 7, as
1 —ww
1 4+ ww

In terms of these new real vanables, the classical Hamiltonian reads

2 2
H L) =¢(l,+1,)4 2\/'] I'\/Z[Gcos(ﬂl—ﬁz) G cos(8,+06,)}). (12)

J2

Note that this expression could be obtained immediately from the quantum
Hamiltonian by the naive substitutions -

i—Z=/I,e"

d— Z=\/I—2€_'?3

J.-»I,=Jcosg, (13)
Jo— JJ?— I cos 0,=Jsin ¢, cos 6,
J.—JJ?—sinf,=Jsin ¢, sin 6,
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with ¢, 8,, the usual polar and azimuthal angle, respectively. Finally, we make a
last change of variables to go from action-angle to cartesian coordinates,

g, =+~/2(J +1I)sin 6,
P =\/2(J—— I,)cos 8,
qz*-—*\/2_lzsin g,
pgz\/ZT'_gcos g5,

the variables ¢,, p, are the usual cartesian coordinates of a harmonic oscillator.
The quantities g,, p; do not have a direct physical interpretation and are related
to the projections J,, J, by J./J.=gq,/p,. Note that J, and J, do not form a pair
of canonical variables.

The transformation from the original (w, w) to (g,, p,) and (z, 2) to (g,, p,) IS
the following

(14)

Py =/ J/(1 + ww) (w+ W)
q=/I/(1+ww) (”’: "T’)
P2=\/;(Z+Z_]

T{Zz—=zZ
(59

These equations do not constitute a canonical transformation. Indeed, the Poisson
brackets give

(15)

_6q1 @pl aplaql !
[QIE pl]wﬁ‘_ an, aﬁ} GW aﬁ;— ] Q

(16)

dq, dp; Op,0q, 1
N Y T

which are just the factors needed to turn Egs. (9) into the usual Hamilton’s
equations,

. _chl
P 29,
" chl
d,= op

1

17

. ch] ( )
P:= 34,
_ oH
qd> =

0p
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with
£ ., 4] — (p;+4g7)
H..:l(‘:bP):‘;(Pi+f’5+‘!1+‘15)-=]5+\/ d ] (G pip2+G_gig9,) (18)
< 4]
and
G,.=G+G
(19)
G =G-G".

The Hamiltoniun H, written in this representation will be the target of our study
in what follows.

3. BIFURCATION OF EQUILIBRIA

The first step in an analytical study of a classical Hamiltonian system is the
search for points of equilibrium, ie., points where the Hamiltonian flux is zero.
Writing the equations of motion explicitly we obtain

g, = —ép, \/— T+ (G pip2+G_q,9;) (20)
J2J 22 /20— H,
. C 3 ’2]— H
Pr=og T L4 Vr-- 1 oy QL; (G, pPipP>+G_q.9,) (21)
\f_,'f ZJ \;' .hJ '\}.f"f aJ — H ]
G.p J2J—H
g~ = —&p- a \‘{._._ 1 (22)
V 2J
G 20— H
pa= s+ —— N L (23)
< 2J

where
H,=3(pi+q7).

When the Lhs. is put equal to zero and p, and q, are substituted in the terms
of p, and ¢, (using (22) and (23)), one obtains

- G (2J—-H)) G p; G g
. } .l =0
e 27 4Je | 4Je (24)
C GL(2J-H\) Glp? G gt
; = F———+ = ()
4 _{ 2J¢ 4J¢ 4] (23)
G__q-,,\/ZJ—Hl
§r= - (26)
8.\;@
G 2J—H
py= ——ELNZZ T (gg)

g J?J
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The ongin g, = p, = ¢, = p, =0 is a trivial solution of Egs. (24)-(27). The analysis
of other extrema, or equilibrium points, will depend strongly on whether G’ is zero
or not. Therefore, we study each case separately and put them together afterwards.

(A) G' =0

In this case, G, =G _ =G and, when the origin is discarded, Eqgs. (24) and (25)
degenerate. Solving for g7 in terms of p? gives

) _ 4J(G” —&*) — 2p2 G?

q 22 (28)
In order to have real solutions, ¢ >0 and
4J(G* — &%)
pi< Y (29)

Again, to ensure that p; >0 we must have G2>>¢2 For both G and ¢ positive the
condition is just

G>e. (30)

Therefore, if G > ¢ there is a family of equilibrium points that bifurcates from the
origin at G =¢. It is easy to check from Egs. (28) and (22) that

2J(G* — &?)

q;+pi= o =R (31)
J(G* — &%)

g5+ p3 = S = R (32)

which means that this family projects as a circle on both (91, 1) and (q,, p,)
planes.

The energy value of those points is obtained by substituting these solutions into
the Hamiltoman. The energy of the origin is obviously E,= — Je. The points on the
circle all have the same energy

J 4 4
Eo=—>=(G"+¢%) (33)

It 1s clear then (and it can be checked) that the origin becomes a saddle point
at G =¢ and a valley of degenerate equilibria bifurcates.

(B) G'#0

When G’ is non-zero, it is not possible to find exact solutions of Egs. (24)-(27)
for both ¢, #0 and p, #0. However, the following two solutions do exist:
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The p solution. q,=q,=0 with p, and p, given by

P =+ J2HG: —2)/G?

(34)
po=T VG, — )G &
The corresponding energy is E, = —(J/2eG> )}(G* +¢&%).
The g solution. p,=p,=0 with g, and ¢, is given by
4=+ /2J(G* —&)/G?
Y (35)

g.=F VG —&*)/G_ &2

whose energy is E, = —(J/2eG2 )(G* +&%).

It 1s clear from the above equations that the p-solution exists only if G, > ¢ and
the g-solution if G_ >¢ (we assume throughout the paper that G and G’ are
positive). A detailed discussion of stability of these solutions has been given else-
where [9]. Here we summarize the results: When G’ =0 and G < ¢ the only equi-
librium point is the origin. As G is increased beyond & the origin becomes a saddle
point and a stable circle of equilibria arises. Next, when G’ is turned on only four
points on the circle remain: the p-solution which corresponds to a minimum and
the g-solution which corresponds to a saddle point. As G’ is further increased G _
will eventually become greater than ¢ and the g-solution will coalesce with the
origin. If G’ 1s nonzero from the beginning, the circle will not be seen and, when

G and G’ are changed, the origin bifurcates first into the p-solution and then into
the g-solution.

4. LINEAR ANALYSIS AND FAMILIES OF PERIODIC ORBITS

The linear analysis of the equations of motion around the equilibrium points of
the Hamiltonian is one of the most valuable methods for searching periodic orbits.
We theretore start this section by presenting the linear solutions we shall need for
our numerical studies. Throughout this section we consider the case where ¢ =1

and J=19/2.

4.1. Linear Analvsis
The origin. In this case the equilibrium point corresponds to
g {)=p,(1)=q:(t)=p,(t)=0.

The energy of this point is £= —4.5. Linearizing EQS. (20)-(23) around this point

we obtain _
Prxq,+G_g-
1= —p —GLps
-1 \ + (36)
Prxq,+G_q

g% =4+ G, p,.
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Defining the normal mode coordinates by

Py =Py TP
qd.=4q;*qs,

Eqgs. (36) decouple into

p.=(1+G_)q.

g.=—(1+G )p,
~ p_=1-G_)gq_

g_.=—(1-G,.)p_

which represent two decoupled oscillators with frequencies

0w, =(1+G_)1+G,)
2

w-_=(1-G_)1+G,)

Let us write the Hamilton equations for the four-vector X given by

P
Y — P2
q4
9>
in the usual symplectic way,
X=AVH,

299

(37)

(38)

(39)

(40)

(41)

If Xy(z) 1s a periodic orbit, 1ts stability is determined by the behaviour of nearby

trajectories. The following construction is suitable for this investigation. Take

X=X,+¢.
Then to first order in { one has
{=AH"{,
where
0°H"

fr

i = - -
0X,0X; | x=x,

[f A" is time-independent, Eq. (43) can be integrated and gives

(1) =e"" 10(0) = M(2){(0).

(42)

(43)

(44)

(45)
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The ergenvalues A of AH" are the Liapunov exponents and ¢*” are the eigenvalues

of the Monodromy matrix M(T), where T is the period of the corresponding
pertodic orbit.

[t 1s easy to compute AH” in the limit of small ¢’s and p’s and the result is

0 0 1 G_
0 0 G 1
AH" = - 46
-1 -G, 0 0 (46)
-G, -1 0 0
with eigenvalues given by
( = 41 /(1 1 '
Az{__tcmr +1/( +G+)( +G_) (47)
tiw_ = il\/(l—GJ,)(l*G_).

To study the stability of periodic orbits in two degrees of freedom systems, it is
enough to calculate the trace of their monodromy matrices [12, 137:

tr(M)=e-"+e "-T 4T He7-T=2(cos w, T'+cosw_T). (48)

The p-solutions. The linearization around the p-points (Eq. (34)) are also
straightforward and lead to the equations

(49)

where 7, = \/(Gi + 1)/2.
The above equations do not decouple as easily as before. Rewriting the equation
in the form

G l+G_G?

.. 4 N
4> . (1 G) {4 G_ q> 4>
/I + ! G

G,

-4

1t 1S now easy to obtain the eigenvalues (from (50)) and we shall use the result in
the next section.
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4.2. Families of Periodic Orbits

The classical limit of the Dicke Maser model, Eq. (18), does not display the usual
form, a kinetic energy term which depends only on the momenta plus a coordinate
dependent potential. This s due to the presence of the spin degree of freedom. Note
in particular that the spin space (p,,q,) i1s finite and limited to the circle
p: +q;<4J. A periodic orbit exists precisely at the border of this circle, as can be
checked from the equations of motion, for p, =g, =0 and encrgy E=J. We call this
solution the border solution. 1t is given by

51
p.(t)y=./4J cos . L)

Other more complex p.o. can only be obtained numerically. For such purposes it
1s necessary to have a method that is capable of treating general analytic
Hamiltonians. In Appendix A we present an extension of the method developed in
Ref. [ 8] in order to treat our Hamiltonian.

The main purpose of the discussion which follows is to exploit the novel effects
coming from the spin degree of freedom. In particular we wish to comprehend the
consequences of both the presence of the border and chaos. The former should be
apparent even in the integrable regime (G’ =0).

According to the Liapunov—Weinstein theorem [14] there exist two families of
periodic solutions of the full system that behave harmonically as their amplitudes
go to zero. The “seeds” of nonlinear solutions are then small amplitude solutions.
We call the families originating at these “seeds” DIAGP and DIAGM. These names
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(T w |
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F1G.1. Energy versus period for the simplest families of periodic orbits. (a) The coupling parameters

are G=0.5, ¢'=0.2. (b) Thick (thin) lines correspond to stable (unstable) orbits. The coupling
parameters are G =0.5, ¢'=0.2.
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F1G. 3. Poincare section of the spin degree of freedom (at ¢. =0). The parameter values are G = 0.5,
G"=0.2. The precision in energy is E/E,=10"" in all the cases: (a)total energy £,=6.2; (b)total
energy L, =23.5; (c}total energy E,=15: (d) total energy E,=25.
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FiG. 4. (a) Sequence in energy of projections of periodic orbits from the family DIAGP in the plane

(P, q,) tor the parameter values in Fig. la. (b) Same for the P2 % 4, projection. (c) Same as Fig. 4a for
the parameter values of Fig. 1b. {d) Same as Fig. 4b for the parameter values in Fig. 1b.

are related to the fact that the normal modes solutions (Egs. (37)) correspond to
diagonal oscillators in the first-to-third and second-to-fourth quadrants 1n the plane
(9., g»), respectively.

Periodic orbits generically form one-parameter families. The parameter 1s usually
chosen to be the energy or the period. Figures 1 and 2 show the Energy x Period
(E'x 1) plot of families DIAGP, DIAGM, and others. In this plot the families are
represented by curves, each point being a periodic orbit with given energy and
period. |

As discussed in Section 3 we will have at least two families of periodic orbits
which start from the points of minima. Moreover, there will be a bifurcation of
minima as the sum of the coupling constants G + G’ is increased [9]. We therefore
choose four sets of parameter values that correspond to both situations in the
integrable (1) and non integrable (ni) cases

(i) G=05 G =0

ETI -

SETI i) 6205 ¢'=02 (52)
i) G=10, G'=0

SET2 {(ni) G=10, G =04. (53)
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The families of p.o. for the first set of parameters are shown in Fig. 1a (1) and
Fig. 1b (ni). DIAGP corresponds to the “seed” with the smaller period (obtained
from (39)) and is present in both cases. In Fig. Ia the corresponding orbits will
show clearly the border effects (projections in the planes (p,, ¢,) and (p,, ¢,) are
circles, in the integrable case, as expected). The radii of the circles increase with
increasing energy in both trajectories. The effect of the border in the spin degree of
freedom is most clearly seen for energies such that the corresponding p.o. projection
approaches the border. In this case the radius of the particle p.o. projection
increases much more rapidly with increasing energy as compared to the spin p.o.
projection. This suggests that, as the energy is increased, the presence of the border
favours the concentration of the energy in the particle degree of freedom. This result
is qualitatively maintained for the second set of parameter values when chaos is
present. The presence of chaos can be best visualized with a Poincare section.
Figure 3 shows the Poincaré section for the parameter values in SETI that
correspond to the nonintegrable case (nt) {15]. The form of the p.o. projections is
also affected as can be seen in Figs. 4(a—d). The bonbon shaped curve in Fig. 4c
starts precisely at the energy when the curve DIAGP (Fig. 1b) presents a wiggle.
For the second set of parameter values (1) and (ni) these features are maintained,
inspite of the fact that DIAGP in Fig. 2b starts at a saddle point (the origin}.

In order to discuss the other three families of p.o. 1n Fig. 1a (note that DTAGM1
and DIAGM2 are degenerate), it is important to note that in this case we have
w, /w_ =3. This can be seen from H_ in terms of the action angle variables in
Eq. (12). If G' =0 only the combination of angles (8, — 8,) appears in H, implying
that 7, + 1, 1s constant. From Eq. (39) we have
(34)

Wy
W _

|

+
Q QO

|

| | b | ted

=

which assume rational values whenever G is rational. In general, this is not true
when G’ #0 as can be seen from Eq. (47). From Eq. (43),

tr(M)piagp =2+ 2cos(2n/3)=1

(33)

are the zeroth order approximation for the trace of their monodromy matrix. In

FiG. 5. (a) Representative periodic orbit of the family DIAGMI1 1n Fig. 1a projected on the (p, xq,)
plane. (b)Same on the (p,xg¢,) plane. (c) Representative periodic orbit of the family DIAGM2 in
Fig. 1a projected on the (p, x¢q,) plane. {d) Same on the (p,xg.) plane. (¢) Representative periodic
orbit of the family DIAGM!1 (right branch) in Fig. Ib projected on the (p, x q,) plane. (f) Same on the

(p,xq,) plane. (g) Representative periodic orbit of the family DIAGM in Fig 1b projected on the
(p, X ¢>) planc. {h) Same on the (p,x ¢,) plane.



5 00 DIAG M1
a
/ N
.67 / \\
/
| \
: |
167 |\ /
-1 -\ /
\ /
-5.00 | |
~5.00 -1 67 |67 5.00
Q,
5 00 C DIAGMZ
e
v N
/
1. 67 |
-1.67
\\H _,-f"/
~5.00 | '
-5.00 —1.67 | 67 5 00
Q)
& 00 DIAG M1
e
{ 67 + / \
/ \
I
| |
\ . f
-1.67 \ /
-5.00 -167 1 67 5.00
Q,
5 00 DIAGM
.67
-1 67
-5.00
-5.00

CHAOS IN A SPIN—BOSON SYSTEM

7 00 DIAG M1
b
233 |
-2.33 |-
~7.00 ’ |
~700 -2.33 D 33 7.00
QZ
700 DIAG M2
d
2. 33
~-2.33 |-
-7.00  -233 2.33 7.00
Qs
7 00 DIAG M1
f
2,33
-2.33 |
-7.00 ' 1
-700 -233 2. 33 7.00
Qs
7 00 DIAGM
h
233
~2.33
-7.00 f |
~7.00 -2 .33 2.33 7.00

Qs

303



306 AGUIAR ET AL.

this particular case (G =0.5), we have a rotational torus of the p.o. solution given
by the normal modes, Eq. (37),

= A sin§£+A sin£

pl_ + 2 — 2

3t !

g,=A4. cos?+A_ COS-z-
(56)

4 s 3t 4 S.nr

p—t —_—— 111 —

P> 4+ Sl ) _ 2

= A 3 A f.:f.:r;si

g, = +0052 _ 5

for each choice of nonzero pairs (4, A_). The period of the degenerate p.o. filling
the torus is t=4n and in the E x t plot it 1s represented by a single point in the
degenerate curves DIAGMI1 and DIAGM2. As the energy tends to the lowest value
of E= —4.5, all the degenerate tori merge in the phase space to the vicimty of the
origin g, =p, =¢,=p,=0. In particular, 4 _ =0 corresponds to the limit, where
the torus 1s reduced to the family of p.o. DIAGP, and 4, =0 to the family of p.o.
DIAGM. When G’ is switched on (see Fig. 1b), the system becomes nonintegrable
and the rational torus breaks down in a very peculiar way: the penodic orbits
which survive the torus destruction constitute a single family, DIAGM]1, that
emerges at an energy larger than the minimum in a “U” shaped form 1n the Ex1
plot (see Fig. 1b). The right branch is unstable (thin line) and the left one 1s stable
(full Iine). The normal oscillation DIAGM bends very quickly towards higher
periods and the global picture looks as though the old DIAGM of the integrable
case has split into the left branch of DIAGMI1 plus the low energy part of DIAGM.
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FiG. 6. (a)Sequence (with increasing energy) of periodic orbits of the left branch of the family
DIAGMI1 in Fig. 1b projected on the (p, x ¢,) plane. (b) Same for the { p. x ¢.) projection.
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Also the old degenerate curves DIAGM1 and DIAGM?2 seem to have broken into
the right branch of DIAGM1 plus the high energy part of DIAGM. The typical p.o.
projections of set 1 (i) and (ni) for DIAGM1 (right branch) and DIAGM2 and
DIAGM are shown in Figs. 5a-h. As can be observed, the chaotic regime has the
effect of slightly distorting the trajectories. These families maintain their energy
around 6.2 as the period increases. The shapes wih increasing period are essentially
maintained also (see Fig. 5). A sequence of projections of p.o. from DIAGMI1 set
I (m1) (left branch) are shown in Figs. 6a and b.

The second set of parameters, Eq. (53), presents a novel family which arises due
to the phase transition, LOOPI1. The name comes from the fact that its small
amplitude orbit on the (gq,, ¢,) plane has approximately the form of an eight. As
discussed before two “seeds” are expected in this case too. The second seed actually
exists (see Fig.2), but numerical difficulties prevented us from calculating the
corresponding family. When G’ =0 (see Fig. 2a) we are precisely at the transition
point and the origin is a minimum. Note that inspite of this fact the LOOP1 family
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F1G. 7. (a) Representative periodic orbit of the family LOOP1 in Fig. 2a projected on the (p, x g,)
plane. (b) Same on the (p, x g,) plane. (c) Representative periodic orbit of the family LOOP1 in Fig. 2b
projected on the (p, x ¢,) plane. {(d) Same on the (p, x g,) plane.
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is present. The second seed, in this case goes to infinity (as can be verified from the
solution of Eq. (50)).

The typical p.o. projections of the family LOOP1 are shown in Figs. 7a—d. It 1s
interesting to notice that families LOOP1 and LOOP2 are the only ones we have
which present nonsymmetrical solutions in both projections (the family LOOP2
shows a complementary behaviour to LOOPI1). The effect of chaos 1s, as in the
other cases, to deform the orbits slightly. The family DIAG1 in Fig. 2b 1s similar to
the family DIAGMI1 in Fig. 1b (left branch), though much more unstable. The
same does not happen in the integrable case, perhaps due to the fact that this case
is very special in the sense that one is precisely at the transition point. The family
DIAG? in Fig. 2b was obtained by numerical search using orbits from Fig. 1b. An
interesting case are the families DIAG1 as compared to DIAG3 and DIAG2 1n
Figs. 2a and b. The typical p.o. projections from DIAG! look like a superposition
of p.o. projections from DIAG3 and DIAG2 (see Figs. 8a-1). Chaos in this case has
a larger deformation effect on the integrable orbits, as expected. Also all the families
of p.o. present much more unstable orbits as compared to the families in Fig. 1b.
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FiG. 8. (a) Representative periodic orbit of the family DIAG! in Fig. 2a projected on the (p, x g,)
plane. (b) Same on the (p, x ¢,) plane. {c) Representative pertodic orbit of the family DIAG3 1n Fig. 2a
projected on the (p, x g,) plane. (d) Same on the { p. x ¢,) plane. (e) Representative periodic orbit of the

family DIAG?2 in Fig. 2a projected on the (p, x ¢} plane. ({f) Same on the (p,x ¢,) plane. (g)-(1) Same
as Figs. 8a—f with the parameter values of Fig. 2b.
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5. CONCLUDING REMARKS

In the present work we have extensively exploited the behaviour of periodic
orbits in the classical hmit of the Dicke Maser model. In particular, as the model
exhibits a phase transition we investigated its influence on the orbits in both
regimes, integrable and nonintegrable. The finiteness of the spin phase space was
shown to have a strong influence on the systematic behaviour of p.o. as a function
of energy for various families. In order to complete this numerical study we
investigate, in the following contribution, the connection of our classical results
with the quantum eigenfunctions of the model, especially focusing on the presence

of scars and how they can be affected by border effects and chaotic classical
dynamics.

APPENDIX A: NUMERICAL CALCULATION OF PERIODIC ORBITS

In this appendix we extend the “monodromy method” developed by Baranger et
al. [ 8] for Hamiltonians of the form

2

H(p, q) =5 + V(@)

to general analytic Hamiltonians. The technique i1s based on Newton’s method and,
therefore we start by giving a (discretized) guess for the periodic solution we are
looking for. Let {p%. . pS.,q0,.q5 ) with n=1,2, .., N and p} v, ,=p} |, etc. be
such a guess. The points on the orbit will be assumed to be spaced in time with

time step ¢ and period T'= N'¢’. The time denvative 1s then defined in a symmetric
way:

: df 1 ) n—}-l_fn fn_f:-r—--l f;?+]_.f;r+l
—— » — h — ‘ 7
f) dt 21| ¢’ + g’ ] 2¢e’ (57)
With the help of the four-vector
P
x=|%], (58)
4
q>
we define the value of f(X) at 1 =ne as
XH‘ +XH—
f(X(r))—>f( — 5 '). (59)
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With these definitions, Hamilton’s equations take the discrete form

X X
X, =X +28’AVH( "“; “‘),

where

-
o I e S

1 0

0 1

0 0F
0O —1 0 O

Assuming N’ even we can relabel the points and obtain

X, +X
X,,H:XHHAVH( ”+2 ”“),

where
n=1,2,..,. N=N"/2,
£=2¢,
I'=N'e’ = Ne.
So, giving a trial solution {X)},_, . we construct
X,=X+X,

2

substitue (64) into (62), and expand to first order in X’ to obtain

X,n-i-] — UIIX;I+ Cn?

U —(1 Eamr) (1+2am
no 2 H 2 n)

£ _ — 1
C, = (1 — = AH,;’) (X°©

where

— X, —eAVH?)

2 n+ 1
_ 02 H
(H,);=
aX" C‘;X} (Xo+ X, )2
0 0
VA =VH (X" +2X”+')

Equation (65) can be iterated, yielding

X:V+l:M1X;+Bla
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where

M1=UNUN—1“'U2U1

(63)
Bl=UNUN_I"'U2C1+UNUN_1"'U3C2+ +UNCN—1+CN'

Imposing that the new solution {X,} be periodic, X, , =X, and using the fact

that {X%} is periodic by construction, we find that X'y, ,=X. Therefore, (67)
yields

Xi=(1-M,)"B,. (69)

The other X! can then be calculated with the help of (65) and the whole process
iterated until the desired precision.

It should be noted that the more naive version of the time derivative
f(tY—= (f,.—f,)/e results in a very unstable algorithm that barely works for nearly
linear systems. The symmetrized form used here guarantees invariance by time-
reversion when this symmetry exists in the problem, resulting in a very powertul
method. As in Baranger’s method, both stable and unstable orbits can be followed,
and we refer to the original paper [4] for a detailed discussion of how to use and
how to get started, using the “monodromy method.”
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