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Numerical and analytical studies of the types of period n-upling bifurcations undergone by
classsical periodic trajectories of non-integrable Hamiltonians with two degrees of freedom are -
made. The Hamiltonians studied possess time reversal and reflexion symmetries and we found

‘that these symmetries give rise to additional types of period n-upling bifurcations. The

analytical study explains most of the numerically observed bifurcations. © 1987 Academic Press,
Inc. '

1. INTRODUCTION

In a recently published paper [1], two of us presented the results of an extensive
numerical investigation of the periodic solutions of a two-dimensional non-
integrable Hamiltonian system with two degrees of freedom. In this paper, we show
similar results for another potential. More importantly, we also present a complete
study of the bifurcations, or branchings, undergone by the periodic trajectories. We
show that the empirically observed bifurcations correspond exactly to the results of
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an analytic study of possible types of bifurcations for a Hamiltonian possessing
some symumietries.

The Hamiltonian considered here is

H=ipi+ipl+3x7+ 3y — xlp+ Ly (L1)
and our code name for it is MARTA. It has the same analytical form as the
NELSON Hamiltonian of Ref. [ 1], but with different coefficients. Contours of the
MARTA potential are shown in Fig. 1. It differs from the Nelson potential in
having two saddle points. and in the fact that it goes to — o is some directions.
Like NELSON, MARTA has x— —x symmetry. Taken together with time-
reversal, this means that there are two distinct symmetries which can be possessed
by the familics of periodic trajectories. We originally chose MARTA because it
resembled the Hénon Heiles [2] potential, but with less symmetry. The high
symmetry of Hénon—Hciles was thought, at the time, to bring complications in the
scarch for low-energy periodic famities.

We shall present the numerical results in very much the same way as in Ref. [1].
In particular, we shall draw E-t plots of the periodic families. As in Ref. [1], we
shall emphasize the properties of the monodromy matrix, or M-matrix {also called
Liapunov matrix) [3]. This is the symplectic matrix which connects an infinitesimal
change in initial conditions to the corresponding change at the end of one period.

VAR
0.5_4 > L L 1

FiG. 1. Equipotential hines of the MARTA potential.
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The textbooks, such as Ref. [3], derive the properties of the M-matrix in the
context of systems evolving in continuous time. We show in Section 2 how these
well-known properties are modified by the discretization of the time axis which is
necessary to perform the numerical calculations.

The numerical results themselves were obtained by the same method [4] as those
of Ref [1]. We have calculated roughly 2000 periodic trajectories comprising
roughly 50 families for MARTA. Some of these results are shown in Section 3. Two
additional two-dimensional potentials have been investigated thoroughly by this
method, with results to be published later, They are

MARCO [51: Vix, p)=4(x"+* = 1)* +5uwp(3 —x" = %), u=0.15
DELFLL6]: Vix, y)=4(x® + 37) + jux®(y— 1) = y(* + %)
+3HxXP 3y, p=(By~

Section 4 contains a complete summary of the possible types of branchings in the
families of periodic trajectories, for Hamiltonians possessing 0, 1, or 2 symmetries,
as revealed by our numerical studies and those of Refs.[1,5,6]. An analytical
study of this subject was carried out long ago by Meyer [7], but he confined him-
self to the generic case of Hamiltonians without symmetry. In Section 5 we extend
the work of Meyer to include Hamiltonians with time-reversal symmetry and space-
reflexion symmetry, and we find that these two symmetries are responsible for
scveral interesting additional types of branchings, all of which show up in the
numerical work.

We close this section by recalling one important motivation for this type of work,
which is the quantization of many-body systems. Many of the more tractable
approximations to many-body dynamics have a classical aspect to them; they
consist of many-body wave packets following classical-like trajectories. The time-
dependent Hartree-Fock and other time-dependent mean field approximations are
of this type [8]. It is now well-known that such approximations can be generated
in a general way by picking a wave-packet-like wavefunction depending on
appropriate time-dependent parameters, when such a trial function is introduced in
the time-dependent variational principle, the parameters are found to satlsfy
classical Hamiltonian equations [97].

2. THE DISCRETIZED MONODROMY MATRIX

We shall study the discretized monodromy matrix for a two-dimensional
Hamiltonian of the form :

BB v ), 2.1)

H(x, p., v, p,) 215
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Extension to higher dimensionality is immediate. Extension to other types of
Hamiltonians is possible. Newton’s equations of motion for (2.1) are

GV, y)=

- 6x _Vx(xs y);
(2.2)

- _aV(x, y): _V(x )

y ay prvs ¥)

a dot meaning a derivative with respect to time.

The M-matrix [3] gives the change in the solution of {2.2} after one period, in
terms of the change in the initial conditions. Tt is therefore quite suitable for an
iterative numerical procedure that produces a periodic solution of (2.2) starting
from a periodic approximation to it. Such a procedure is decreibed in Ref [4].
Here we shall confine ourselves to studying the monodromy matrix of a periodic
trajectory which is already an exact solution.

Since we are doing numerical work, however, we must discretize Eq. (2.2). Let us
specifly the trajectory by N points equally spaced in time (x,, y,)
n=0,1,2,.., N—1. Let ¢ be the time step and 7= Ne the period. Periodicity is
expressed by

(X, Yo) ={xn> Yn): (1, ) =Xners Pvsth (2.3}

We use the simplest discretization of (2.2), namely

Xpo —2%, 4%, +&V(x,, ¥,)=0,
+1 i Y (2.4)
yn+1_2yn+ynfl+82Vy(xm yn)=0

The application of our numerical method yields an exact periodic solution (x,, ¥,)
of Eqgs. (2.4) for a given g, and in the following we shall assume that this has been
done. ‘

Suppose now that we want to look for another solution {(x, + dx,, y,+dy,) of
(2.4) in the vicinity of the first. This solution will generally be non-periodic. To
obtain it, we linearize (2.4) in the vicinity of the original solution, assuming ox, and
Jy, small:

0%y 1 —20%, + 8%, + &V (X, ¥) 0x, + £V (x,, ¥,) 6y, =0

(2.5)
5yn+1 _25yn + 3yn41 + 82ny(xm yn) 5xn + 82Vyy(xn, yrr) 6yrt =0.
Defining the vector
ox,
dy
Z,. = " .
i~ (26)

5yn71
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we can express Egs. (2.5) in the form
Z,..,=U,2Z, . (2.7)

where U, is a 4 x4 matrix which, written in terms of 2 x 2 blocks, looks like

P, -1 :
o= (% ) o9
with
2
(T ) @)
Using (2.7) recurrently we get
_ Ini=MZ,, (2.10)
where M is the discretized monodromy matrix, given by
M =UyUy_, - - U,U,. (2.11)

The inverse of U, is easily seen to be

U;‘=(f1 ;) (2.12)

and it can be immediatély verified that U, has the symplectic property

U l=AUTAY, (2.13)
where A4 is the 4 x 4 matrix
. 0 1
= 2.14
a=(2y) (214)
and the superscript T denotes transposition. The matrix A satisfies the relations
Ar= —1,
(2.15)
AT =AT= 4

By inverting both sides of Eq. (2.1 1) and using (2.13), we find that the monodromy
matrix possesses the symplectic property as well, ie.,

M7= AMTA . (2.16)

This relation says that M; ! and MT have the same eigenvalues. Since M  and MT
have the same eigenvalues, it follows that M 7' and M, have the same eigenvalues.
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Therefore, all eigenvalues of M| occur in pairs of inverses. This is a well-known
property of the continuum monodromy matrix [3]. The above argument shows
that it is also an exact property of the discretized one.

We recall that the original trajectory (x,, ¥,) was periodic, ie. it satisfies
Eqgs. (2.3). If we want the neighbor trajectory (x,+ 8,, ¥, -+ 6v,) to be periodic also,
we must have Z,,,=2Z,. According to (2.10), this means that Z, must be an
eigenvector of M, for eigenvalue 1. But we actually know another, close-by,
periodic solution of Egs. (2.4), namely that solution in which every (x,, y,) has
been replaced by (x,,, ¥,.,) or, in other words, the identical trajectory with the
points relabelled. The Z, corresponding to this “neighbor” is

Xy — Xy

Zl - Ya—W ) (2-17)
Xq1— Xo :
Yi—XYo

This Z, is not infinitesimal and, consequently, the present argument is only
approximate. Within this approximation, however, the above Z, must be an eigen-
vector of M, for eigenvalue unity. Our numerical work shows that, for small values
of ¢ (for instance N = 100 in the case of a relatively simple trajectory, more for com-
plicated ones), the approximation is actuaily excellent and the monodromy matrix
has an eigenvalue which is very close to 1. Therefore, by the theorem of the
previous paragraph, it also has a second eigenvalue very close to 1, which is the
exact inverse of the first one. We find also that, for both eigenvalues, the eigen-
vector is very close to (2.17).

. The two other eigenvalues of M, must have unit product. And the complex con-
jugate of every eigenvalue must also be an eigenvalue, because M is real. This leads
to two possible cases. In one case, which we shall call case S, the eigenvalues are
(e*™, ¢~ ™); ie., they have unit modulus and are complex conjugates. In this case,
the trace of the monodromy matrix is

Tr M, =~ 2(1 +cos «) {2.18)
and therefore

O0<TrM, <4 {case §). (2.19)

In the other case, which we shall call case U, the eigenvalues are reai and can be
either {ef, e %) or (—e”, —e~?). The trace of M, is then

Tr M, ~ 2(1 £ cosh ), (2.20)
which leads to

TrM,>4 or Tr M, <0 {case U). (2.21)
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It is well-known [3] that these eigenvalues determine the stability of the periodic
trajectory. According to the stability theorem of Liapunov [37, most of the trajec-
tories belonging to case § are stable, except for a set of measure zero corresponding
to some values of « which are rational multiples of 27, and all the trajectories
belonging to case U are unstable. Therefore, to simplify matters, we shall refer to
those regions in which inequality (2.19) is satisfied as stable regions, and to those
regions in which inequality (2.21) is satisfied as unstable regions. It is very nice that
one can determine the stability or instability, simpiy by looking at the trace of the
monodromy matrix, without having to solve any eigenvalue equation. This is true
only in two dimensions, not in higher dimensionalities.

When M| has an eigenvector Z, with eigenvalue e*%, where o =2mlfk, { and k
being non-commensurate integers with 7 <k, it is evident that by propagating Z,
around the trajectory k times one returns with the initial value; Le., one manufac-
tures a periodic trajectory whose period is k times the period of the original one.
Thus, such points are bifurcation points for period k-upling. We actually find the
period-multiplied trajectories by following this procedure. These bifurcation points
are everywhere dense on the interval (2.19), but we limit ourselves to the simplest
values of k, k=1 to 6, for obvious reasons. In particular, we have a period-tripling
when TrM,=1 and a period-quadrupling when Tr M, =2. The period-doubling
case, k=2, Tr M, =0, is special because it corresponds to the edge of the interval
of stability. At the other end of this interval, we have Tr M ; =4, all four eigenvalues
equal to 1. This is where one shouid find the isochronous branchings (“no change
of period”), when two distinct families, each with its own pair of eigenvalues equal
to 1, coalesce into one. We shall present further discussion of the various types of
branchings in Sections 4 and 5.

We note before ending this section that the M-matrix could have been defined in
any one of N different ways, depending on the starting point of the varied trajec-
tory. For instance, instead of (2.11), we could have used

Mn=U,,,lUn_zu-UZUIUNUN_I--'U,,HU,,. (2.22)

The matrices M, and M are different (if n 5 1), but they have the same eigenvalues.

3. NUMERICAL RESULTS

The MARTA potential, Fig. 1, has a minimum at the origin with ¥ =0 and two
saddle points at (x, y):{i\/g, 1) with ¥'=3 The periodic families issuing from
the small oscillations about the origin in the horizontal {x) and vertical () direc-
tions are_called H and V, respectively. The ¥ family has constant period
(1':211/.\/5) since the one-dimensional potential ¥/(0, ¥} is harmonic. This is not
true of F(x, 0} and the H family is non-trivial. The families issuing from the trans-
versal oscillations (in direction of slope -{__2/\/3: ) about the saddle points (i\/g, 1)
are labelled S, . When a family ¥ undergoes a period r-upling bifurcation, the new
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families branching off are labelled Fra, Fub, and so on. If the family exhibits other
period n-upling bifurcations, they are labelled Fna', Fnb’, and so on. When Fra
undergoes a period m-upling bifurcation, the new families are labelled Frama,
Funamb, and so on. In the case of isochronous (n= 1) bifurcation the » is omitted.

The E-t plots for the H family and its branchings and for the V family and its
branchings are shown in Figs.2 and 3, respectively. The E-t plot for the S,
families is shown in Fig. 4. As in Ref. [17], the periodic families which are rotations
have been marked with the symbol p in the E-t plot; families which are not so
marked are Jibrations. We use heavy lines or the symbol S to indicate the regions of
stability of a family and thin lines or the symbol U to indicate the regions of
instability. The points corresponding to the limiting values of Tr M, 4 and zero (Z),
are also marked in the E—t plots. The symbol Z? is used when Tr M =0 and
(dTr M)/dE=0, & is used when Tr M =4 and dE/dt=0, and 4* when Tr M =4
and (d Tr M)/dE =0 (see Fig. 5).

The saddle point families S, are always unstable and, therefore, do not exhibit
any period n-upling bifurcations (some values of Tr M are indicated in Fig. 4). As
for the H and V families, they exhibit more than one interval of stability: / has 2
intervals and V has several, which get smaller and smaller as energy increases.
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In Fig. 3, it is seen that the families ¥2a, V2b, and V2aa form a loop showing
that ¥2q and V2b are in fact the same family. This is shown in detail in Fig. 6 where
we have intentionally enlarged the width of the cycles to show the topology of the
curve. The rotation V2aa acts like a bridge connecting the two stable regions of the
libration. The first period tripling of ¥ has a complicated topology shown
separately in Fig. 7. We found that the horizontal and vertical families are connec-
ted by a rotation, Va = Hb, which bifurcates isochronously at both ends, as shown
in Fig. 8,

For an integrable system, all families of periodic trajectories branch off one of the
two basic families, which are obtained by setting one of the two actions equal to
zero. This is not true in a non-integrable system. In fact, in our case, we found
families which are isolated on the E—t plot and do not connect with the horizontal
or the vertical familics. The E-t plots for these isolated families have the shape of
an eight as shown in Fig. 9 (intentionally enlarged). These families have regions of
stability starting (or ending) at the maximum and minimum of the energy. A group
of these families is shown in Fig. 10. Note that most of them have a rotation
connecting, by isochronous branching, the two regions of stability at the maximum
and minimum of the curve. In Fig. 11 we display a sequence of trajectories
{projected on the x—v plane) for such a rotation, namely family Fa, which branches
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Fi1G. 4. Ex«t plot for the saddle point families.

Fig. 5. Tr M x E, iliustrating the points denoted by 4, 4%, Z, Z2% and 4.
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off the isolated family F. We sce in Section 4 that the existence of this isochronous
bridge requires at least one symmetry for the original trajectory, either time-reversal
or x-reversal symmetry. In other words, the trajectory must be either a libration or
an x-symmetric rotation. Figure 12 shows an isolated family of asymmetric
rotations which does not have an isochronous bridge.
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Figure 13 is an x—y plot of some member trajectories of the A family at low
energy superimposed over the equipotential lines of Fix, y). Figure 14 is the same
thing for some members of the family §, . In Fig. 15 we show the x—y plot of V2aa
branching from }2q. In Fig. 16 we show the x—y plot of the trajectories generated at
several bifurcation points of the H family. Figure 17 shows a detail of the Ex 1 plot
of the period tripled families Ha3a, Ha3b.
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Fia. 8. Detail of the connection of the horizontal and the vertical families by a rotation, Va= Hb.
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FiG. 9. Detail of the Ext plot of an isolated symmetric libration family showing the shape of an
eight (intentionally enlarged out of scale).
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ae7

FiG. 17. Detail of the Ex 1 plot of the period tripled families of Hal3a and Hz3h.

Our numerical study has shown that the bifurcations of a periodic family can be
classified in a few definite categories. These categories remain the same for the other
Hamiltonian systems which have been investigated [1, 5, 6]. These findings are
summarized in the next section.

4. BIFURCATIONS OF PERIODIC TRAJECTORIES:
SUMMARY OF NUMERICAL RESULTS

It is important for this discussion to realize that the periodic trajectories we are
considering may have one or both of two different symmetries. One is time-reversal
symmetry or f-symmetry: a libration is t-symmetric, a rotation is not. For a time-
reversal-invariant Hamiltonian, which is the case here, every periodic solution
which is a rotation has a companion solution which is the time-reverse of the first,
and which consists of the same x-y trajectory described in the opposite direction.
For present purposes, we consider these two rotations as two different perioedic tra-
jectories belonging to two different families. A libration, on the other hand, is its
own time-reverse and constitutes a single entity from the point of view of t-sym-
metry,

The other possible symmetry is x-symmetry, which is possible for the present
potential because ¥V(—x, y)}=V(x, y). A trajectory which is x-symmetric will
simply be called “symmetric” from now on, since we have appropriate works
already, namely “libration” and “rotation,” to describe f-symtnetry. ‘Thus we have
four kinds of trajectories: symmetric librations (2 symmetries), asymmetric
librations and symmetric rotations (1 symmetry), asymmetric rotations (0 sym-
metry). Again, every asymmetric trajectory has a companion asymmetric trajectory
which is the x-reflexion of the first. Thus, an asymmetric rotation always belongs to
2 quartet.
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An analytic study of the bifurcation of periodic trajectories was made by
Meyer [ 7] in the case of Hamiltonian systems without symmetries (“generic case”).
Therefore, we had to extend his work to include the two symmetries mentioned
above. This extension is presented in Section 5 of this paper. The results agree
exactly with our empirical findings. It is interesting that x-symmetry and f-sym-
metry play exactly the same role in these results, as one might expect from the
interchangeabiiity of coordinates and momenta in the canonical formalism; the only
thing that matters is the total number of symmetries, Ng, which can be 2, 1, or 0.
Bifurcation with preservation of symmetry corresponds to the generic case [71.
Other types of bifurcation result from loss of one symmetry, ANg = —1,

In the following, we describe the topology of the Ext plot in the vicinity of a
bifurcation. We also describe the fixed points of the so-called Poincaré map [10]
which is used in the above-mentioned analytic study. For a fixed energy, the Poin-
caré map 2 is the map of a plane x = const. (or y = const.} on itself defined by the
consecutive intersections, with p.>0 (p,>0), of this plane and the phase space
trajectories lying in the vicinity of the periodic trajectory undergoing bifurcation
(see Fig. 18). The point where this periodic trajectory intersects the plane is a fixed
point of the map 2. A period n-upling trajectory corresponds to » fixed points of
the map #”. The Poincaré map is an area preserving map and the Jacobian of its
linear approximation is the monodromy matrix. A stable (unstable} periodic
trajectory corresponds to an elliptic (hyperbolic) [10] fixed point. (In the neigh-
borhood of an elliptic fixed point the invariant curves of # are ellipses, and in the
neighborhood of a hyperbolic fixed point the invariant curves of # are hyperboles.)

Fig. 18. Tlustration of the reduction to one degree of freedom with a coordinate playing the role of
time, giving rise to the Poincaré map.
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We call E,, the energy of the bifurcation peint and 7, the corresponding period,
We set E= Ey, + ¢ and ¢ is the parameter which is varied as we cross the bifurcation
point. We shall consider only the case when the bifurcated trajectories appear for
&> 0, as the situation for ¢ <0 is completely analogous. A full {dashed) line is here
used to indicate a stable (unstable) family. Thick lines (full or dashed) indicate that
there are two degenerate families branching off the bifurcation point.

TABLE I

Isachronous Bifurcations

Fizxed points of P

€xT
€ g0 € >0
a Symmetry preserved
€
Ng=0,1,2
s MO
'J \‘7)’r
0 P
7, T
b aNg=-t
€
L
] - -
0 - ;
/rb T @ © X @
Ng=1,2
€
Ng=1,2
. TS .
0 - " o
T - pad # O X
H -
!
¢ ANg =—1
€
p G| O X O XO)
’ N N .
o /, .
] Tp T
Ng=2

Note. (a) Generic case, the trajectory simply switches from stable to unstable or vice versa (it
occurs at points denoted by 4 for which Tr M =4 and dE/dr =0); (b} bifurcations with loss of one sym-
metry and change of stability of the bifurcating trajectory (they occur at points denoted by 4); (c) bifur-

cations_ with loss of one symmetry with the bifurcating trajectory remaining stable (however, see
Remark 1 at the end of Section 4).
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In Table I we present the £ x t plot in the vicinity of an isochronous bifurcation
(Tr M =4) together with the fixed points of 2 and its invariant curves in their
vicinity. (The arrows indicate the direction of the map flow.) We indicate the num-
ber of symmetries Ng of the bifurcating trajectory and the variation ANg. In
Tables IT to V we present the Ex t and the fixed points of 2* for perlod k-upling
{k = 2) bifurcations.

The period k-upling bifurcations of the ¥ family, k odd=3, are different:
therefore, we display them separately in Table VL. The period 2k-upling bifurcations
of the V' family are generic, the bifurcated trajectories being symmetric librations
(the V" family does not have Z* or 42 branching points)..

TABLE 11

Period-Doubling Bifurcations

Fixed points of P2
€Ex T

€ <0 €>0

a Symmetry preserved

|
1
b O] e

O X

€

g i ] 5
o /-rb 2Ty T ‘Q..l;.?“v‘f@‘
Ng = Rod

Note. (a)Generic case (symmetry preserving bifurcation occurring at points denoted by Z):

(b} bifurcation at Z? points, each pair of alternating fixed points corresponding to one periodic trajec-
tory.
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TABLE HI

Period-Tripling Bifurcations

Fixed points of P3
€ <0 €=0 € >0

€xT

a Symmetry preserved

€
Ao A
—_— - [
\ / \
OF | * | O
N -
// N
[ 7 X
/Th ST, T
/
Ng=0,,2
b aNg=-1

o
T—
s
)
%

Note. " (a) Generic case; (b) bifurcation with loss of one symmetry, each set of alternating fixed points
corresponding to one periodic tranjectory.

Remarks. 1. We did not find any 42 branchings for MARTA. Some were found
into two of the other potentials [1, 57. However, two of us [14] have demonstrated
recently that 4* branchings actually do not exist: they consist of two distinct, but
very closely spaced, single 4’s.

2. The numerical results do not go beyond period 6-upling.

-5. BIFURCATIONS OF SYMMETRIC PERIODIC TRAJECTORIES:
ANALYTIC STUDY

The Poincaré map introduced in Section4 is generated by a reduced
Hamiltonian obtained as follows. In the vicinity of a periodic orbit we may
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TABLE 1V
Period-Quadrupling Bifurcations
Fixed point of pP%
€Ex T
€ <0 € =0 € >0
a Symmetry preserved
€
- -+
ol E S o}
, + +54
o_| :
T, 4T, T
/
Ng =0,1
€3
/ ®
N
D
J 7 o o] &t
Ty 4 Tb"'l' ‘\ @.‘
Ng =0,
b aNg=-1
(GG
A e
/ y OB RO OO} 6@
o (D he~f O
T, aT, T ’{@“
Ng =2

Note. (a)Generic case (note that a symmetric libration does not exhibit the generic period-
quadrupling); (b) bifurcation with loss of one symmetry, each set of alternating fixed points
corresponding to one trajectory.

introduce periodic coordinates and transform the original time-independent
Hamiltonian with to degrees of freedom into a periodic Hamiltonian with one
degree of freedom [11]. The coordinate varying along the trajectory will be called
time and its period will be 2x. Using energy conservation,

H(x, P Vs Py)=E, (51)
the reduced Hamiltonian is defined as

h(P’, qls“f) pr(E’ Vs py: _x)s (52)
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TABLE V

Period k-upling Bifurcatidn, k=5

Fixed peoints of p™",n 28

€ €0 € >0

a Symmetry preserved:

_ {0.1.2 if n odd
Ng = .
0,1 it n even

Note. (a) Generic case (note that k even does not exhibit the generic case if the bifurcating trajectory
is a symmetric libration); {b) bifurcation with loss of one symmetry, each set of alternating fixed points
corresponding to one periodic trajectory.

where we have set g =y, p'=p,, and 1= —x (see Fig. 18). The action restricted to
orbits of energy E in the vicinity of the periodic trajectory is

{ (. dx+p,dy)— [Hai= [ p(~ax)+ | p,dy—Et (5.3)

and its variation restricted to the energy shell gives the following equations of
motion

4'—%
ap”’
5.4)
L a (5.4)
p aqf'
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TABLE VI
¥ Family Period k-upling, k=3 Odd

Fixed points of P", n 23 ocdd

€ <0 € >0

ks,
O] xex

/ "( ¥ ¥ o Y

: T/T; Ta T, T ('9'%:?:‘{*‘ -

Note. The bifurcated trajectories have one symmetry (each set of alternating fixed points corresponds
to one periodic trajectory).

We have

hlg', p', )y=h{g', p', t + 2m), (5.5)
and the Poincaré map £ is the mapping of the (¢, p’) plane on itself defined as

Zq'(1), p'(e)) > (¢'(1 4 2m), p'{1 4 2m)), (5.6)

with ¢'(z), p’(¢) solutions of (5.4) (see Fig. 18). Tt is an area preserving map possess-
ing all the symmetries of the reduced Hamiltonian. And the Jacobian of its linear
approximation is the monodromy matrix.

Of course, we could have defined the reduced Hamiltonian PolE X, po—y)
The choice of a particular reduced Hamiltonian is in general a matter of con-
venience. In the case of the vertical harmonic oscillation {family 7) we must use the
reduced Hamiltonian p, as this family lies on the ( y, p,) plane and therefore cannot
cut a (y, p,) plane transversaily.

The intersection of the periodic trajectory with the plane (¢, p’) is a fixed point
of #*, k2 1. At period k-upling bifurcation points (E,, 7,) new fixed points of #*
will appear corresponding to the bifurcated trajectories.

It is convenient to change from coordinates (¢, p’) to coordinates (g, p) so that
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for any given periodic family the origin will be the fixed point corresponding to the
trajectory of energy E, and period .. In terms of (g, p) the reduced Hamiltonian
{5.2) can be written [127] as

w = z L
h(q: P, t)=h0+5 (P2+f12)+ Z Z Kj]jzmpjlqmelmra (5‘7)

m=—om jj+j=3

where /1, = constant is the reduced energy of the fixed point trajectory and w = a/27%
(see (2.18)) is a rational number as discussed in the end of Section 2. '

The method of Meyer [7] consists of obtaining the fixed points of 2* at a period
k-upling bifurcation point using in its vicinity the lowest order terms of the expan-
sion of 2. For k3, the normal form [12] expansion for 2 is used, while for
k=1, 2 he uses the expansion in powers of p and ¢. We use the same technique as
Meyer [ 7], imposing the existing reflexion symmetries. If R is a reflexion symmetry
(e, R>=1) of @, then

P~ = RPR. (5.8)

This 1s illustrated in Fig. 19.
If a canonical transformation U is performed

(2 q)— (5. 3),
the transformed Poincaré map is
P =U"'2U,
which will have the generalized reflexion symmetry
R=U"'RU.

Therefore, canonical transformations conserve the number of reflexion symmetries
of the Poincaré map. Moreover, R — R at the fixed point. '

PT

&

R & =9"R P

IG. 19, Ilustrating the effect of & reflexing symmetry R on the map . i
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We shall first consider the case of a single reflexion symmetry and then the case

of two reflexion symmetries. In the end we consider the period k-upling bifur-
cations, k =3, of the vertical (harmonic) family which is a special case.

Given the map
0
P 0

1 0
R‘(o ﬁl)’

the invariance condition (5.8) can be written as

.@( a ):( %o ) (5.10)
— i —Po

The area preserving condition for (5.9) is

if we take as reflexion symmetry

dq, op, 0Oq; Op,
it e & Nl S (5.11})
040 0po  OPo 04,
The linear part of 2 will be denoted by £ (its Jacobian is the monodromy matrix
£3]) and we now prove

PROPOSITION 5.1.  Let & be a Poincaré map possessing one reflexion symmetry. If
P has only unit eigenvalues, the bifurcations are of types (a) and (b) in Table I.

Proaf. Up to second order, (5.9) can be written as

, g1 qo+ Apo+elag+ a,q0+ as po) + a1 43 + a1 Poqo+ az0 pi, (5.12)
P12 pot Bgo+e(bog+b1qo+ b, po)+biigs+ b3 Pogo+ bas D2,

where ¢ is the energy parameter introduced in Section 4 (E= E, +¢).

Area preservation condition (5.11) implies that AB=0. This will be satisfied if
either (i) 4 =0 of (ii) B=0. As the parameter ¢ is varied, case (i} gives rise to the
generic isochronous bifurcation (4} and (i) to bifurcations of type (b) in Table .

Case (i). A=0, B5#0. In this case, the symmetry condition (5.10) together with
area  preservation implies that a,=a,/2—a,00/2, ay,= —byy=a./2,
a3 =b, =a,=0. Without any loss of generality we set B=1 and a,=1 and the
map (5.12) is then given by

e
1 =40 +§ LOL+boaia) go + 2pot + aya g + 2a12q4 po + O(E),
_ (5.13)
a &
Pr=Pot 4o +b1143—712 P%‘FE [2bg+ 25, g0+ (1 —byayz) po] + OE?).
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We look for non-trivial fixed points (g(e), p(e)) of # such that

(g(e), pe)) == (0, 0).

So we make in (5.13) the following substitution

pr':\/gtia

(5.14)
q;,=¢&r;, i=0515 :

obtaining

rl:r0+\/;(a12r0t0+a33t(3)+t0)+0(8),
1—£0+\/_(r0——r0+&0>+0()

In the above expression the term in p} has been included because it is of order \/E
Defining the functions

(5.15)

ry—7rg

flr, 1, 8)= ,
\/E (5.16)

f—
g(r,t,s): 1\/—0’
e

the fixed points of (5.15) are solutions of

f(ra L S}=0,
glr, t,8)=0.

The implicit function theorem [37 applied to functions f and g guarantees the
existence of functions r{g) and #(¢) such that

f(r 8)5 )“‘ tl
g(r(8)= i(e), ) =0,

with
10) = —by,
(5.17)
1H0)y=0,
or
10) = (a;, — bolal, + 21))/2n, (5.18)

H0y= £(&/m)'",
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where

n= —{aj,+2ay)/2,
=1—ab,.
Thus, ((0), #(0)) given by (5.17) and (5.18) are the fixed points of (5.15) with (5.17)

corresponding to the bifurcating trajectory and (5.18) to the bifurcated trajectories.
Correspondingly, the fixed points of (5.13) are

Y= —b
g(e) ok, (5.19)
pe)=0,
and
(e} =e(ay, — bo(a2, + 20))/2n, (5.20)

ple)= L (e&im)'".
The eigenvalues of the Jacobian of (5.13) calculated at the fixed point (5.19) are

A=1+4 /% + Ofe) (5.21)

and at the fixed points (5.20) are
A=11./-2E+ O(z). {5.22)

Now, assuming & >0, if > 0, for ¢ <0 only the fixed point (5.19) exists and it is
stable (see (5.21)); for ¢ >0 there exist the fixed point (5.19) now unstable (see
{5.21)) and the two fixed points (5.20) that are stable {see (5.22)).

For ¢ <0, if <0, for <0 only the fixed point (5.19) exists and it is unstable;
for £>0 there exist the fixed point (5.19), stable, and the fixed points (5.20),
unstable,

These bifurcations correspond to case {b) presented in Table I and the second
part of the proposition is proved.

Remark. For £>0, n<0, and & <0, >0, we obtain the same type of bifur-
cation with the bifurcated trajectories existing for £ <0,

Case (ii). B=0, 4#0. In this case, the reflexion symmetry condition (5.10)
together with area preservation imply that 5 v=2a,—2ag(a;, - ay,), by=b,—a,,
bu=bi=2a,, a;,=4a,,, b,y = ay — 245, and ag=by/2. Without any loss of
generality, we set A=1 and a, =1 and the map (5.12) is given by

9 =qo+ potelgot+aspo+5,/2)+day Podo+aygd+ ar, pi+ O(e?),

(5.23)
Pr=Po+elbigot by po+bo)+2a,, g4 po+ go) + (@11 — 2ay5,) pi + O(e?).
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We now make the substitution

qi=\/;r."=

(5.24)
pi=yet, i=0,1
obtaining
b
Fl—re=1y+ \/; (?0-%- dasrote+a i+ azzté) + O(e),
(5.25)
Lh—ly= \/E(bo +2ay roto+2ay, 75+ (@) — 2a5) 15) + O(s).
From the implicit function theorem [3] the fixed points of (5.25) are
bo /2
0)= +| —
r+(0) ( 2a11> ’
H0)=0.
Correspondingly, the fixed points of (5.23) are (see (5.24))
eby \'7?
g.(g)= i("‘za_o) s
1 (5.26)
ple)=0.
The eigenvalues of the Jacobian of (5.23) at (g (£), 0) are
1/4
/1+=1J_r2(———~—-8a121b0> , (5.27)
and at (g_(¢g), 0) are
b i/4
A_=1+2 (gfl—z‘mﬂ) . (5.28)

Thus, if a,,5,<0 (a,,h3>0) no fixed point exists for ¢ <0 (g>0) while for ¢>0
{£ <0) there exist two fixed points: one unstable (5.27) and one stable (5.28). The
case a1 by <0 corresponds to a minimum in the ext plot at e=0 and a,,5,>0
corresponds to a maximum. This is the generic type of bifurcation (4)
corresponding to case (a) in TableI. And the proof of Proposition 5.1 is com-
pleted. |

We now consider the period-doubling bifurcation, In fact, if the bifurcating tra-
jectory has only one reflexion symmetry, the generic type of bifurcation is obtained.
This is the content of

PROPOSITION 5.2, Let 2 be a Poincaré map having one reflexion symmerry, If &
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has eigenvalues — 1 the bifurcations are of type (a) presenied in Table IT ( generic or
Symmelry preserving).

Proof.  Up to second order, the map & is given by

q1= —qo+ Apy+ e(ap+a,qo+ @z po) + a1 G4+ @120 Po+ az p§+

{5.29)
Pr1= Dot Bao+elby+bigy+bopy)+bg5+bigopo+ b pi+

Again, area preservation implies 4 - B=0. We shall consider only case 4 =0 as
B =10 gives the same results. _

The symmetry condition (5.10) together with area preservation imply
bo=—ay/2, by=—a,—a;, by=(a,+ay)2 bp=2a,—a, bp=ap/2,
Ay = —ap,, and a; = —a,/2 —agla;, + a,5/4). Without loss of generality, we choose
a,=B=1 and (5.29) reduces to

q1= —qo +&lag+ayqo+ po) + 1195 + @120 Po— @12 P3,

a
Pi= —Potdgote |:“2—0+b1%—(1 +01)P0]
45 &
+(2a“+a12)Z—(a12+2a“)q0p0+a12 “22- (5.30)
Making the substitution
qi:'gri:
(3.31)
pi=en, i=0,1,
we obtain
ry=—rg+(ay— auﬁ%)"‘ﬁ {fo+approty +assip) + O(e),
a, a, (5.32)
L= —to+. /el o+ 82— 1+ O(e)
2 2
And the map
()==()
r2 ro
is then given by
ra=ro—2y e to(1+aga,,—ap,re+ tilass —aty)) + 0(e),
(5.33)

tzfro*Z\/_(roirilgtgf?)ﬂ—O( ).

595/180/2-3
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From the implicit functions theorem [3] the fixed points of #* (5.33) are

dy
r0)=—,
2 (5.34)
H0)y=0,
and
H0) = Lao(ass —ai,) + a2 1/5, (5.35)
H0)= +(—2[/5)"",
while

0=2a4;— a3y,
dy
=1+4q,,—.
£ 125

The fixed point given by (5.34) is also a fixed point of (5.32); therefore it
corresponds to a periodic trajectory that was half the period of the trajectory
corresponding to the fixed points (5.35).

The eigenvalues of the Jacobian of (5.32), calculated at the fixed point (5.34), are

A= —11(Le) + Ofe), (5.36)

and the eigenvalues of the Jacobian of (5.33), calculated at the fixed points (5.35),
are

A=1£2(=20e)"*+ O(2). (5.37)

Thus, if { >0 ({ < 0) the fixed point (5.34) will switch from stable to unstable as ¢
varies from negative (positive) to positive (negative) values (see (5.36)). Moreover,
if 8{ < 0 the fixed points (5.35) will exist only for &> 0 (see (5.31)) and are stable if
{>0 and unstable if {<0. This is the generic period-doubling bifurcation
corresponding to cases (a) in Table II. And Proposition 5.2 is demonstrated. ||

Remark. 1f 6{>0 we obtain the same kind of bifurcation with the period-
doubled solution existing only for & <.

In order to examine the period k-upling bifurcations, & >3, we must express the
reduced Hamiltonian [5.7) in its normal form [12, 137. This is achived by making
successive time-dependent canonical transformations which climinate the time
dependence of (5.7) up to an order N. The period k-upling bifurcations occur at
rational values of w; therefore we must use the resonant form. Introducing the
variables

2 2

_ptgq

J=—
{5.38)

J=tan~
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and writing

i .
W= z +£, ! and k non-commensurate integers, (5.39)

the resonant normal form [12, 13] of (5.7) is obtained from the resonance con-
dition ({/k)(j, — j,)=m (see Appendix). The result is -
k2 ] :
M, 8, )=ed+ 3 CJ/+aJ sin(k9) + bJ*? cos(k$) + -, (5.40)
j=2
the time dependence lying in higher order terms (we have set A,=0).
The equations of motion, up to order k/2, are

. oh
J=— Fri akJ*? cos(k$) + bkJ** sin(k$),
oh &2 k k (41
3 =—=e+ Y Cl i+ ai.ﬂm)—l sin(k9) + bEK”‘”"‘ cos(k8).
i=2
And the map,

()= 642

is obtained by integrating (5.41) from 0 to 2x in the approximation J~J,, 3 ~ 9,:

Jy=Jo—2nkaJ&? cos(k8) + 2rnkbJE? sin(kS,),
(k/2y—1 (5.43)
9,=8,+ 2me + Z 2r(j4+ 1) C T+ mha 3 =1 sin(k8y) -+ nkbJ— 1 cos(kdy).

j=1

We now impose cne reflexion symmetry on the map. In the variables (J, 3) the
reflexion symmetry condition (5.10) becomes (see {5.38))

?(5)-(5.) 548

which imposed on (5.43) gives a =0 so that (5.43) reduces to

Jy=Jo+ 2nkBJE? sin(k8,),
hiz)—1 (5.45)
So=8c+2me+ Y 2n(j+ 1} CH{+ nkbJ§#? ! cos(kdy).

i=1

So now we state

ProrosiTiON 5.3, Let P be a Poincaré map having one reflexion symmetry. If its
linear approximation % has eigenvalues e**™"* [ and k noncommensurate integers,
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I<k and k=3, then it exhibits period k-upling bifurcation of generic type
corresponding to cases (a} in Tables 111, IV, and V.

Proof. We shall omit it because it follows the proof of Proposition 5.4 given
below for the case of two reflexion symmetries. ||

We now consider the case of two reflexion symmetries, i.c., the bifurcations of
symmetric librations.

Remark. We have not obtained the fixed points of the isochronous and period-
doubling bifurcations when the trajectory is a symmetric libration. In this case, the
isochronous bifurcation points are of the types labelled by 4, 4, and 4° in the Ex 1
plots, while the period-doubling bifurcation points are of type Z> (see Tables I and
1I). These bifurcations have been investigated by two of us and the results will
appear in a forthcoming paper [141].

We shall then analyze the period k-upling bifurcations, k23, of symmetric
librations. For the reduced Hamiltonian (5.7), the symmetry x - —x is imposed by
replacing #» by 2m since this symmetry corresponds to invariance of A(g, p, 1) when
t—=t+m:

,r;l‘2+q2 e i o
hg, p,t)=w ( ) + Y Y K pge (5.46)
2 m=—o0jl+j2=13 :
Now, the resonant normal form of (5.46) depends on k being even or odd as the
resonance condition is {{/k)(j, — j,} = 2m.
If & is odd, the lowest order normal form expansion for the reduced Hamiltonian
is

ki2 .
h(J, 9, )=eJ+ Y CJ/+bI*? cos(k9)+ --- (5.47)
j=z
or
k .
AT, 8, ty=eT+ Y CJ7 4 bI* cos(2k8) + ---. (5.48)
j=2

If k is even only form (5.48) is possible.

The map (5.42) is obtained as previously, by integrating the equations of motion
in the approximation J~J,, &~8,. The reduced Hamiltonian given by (5.47),
valid only for k odd, will produce the map given by (5.45) possessing one reflexion
symmetry. And the reduced Hamiltonian given by (5.48) leads to the map (valid for
k even or odd)

Ty = Jo + 2mkbJ% sin(2k3,),
ko1 : (5.49)
8, =842+ 3. 21(j+ 1) C, T4+ mkbJE— 1 cos(2kS,).

i=t
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We shall now prove

PrOPOSITION 5.4. Let P given by (542) be a Poincaré map possessing itwo
reflexion symmetries (corresponding to a symmetric libration). If the eigenvalues of
the monodromy matrix are given by e+ % >3 I<k (I and k non-commensurate
integers), then it exhibits period k-upling bifurcations. If k is even it is of type (b) in
Table V and if k is odd it may be of either type (a) (generic case) or type (b) of
Tables ITT and V.

Proof. 1f k is odd, one of the possible lowest order normal form expresstons for
the map is {5.45); therefore, from Proposition 5.3 it follows that the bifurcations are
of the generic type (case (a) in Tables III and V). In the case of expansion {5.49)
(which is valid for k even or odd) in order to find the non-trivial fixed points of #*
we make the substitution

J=Re (5.50)
so that
R~ Ry=2nkbe* ~'RE sin(2k8,) + O(e"), (5.51)
S — 3 =2me(1 + 2C | Ry) + O(£?),
and
Ry — Ry =2mk?be* = ' RS sin{2k9,) + O(&), (5.52)
G — 8 =2mek(1 + 2C, Ry) + O(e?).
And from the implicit function theorem, the fixed poin_ts of 2, (5.52) are
R(0)= =,
2C,
s =27,
$F) | = (2n— 1)%, (5.53)

' N\
3%;)= (2.’? +§) E,
Ihm
withn=1,2, .., k.

Therefore, at ¢ =0, besides the point (0, 0), #* has four sets of k fixed points
given in (5.53), each set corresponding to a periodic trajectory of period kt,. Their
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stability is obtained calculating the trace of the Jacobian of (5.52) at the fixed
points, imposing area preservation:

O( Ry, 9i)

Tr———=-
a(ROa 190] (8L%), (0D

k .
=2+ 732k)bC, £ (w%) + OfeF 1), (5.54)
1

Therefore, if the sets of fixed points (R(0), 357), (R(0), 8L+ ) are stable, then
(R(0), 947 ) and (R(D), &’ ) are unstable and vice versa. This corresponds to the
type (b) of bifurcation presented in Tables Il and V. And the proposition is
proved. |

We now analyze the bifurcation of the harmonic ¥ family. As already mentioned,
in this case we must use the reduced Hamiltonian p, which will then map the plane
(x, p,) on itself. Therefore, the Poincaré map in this case is obtained by imposing
the symmetry ¢ — —g (x - —x) on (5.45) which already has the symmetry p - —p.
In terms of variable 9 this symmetry condition is

Iy N _( 1L
ALY e

And we must consider two cases: k ever and k odd.

If & is ever the map is given by (5.45), which already satisfied condition (5.55).

If k is odd, condition {5.55) is satisfied only if =0 so that higher order terms
must be considered in the reduced Hamiltonian. Up to terms of order & it is given
by

k
WIS, ty=a]+ Y C,J7+ bJ* cos(2k8), (5.56)
j=2

i=

and the map in the lowest order approximation is given by (549) which
automatically satisfies condition (5.55).

It is now easy to prove the

LemMa. Given a vertical periodic trajectory, if its monodromy matrix has eigen-
valwes e ¥ =3 <k (I and k non-commensurate integers), then it exhibits
period k-upling bifurcation. If k is even the bifurcation is gemeric (types (a) of
Tables IV and V). If k is odd then the bifurcations are of the type given in Table VI)
which is the same as type (b) in Tables ITI-T').

Proof. The proof is immediate since if £ is even the map is given by (545} and
from Proposition 5.3, the bifurcation is of the generic type. Now, if k is odd, the
map is given by (5.49) and from Proposition 5.4 the bifurcations are of the type
shown in Table VI. ]
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APPENDIX

We give here a sketchy derivation of the normal form expansmn [12,13] for the
Hamiltonian given in (5.7). In terms of

z=p-+ig
z=p—ig,

the reduced Hamiltonian expansion (5.7) is

—2ih(z, 2, Y= —wzZ + Z z K, . z/Z" e

f1izm
m=—w fi+ =3

with X, ., = —K,, J:,_m to ensure reality of 4 (we have set h,=0).

Through the time-dependent canonical transformation generated by

S(z,5=Z:+ Y S
ij,i;=O%

J1zJa pimt
juam Z7E €™

the Hamiltonian in the new variables is given by

o
—2MZ,Z, )= —iwZZ+ Y K+ i[O~ j2) —m] S, )
it f=3

x ZHZ7e™ | higher order terms (HOT).

Thus, if w(j, —j;)—m#=0 (ie, w irrational), the time dependence in the lower
order terms may be eliminated by choosing
1K sy

iy S e—
m—o{jy— Jjz)

fLim =

The only term that could remain for irrational @ is the term m =0 and j, = j,
Therefore, for irrational , through successive time-dependent canonical transfor-
mation the reduced Hamiltonian can be expressed in the form

NiZ
—2ih(z, z, t)= —iwzz+ Y. Ky(zz2) + HOT(z, Z, 1),
j=2
to any desired order N. In the original variables it is

2+ 2y N2 2 2N 7
h(q,p,t}zm(p zq)+z C,-(p ;q) +HOT(q, p, 1).
Jj=2




204 DE AGUIAR ET Al.

Now, if w is rational, w=I/k, the above expansion is not valid as it is not
possible to eliminate the terms of order k that satisfy the resonance condition

L.
E(]i*iz)"’”:a

So we have

k2

j=2

+ Ko Z5e™ + Koo _ e =" + HOT(Z, Z, 1).

The rescnant terms cannot be eliminated but its time dependence may be
climinated. We set w = (//k) + ¢ and make the canonical transformation

f — Zei(l/k)r’ E: Zer-r‘(."jk)r,
which is generated by
G = dei(i'/k)!’
obtaining
= - k"lz = .
—2ih(E, & 1) = —icfE —2 Y. C,(EE) +2i Im(Kp &%) + HOT.
j=2 ‘

In terms of the real coordinates J, $ in (5.38) the expansion is

k2
WJ, 8, ty=eJ+ Y C,J/+alsin(kd) + bJ*? cos(k9) + HOT,

F=2

with Ko, = a+ ib. This expansion is valid at & =0,
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