Invariant Tori for Two-Dimensional
Non-integrable Hamiltonians*

M. A. M. DE AGuiar’ axD M. BARANGER

Center for Theoréticai Physics,
Laboratory for Nuclear Science, and Department of Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received May 24, 1988

The invariant tori of a two-dimensional non-integrable Hamiltonian form families which
can be parametrized by the energy and the rotation number. Within each family, the variation
with energy is continuous, and the variation with rotation number is governed by the KAM
theorem and is everywhere discontinuous. In order to calculate the tori numerically, we
approximate them by highly winding periodic orbits, and we give a criterion for the validity of
this approximation. For one particular Hamiltonian, we study the family of tori which
connects two distinct families of periodic trajectories. As a by-product of this calculation, we
draw the curve bounding the “mostly regular” region, on a plot whose coordinates are the two
partial periods of the torl.  © 1983 Academic Press, Inc. ‘

1. INTRODUCTION

In this paper we present a method to calculate invariant tori in two-dimensional
non-integrable Hamiltonian systems. In these systems, two-parameter families of
irrational tori are found in the neighborhood of every one-parameter branch of
stable periodic orbits. These families can actually be labeled by the (stable) periodic
orbit which they surround. Buried among these irrational tori, in the places where

the rational tori should have been, we find instead an even number of periodic

trajectories, half stable and half unstable [17].

; These are the very trajectories that our method uses as approximations to the
-actual (irrational} tori. The danger of this procedure is that periodic orbits can exist
at all energies, while a torus will eventually be destroyed as we increase energy
along its family. This means that our approximation will break down at some point,
As we shall see later, this is not a drawback at all. On the contrary, it gives us

- additional information concerning the boundary between the region of phase space

containing this particular family and the rest of phase space. The advantages of

- working with periodic orbits instead of actual tori are obvious: they are one-dimen-
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336 AGUIAR AND BARANGER -

sional objects and can be completely known in a finite interval of time. Besides, at
least for two-dimensional Hamiltonians, the stability of the orbit can be extracted
just by calculating the trace of its monodromy matrix [2].

The use of periodic trajectories to study the behavior of nearby invariant surfaces
is not new. Some of the ideas presented herc have aiready been discussed for two-
dimensional area-preserving maps [3]. The new feature of this work is that, here,
the periodic orbits are themselves used to approximate tori and not only to study
their qualitative behavior. _

Two other basically different approaches to calculate tori are known io the
authors, neither of which make use of periodic orbits. In the first [4] the
Hamiltonian is supposed to be quasi-integrable, so that particles propagated from
almost all possible initial conditions wilt be on tori. Poincaré sections of these
orbits are used to find the basic circuits with which to calculate the actions. The
second approach [5] is a rapidly convergent procedure to solve the Hamilton
Jacobi equation in terms of its Fourier coefficients. Although the latter method
seems to give excellent resuits, both procedures have the disadvantage that they are
unable to calculate families of tori other than those existing in the integrable
{usually zero energy) limit.

The numerical calculations in this paper use the Hamiltonian

RS L

—x T2
H(xayspxapy)'_ 2 + 2 2 2 xy+123 (1'1)

for which our code name is MARTA. An extensive numerical study of its periodic
orbits can be found in Ref. [6]. Our results will be presented here in the form of
plots of J; versus J,, the two independent actions of a two-dimensional torus, plots
of 7, versus t,, the two partial periods around the corresponding topologically
independent circuits, and y versus x projections of the objects themselves.

In Section II we shall discuss the intimate relation between tori and periodic
orbits for non-integrable systems. We show, in particular, that the irrational tori
which survive the KAM destruction can be approximated as precisely as we wish
by periodic orbits of long period. In Section III we derive a quantitative criterion to -
measure how good this approximation is in generic Hamiltonian systems. When the -
approximation is good, the periodic orbit will be called a “quasi-torus” and, when it
is not, it will be called a “main periodic orbit.” The construction of the two basic
loops and the calculation of the actions are discussed in Section IV, and the
numerical results for the MARTA Hamiltonian are presented in Section V. Finally,
in Section VI we summarize our conclusions. _

Before closing this introduction, we recall that the basic motivation for this work
is the quantization of non-integrable Hamiltonians. A series of recent works
(Ref. [7]) shows that the exact eigenstates, the quantum stationary objects, can be:*
related to either periodic orbits, tori, or chaotic regions, which, in a sense, are the
stationary classical structures. Periodic orbits were extensively discussed in
Refs, [6, 8, 9]. In this work, we provide tools for a systematic study of tori.
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. INVARIANT TORI AND PERIODIC TRAJECTORIES
Consider a two-dimensional Hamiltonian system of the form

H(pi, P2, 61, 8:)=Holp\. P2. 41, @2) +eH (1, i, 44, Ga),

where H, is integrable, but H is non-integrable for & # 0. The phase space structure
of the solutions of Hy is well known: it consists of nested two-dimensional invariant
surfaces with the topology of tori. The conventional way of labeling the tori is by
the action variables J;, J,. Other pairs of labels are possible, such as the energy £
and the rotation number

p=wy/w,=(0H,/01,)/(8H,/0J,). (2.1)

If we think of a torus as a donut, then the rotation number measures how many
times the particle winds around one of the circles, while performing exactly one
rotation around the other circle (see Section IV for more details). If p is rational,
we say that the torus is rational, and then it is covered by a single infinite family of
periodic trajectories, all with the same actions, energy, period, and rotation num-
ber. If p is irrational, the torus is covered by a single non-closing trajectory com-
monly known as quasi-periodic. For integrable Hamiltonians, the tori form a con-
tinuous two-dimensional family: given a torus labelled by the pair (E, p), we.can
always find two others with parameters (E+ JE, p) and (E, p + ép). If we fix E and
vary p, we find that the resulting one-dimensional family of tori is bounded by two
simple periodic trajectories. This is obvious if we think in terms of action variables.
One boundary corresponds to J, =0 and the other to J,=0.

Now, consider the case £#0, but very small. Then the KAM [10] and Poincaré—
Birkhoff [ 1] theorems tell us that every rational torus is destroyed and replaced by
a finite even number of periodic trajectories, half of them stable and half unstable.
Surrounding the stable orbits we find the so-called second order tori, and in the
neighborhood of the unstable orbitrs we find a thin chaotic layer. The situation is
best visualized in a Poincaré section, as shown in Fig. 2.1.

Therefore, for any ¢# 0, the two-dimensional family of tori, although still con-
tinuous in the energy variable E, becomes discontinuous in the rotation number p.
In the iimit ¢ — 0, the chain of islands shown in Fig. 2.1b becomes very thin, and so
does the chaotic layer surrounding each of the hyperbolic points which separate the
islands. The precise way in which this happens is stated in the KAM theorem. In
this limit, the p-dependence of the family of tori recovers its continuity,

When ¢=0, it is clear that any irrational torus can be approximated, as well as
one wishes, by a rational torus, and therefore by a periodic trajectory. For instance,
p can be approximated by its continued fraction expansion [11], limited to a finite
number of terms. When ¢ is small but finite, the periodic orbits can still be used to
approximate the actual tori, as long as the KAM layer of islands and chaos is thin
enough. We shall need a criterion to determine whether this approximation is good
or not, and such a criterion will be given in Section I11. For fixed &, we know [12]
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Fic. 2.1. Poincaré section in the neighborhood of a stable periodic orbit. In part (a) £=0 and the
system is integrable (the dotted lines represent rational tori). In part (b), with £+ 0, islands and chaotic
layers show up replacing the rational tori. :

that the families of periodic trajectories are continuous and can end only at the
stationary points of H. The families of tori, on the other hand, are gradually
destroyed as the term ¢H; gains in importance (e.g., as the energy increases), and
our criterion should be able to tell us whether a periodic orbit is still remaining
close to primary tori, to which it is a good approximation, or whether it is not.

Therefore, instead of calculating actual tori, we shall calculate “quasi-tori”
objects, which are the objects left by the KAM destruction operating on a rationat
torus, m the case where this KAM destruction is a mild one; in other words, we
shall calculate periodic trajectories which are good approximations to the tori!
Usually, these will be high-period orbits which wind many times before closing,
There are many advantages to working with periodic orbits instead of non-periodic
ones, as we shall see later. The most interesting advantage is that we can learn
about what is goind on in the neighborhood of the orbit just by looking at the trace -
of the monodromy matrix.

How many families of tori are there in a non-integrable Hamiltonians system?
We know that we have tori in the neighborhood of every stable periodic orbit and
that non-integrable systems can have many families of such orbits [6, 871. So, if we
associate a two-parameter family of tori with every one-parameter family of stable
periodic orbits, we may want to answer the following question: do families of tori
connect together families of periodic orbits which are not connected on their E—+
(energy versus period) plot? To answer this, we must study the topology of the
families of tori in a way similar to what we did for periodic trajectories [6, 8.

It must be emphasized that the “connection” through the space of tori has to be
quite different from the “connection™ within periodic trajectories. In the latter case,
a connection between two trajectories means that there is a continuous path

between the two on the £—1 plot, usually going through some branch points. In

the former case, the connection cannot be continuous since, when we vary p, the

KAM theorem says that we have to skip the rational values, as well as an irrational .
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neighborhood of each rational value. In practice, this connection is accomplished
by making small but finite jumps from one “quasi-torus” to another. Figure 5.2 is
an example of such a connection, through quasi-tori, between the horizontal and
vertical families of MARTA (see Section V, Fig. 5.1, and Ref. {6]). Note that the
periodic orbits themselves do not connect at low energy.

_ There are many ways in which this connection can be displayed. Figure 5.2 shows
the xy projections of the tori (actually highly winding periodic orbits) at fixed
energy. Another obvious choice of coordinates is (J,, J;), the actions, given by

J,-=9€deq, i=1,2,

where I') and I, are topologically equivalent to a pair of basic loops on the torus
(sec Section IV for more details). On such a plot, the connection between two
periodic families through tori at contant energy should begin on one of the periodic
orbits at (J;, 0), end on the other at (0, J,), and in between it should proceed by
small jumps in the J,, J, plane. If the fraction of KAM-destroyed tori is small, the
connecting line should approximate a continuous curve. Such a graph is shown in
Fig. 2.2. At each point, the slope of the normal to the energy contour is

tan ¢ = (VH/21,)(OH/0T,) = s o2, = p.

The points where p is rational represent KAM-destroyed tori, and these are the
points that we can calculate, Most of the points with irrational p represent real
existing tori, but not all of them, because all tori are destroyed in a small
neighborhood of a rational torus [10]. We can think of the points with rational
tan ¢ as holes in the energy contour for tori. Each hole has a width equal to the
size of the destroyed neighborhood. When E increases, the size of all the holes

Frig. 2.2, J, versus J, plot for an integrable Hamiltonian.
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increases, and some holes merge with their neighbors, thus putting an end to some
irrational regions. In the holes, secondary tori and chaotic motion set in. As energy
increases, our initially “well behaved™ surface representing a two-dimensional family
of tort becomes torn more and more severely:. the motion is less and less “regular,”
more and more “chaotic.” According to the KAM theorem, the simpler the rotation -
number, the bigger the size of the destroyed neighborhood. “Simple” here means a
short continued fraction expansion. Because the simple rational numbers are.
sprinkled in an irregular way among the less simple ones, the pattern of holes is:
very complicated, and so is the boundary between the regular and chaotic region.
Indeed, this boundary is a fractal.

Instead of this boundary, we shall calculate in Section V the simpler boundary
between what we shall call there the “mostly regular” region and the rest of phase
space. For reasons that will become clear later, the (/,, J,) plot is not the best way .
to see this boundary, and we shall have to introduce new variables for this purpose.

ITl. Quasi-Tor! AND MaiN Periopic ORBITS

The purpose of this section is to discuss the neighboring orbits of a given stable -
periodic trajectory. In particular, we need a criterion to decide when a neighboring
peridic orbit is a quasi-torus (ie, it is a good apprimation for nearby tori) and
when it is not. Although the neighborhoods of periodic trajectories in Hamiltonian
systems have been discussed extensively in Refs. [6, 8, 9], we shall list here some
results which are crucial for the following discussion.

It is well known that periodic trajectories occur in one-parameter families. The
parameter can be the energy F or the period 7. For each trajectory, we can calculate
the monodromy (or Lyapunov) matrix, which describes what is going on for
neighboring trajectories. Using w(t) to denote the four phase space variabies,

w(t)= {x(2), p(0), p. ) 2 (1)}, (3.1)

we can write the equations of motion in the form

W= JVH{w), _ (32)

where H is the Hamiltonian and J is the symplectic matrix,

0 0 1 0
0 0 0 |1 L

=1_-1 0 o o (33)
0—-1 0 0

If wo(r) is a periodic solution of {3.2) with period z,, its monodromy matrix is
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obtained as follows. We linearize (3.2) in the vicinity of w, by writing w = w,+ £,
To first order in £, we get

E=JH**(1)¢, (3.4)
where
°H
ek =
Hj (1) ow,; ow, wo(,)'

If we write the solution of (3.4) in the form

()= M(r) £(0), (3.5)

then .# = M(t,) is the 4 x 4 monodromy matrix for w,.

The monodromy matrix always has two of ifs eigenvalues, say 4, and 1,, equal *
to 1. The two other eigenvalues have product unity, A;4,=1. Because .# is real,
only two cascs arc possible:

(a) A;=e¥™", Ay =e >, o real (3.6a)

(b} A;=4, Ag=1/4, A real. (3.6b)

Most trajectories belonging to case (a) are stable, except for a set of measure zero
corresponding to a few very simple values of o [137. All trajectories belonging to
case (b) are unstable. Consider case (a) with o« = 5/m, where b and m are integers,
and b/m is an irreducible fraction. Let p4(0) be the eigenvector for eigenvalue 2, of
M{zg). Then p3(0) is also an eigenvector of M{(mz,) for eigenvalue 1. In other
words, we have found a neighboring orbit of w(t), namely wyit) + ps{t) with us(r)
assumed small, which is periodic with period mrt,. This new periodic orbit
“branches off” or “bifurcates from” the original periodic family which contains
wy(r). This branching occurs at the point in the family where o= b/m. If « is
irrational, on the other hand, the orbit w(7) + u4(¢) is not periodic, but it remains
on a torus, provided u(¢) is smalil enough to keep chaos away, as suggested by the
KAM theorem.

Figure 3.1 shows a generic Poincaré section in the neighborhood of a periedic
orbit with « close to 1/6. The word “generic” in this context means that the problem
is devoid of special symmetries. The dark points and the crosses represent the stable
and unstable orbits, respectively, which have branched off the main orbit at « = 1/6,
Each of these points is a fixed point of #¢ (if # is the Poincaré map). The con-
tinuous lines are invariant curves of 22°: under successive iterations, points on these
curves move along the curve in the direction of the arrow. The topology of the
invariant curves becomes very complicated in the vicinity of the unstable fixed
points, giving rise to a chaotic layer in this vicinity [1, 107]. According to Ref. [12],
the width A of the “islands™ for the generic case varies like

Aocg™ ] (3.7)
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9,

FiG. 3.1. Poincaré section just above a period sextupling bifurcation,

where ¢, the “bifurcation parameter,” is ¢ = £ — E,, E being the actual energy at
which the Poincaré map is drawn, and F, being the bifurcation energy, such that %
af Ey) = b/m. Therefore, the bigger m is, the slower is the growth of the islands with
energy, and the thinner are the chaotic layers surrounding the unstable points. If
the width is small, the proportion of destroyed tori in the neighborhood is also
small, and the bifurcated per1od1c orbits, both stable and unstable, are good- ?
approximations to the remaining tori.
According to Refs. [6, 147, the trace of the monodromy matrix of the bifurcated .
trajectory, in the vicinity of e =0 and provided m >4, is given by

M(ey =4+ A", am{

where A is a parameter depending on the particelar branching. Combining this k.
with Eq. (3.7), we see that Tr .# and the width 4 of the islands in the Poincaré
section are connected by

Tr M (2) — 4 oc A% —4m), (39)

This gives us a quantitative criterion to decide when the bifurcated periodic orbit -
ceases to be a good approximation to the neighboring tori: we just look at the trace
of its monodromy matrix! As long as Tr .4 stays close to 4, the approximation is
good; when it goes far from 4, the approximation is bad. The question “How far
from 4 can we go?” will be seen to be not very important, because the transition
between 4 and non-4 is quite sudden (see for instance Fig. 5.3). Notice that our
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criterion is essentially the same as the “residue criterion” derived by Green [3] for
two-dimensional conservative maps,

The validity of this criterion can be understood in another way, which was first
formulated by James H. Mahoney. Figure 3.2 shows a high-m bifurcated periodic
trajectory which approximates a torus very well. The trajectory of the original
family follows the center line of the torus. Consider the .# matrix of the bifurcated
trajectory, which is defined by Eq. (3.5) with 1=1,. As always with periodic trajec-
tories, one can choose the small displacement £(0) in the direction of the trajectory
itself; the perturbed trajectory is then identical to the original periodic one, and this
fact is responsible for the two eigenvalues A, =4,=1 of the .# matrix. But, as
Fig: 3.2 shows, there is another small displacement &(0) which leads to the identical
trajectory, namely a sideways displacement as far as the next winding of the
trajectory on its torus. This displacement is not infinitesimal, therefore it leads to
A3 =A4=1 approximately only. But if m is large, this displacement is very small and
the approximation is very good, and then Tr .# is very close to 4.

As long as our trajectory remains a “quasi-torus,” Tr.# remains close to 4.
Eventually, and rather suddenly, as we vary the energy away from the bifurcation
point, our quasi-torus decides to evolve into something else, which does not look
like a torus anymore, but which is still a periodic trajectory. At this point we stop
calling it a “quasi-torus™ and we start calling it a “main periodic trajectory.” The
latter are of two kinds, of course, stable and unstable, and the PoincaréBirkhoff
theorem [ 1] says that we have equal numbers of each. If Tr .# drops below 4, the
trajectory is stable and starts developing its own set of “second-order” nearby tori.
This process continues indefinitely, accumulating very fast in the region of the
fractal boundary between regular motion and chaos in phase space. Eventually
(and usually rather quickly), Tr.# rcaches 0, where a stable period-doubled
trajectory branches off, while the first trajectory becomes unstable. On the other
hand, if we leave the quasi-torus mode by having Tr.# increased beyond 4, the
resulting main periodic orbit is an unstable one, which is surrounded in phase space
by chaos.

Fig. 3.2, Quasi-torus winding on a torus-like surface.
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We want to emphasize that the numerical techniques we use to calculate quasi-
tori are essentially the same that were used in Refs. [6,8,9] to calculate simple
periodic trajectories. A complete description of the methed can be found in
Ref. [9]. The only important modification is that, now, not only can we follow a
quasi-tori family by changing its energy and keeping its rotation number fixed,
which is what the old programs do automatically, but we have developed new
techniques to change the rotation number as well. In both cases, we use a
previously calculated quasi-torus as a first approximation for the next one. To
change the rotation number, we also change the number of points on the next
quasi-torus, in order to keep approximately constant the average number of points,
per winding, or the time-step between two consecutive points.

When we change the rotation number, we are actually jumping from one
periodic family to another. An obvious, but absolutely impractical, way to achigve
this jump would be to decrease the energy of the original quasi-torus family antil it
branches upon the main family, then follow the main family until we get to the
right value of « to fit the new rotation number, then branch off at this point to a
quasi-torus family and raise the energy until it reaches its original value. (Note: 2
and the rotation number are essentially the same thing; their precise relationship is
discussed in the next section.) In this process, we do not jump at all: we make .
continuous, but complicated, moves among the periodic families. However, if we '
did only this, we would never be able to find the tori connecting two distinct main -
families. To see how the jump can be achieved more directly, let us call p, =b,/m;
the rotation number of the original quasi-torus, and let us try to jump to -
p2=b,/m,. We assume, of course, that p, is close to p,, which does not mean at all
that m, is close to m, or that b, is close to b,. (For example, we might wish to *
Jump from 5/17 to 7/23.) 4

Figure 3.3 is a Poincaré section in the neighborhood of these quasi-tori. It shows !
two closed chains of thin islands, very close to each other, but with very different

Fig. 33, Two nearby quasi-tori. The width of the istands has been intentionally enlarged for easier -
visualization.

WAL ARN
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numbers of islands, m, and m,. The angles of rotation around each chain for
successive crossings of the plane are, however very similar, since they are 2np, and
2mp,. Therefore, if we know quasi-torus 1, and we want to calculate quasi-torus 2,
we can use quasi-torus 1 as a starting guess for the calculation, but we propagate
the particle through m, crossings of the plane, rather than m,;. The resulting
rotation angle is 2mp,m,=2xn(p,/p,) b», which is almost a multiple of 27 since
p1/p, 1s close to unity. Hence this trajectory is almost closed, and the methods of
Ref. [9] can turn it easily into a closed trajectory. :

This is how we have done all our calculations. The method works very well as
long as p, and p, are close. And it works even better if m, is a prime number.
Otherwise, if m, has a divisor, say d,, it may happen that, instead of getting a
trajectory which crosses the plane m, times, we get one with m,/d, crossings,
described ¢, times. This is especially likely to happen if b, — 1 or b, + 1 is divisible
by d,.

Now that we know how to calculate quasi-tori, we have to learn to extract
information from them. In the next section, we shall see how the actions can be
calculated.

IV. THE Basic LooPS AND THE ACTIONS

The actions are usually defined as integrals §p-dq along closed curves on the
torus, and it is known [15] that topologically-equivalent closed curves yield the
same action. But a torus has many topologically-inequivalent closed curves! Which
two should be chosen? This problem is not trivial and, in order to think about it
well, it is not a good idea to view the torus as a donut in three-dimensional space.
Our torus is in four-dimensional phase space, and it is a very different species of
animal. The donut in three-dimensions has two very special basic loops; our torus
in four-dimension does not!

What results is that there is no unique pair of topologically-inequivalent closed
curves along which we are to calculate § p - dg. But neither can we choose any pair
whatsoever. The fact is that there exists on the torus a special class of pairs of
closed curves, which the topologists call “the possible bases for its fundamental
group” [19]. This class is very important in physics, because we must choose a pair
from this class when we want to define action-angle variables, and we must choose
a pair from this class when we want to carry out EBK quantization [20]. The
Appendix discusses in more detail how this class is defined. In what follows, we
assume that the reader has read the Appendix.

From the previous discussion, we know that there is a family of tori associated
with each family of stable periodic orbits. We can use this fact to pick one of the
two basic loops on the tori, namely that loop which, in a very thin torus, is “per-
pendicular” to the main trajectory around which the torus winds. The requirement
is simply that this loop must shrink to a point in the limit in which the torus
shrinks to the main trajectory; in addition, the loop must not repeat itself. This
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defines the loop uniquely, topologically speaking. Let us call it y,. Let us call ¥,
another loop, which reduces in the limit to the main periodic trajectory. These form
a possible pair of basic loops. But, accordmg to Eqgs. (A4) with n, =1, n,=0, the
comb1nat10n

=T (4.12)
Ym=V:tky,, k any integer, (4.1b)

is equally acceptable as a pair of basic loops. Thus the actions
Jo=$ p-dg (4.2)
b
szfﬁ p-dy, (4.2b)
Fm

which we use to label the tori within their family, contain the arbitrary integer &
(i.c, J,, is undetermined by the amount iJ,).

In the special case (which includes integrable systems) in which the family of tori
is bounded by rwe main periodic families, & gets determined by the requirement
that J,, go to zero as the torus tends toward the other main orbit. Otherwise, we
just have to pick & arbitrarily and keep it fixed from there on.

Now that a pair of basic loops has been chosen, we need to discuss the connec-
tion between the rotation number and the stability angle 2za. Every quasi-torus,
i.e., every periodic trajectory which can be recognized as an approximate torus, can
be considered as topologically equivalent to #n, times the loop y, plus n, times the
loop y,. Its rotation number can be chosen to be either n, /n, or n,/n;, at will. Let
us look at the way in which a family of quasi-tori branches off from a main periodic
family. This was described in Section 111, following Eqs. (3.6). The quantity & which
appears in (3.6a) is undetermined by an integer, just like the number % in (4.1b). It -
does not have to be between 0 and 1. And, actually, the best choice for o is to take
the rotation number of the quasi-torus, &/ here m is the number of times that the
trajectory winds around the “main” loop 7y,,, first defined in (4.1b), which is the
large loop of the torus, paralleling approximately the trajectory of the main family;
and b is the number of times that the trajectory winds around the “branch” loop y,,
first defined in (4.1a), which is the small loop created by the time-variation of p,(1).
The indeterminacy. in the definition of y,,, manifested by the appearance of the
arbitrary integer k in Eq. (4.1b), entails an indeterminancy in the integer b by an
amount km. Hence b/m, like «, is defined up to an integer. Note that y, and y,, have
two very distinct roles, and the natural way to make a Poincaré section is in the
plane of y,. As the quasi-torus grows in thickness away from the main trajectory,
the importance of the distinction between v,, and y, will decrease. If we change the
rotation number by the method described previously, and if there is a connection
with a different main family, the roles of the two loops will eventually get reversed,
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v, will become y,,. for the new main family, while y,, will become y,.. At this point,
the integer k£ will get determined by the requirement that loop y, shrink to a point
on the new main family.

This discussion can be summarized as follows. Near ifs branching from a main
family, the rotation number of a quasi-torus is the same as «, the stability angle
divided by 2z, and it is undetermined by an integer. Far from such branching, any
one of the fractions o, as well as all their inverses, have equal claims to being called
the rotation number. In the event that the other side of the family of quasi-tori
branches again upon another main family, then one of the inverses becomes singled
out as the only correct one.

We are now in a position to identify the two basic loops belonging to a
numerically calculated quasi-torus. Let us start with a very thin quasi-torus, newly
branched off from a main periodic family of period t,, number of points N,, time-
step £ = 74/Ny. With « chosen as mentioned above, the period of the quasi-torus is
approximately t© = mt,, but we want its time-step to remain the same as that of the
main orbit, &=g,, therefore its number of points must be N=mN,. Figure 4.1
illustrates the result of the numerical bifurcation, for one of the branchings from the
main “horizontal” family of MARTA, with m =23, 5=37, N, =48. In Fig. 4.1a, the
23 x 48 points are linked by line segments, which has the effect of emphasizing the
whole orbit. In Fig. 4.1b the same points are left unlinked, and we see then that the
points group themselves into loops in planes perpendicular to the main orbit. Any
one of these loops can be used as loop y,, which is thus very easy to obtain: its
points are separated by intervals of N, steps along the quasi-lorus trajectory, and it
contains m points. The other basic loop y,, is a little bit more complicated: we start
at a point of loop y, and we include every point of the trajectory until we come
back to y, for the first time, then we close the loop by walking b steps along v,,
returning to the original point, as shown in Fig. 4.1¢c. This is an unsmooth version
of y,,.: the first part of it, from y, and back to vy,, contains N, steps; the second part,
back to the original point along y,, should contain b steps; the total number of
steps, or of points, is thus N+ 5. In order that this y,, correspond exactly to the
definition (4.1b), with the value of k that we chose there, or equivalently in order
that the rotation number be the one we chose, it is important that the second part
of y,, have exactly b steps, rather than m— b, or b —m, or anything else: these are
just the steps backward that are necessary to cancel out the y, rotation in the first
part. ]

As we raise the energy away from the branch point on the main family, the quasi-
torus gets continuously thicker, but the above definitions of the basic loops get
extended by continuity. Similarly, as we change the rotation number by small
jumps, the identity of the basic loops remains clear, and they are thus defined for
the entire quasi-torus family, Figure 4.2 shows the process of constructing them for
a quasi-torus issued from the vertical MARTA family.

Once we have found the basic loops, the calculation of the actions by Egs. {4.2) is
obvious. Tt is clear that the values of the actions wiil not be accurate unless #1 is a
fairly large number. Using m=2 or 3, for instance, would give very poor
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FiG. 4.1. Quasi-torus with p=23/37. In part {a) the points are linked by line segments. Part (b).
shows the same points unlinked and, in part (c), the loop y,, is shown by a solid line. Note that, because’
b > m, the unwrapping aleng y, involves one complete loop (m points), plus & — m additional points, for:
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FiG. 4.1— Continued.

approximations to the actions of the nearby tori. In our calculations, we have used
No =48 almost always, and m mostly around 235, but we also have some quasi-tori
with m as large as 64, as Fig. 4.3 shows.

There is no physical significance to the fact that, in the above numerical
construction of the basic loops, y, is smooth and v,, is unsmooth. It is simply due to
the choice of the total number of points on the trajectory, namely mN,, which is a
multiple of m. We can then construct y, by taking every N th point, and it is
smooth. If we had chosen a multiple of & for the total number of points, say bP,,
then we could obtain a smooth y, by taking every Pyth point. This is precisely
what happens for a quasi-torus belonging to a family of quasi-tori which connects
two main periodic families. Then, the same quasi-torus can be reached from both
sides. Consider, for instance, the two-dimensional family of tori which joins the
horizontal (H) periodic family and the vertical (V) periodic family in MARTA or
NELSON. Let a particular quasi-terus have rotation number p = b/m when coming

FiG. 4.2. The two loops for a vertical quasi-torus with p=15/26. In this case b <m (compare with
Fig. 4.1 where b > m).
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Fi16. 43. A quasi-torus with p = 64/107.

from the H family, and rotation number p’ = b'/m’ when coming from the I family,
with ' =m, m’' = b. (Recall that, now, there is no more indeterminancy in %, «, or
b.) Suppose that we have used the same number of peints, N,, for both main
families. Then, our two calculations of this quasi-torus have different total numbers
of points (and therefore different points altogether). When coming from H, we have
mN, points, the y, loop is smooth, but y,, i1s unsmooth. When coming from ¥, we
have m’'N, points, which is dN,, and the smooth loop is y, =7v,,, the unsmooth
loop is ¥,,-=v,. The two actions, however, should be approximately independent of
the calculation.

Of course, there is one obvious way to get both loops to be smooth in the same
calculation, which is to use for total number of points a multiple of both m and &.
This may force us to use different N.’s for different quasi-tori, which is a tricky and
time-consuming thing to do, but it works. In Fig. 4.4, we show a quasi-torus with
rotation number 26/45 and total number of points N = 2340 =26 x 45 x 2. The two
loops 7,, and y, can both be made smooth and have 45 and 26 points, respectively
{last column of Fig. 4.4). This quasi-torus was actually calculated in two different

(a)

T T,

) -

Fig. 44. The quasi-torus #45/26 with 2340 points. Because 2340 is a multiple of both 45 and 26, the
two loops can be made smooth.
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ways. For part (a), first row of Fig. 44, we started from the H main family with
Ny =90, we looked for the branching at & =45/26 and we increased the energy at
constant p until £= E,. For part (b), second row of Fig. 44, we started from a
quasi-torus close to the V family, with N, = 52, and changed the rotation number at
this same energy, F, say, until p =26/45. The total number of points, 2 x 26 x 45, is
the same in both cases, and they are the same points, except for an overall sliding
along the trajectory due to finite numerical precision amounting to 0.6 % of a time-
step. The construction given earlier yields one smooth and one unsmooth basic
loop in each case, but ebviously we can choose the two smooth loops. The actions
should be the same with both caiculations. If we call y5 the loop which reduces to
the H main family in the limit of a very thin torus, and y, the loop which reduces
to the V family, we find

Jy(smooth) =0.0895 J(unsmooth) =0.0901
J(smooth) =0.0851 J(unsmooth}=0.0857.

The loop ¥, (unsmooth) has 52 4 45 =97 points, y, (unsmooth) has 90 4+ 26 =116
points, v, (smooth) has 26 points, and y,(smooth) has 45 points. The accuracy is
not perfect but the error is less than 1 % for both J,; and J,. It would improve
even more if we used more points.

Y. NUMERICAL RESULTS

We shall now present the results of numerical calculations of quasi-tori in the
MARTA potential. The Hamiltonian is given in (1.1). At low energies it can be
approximated by tweo independent: harmonic oscillators of frequencies w,=1,
w,= \/5 These frequencies are slightly modified when a discrete time-mesh is used;
see Ref [9, Sect. 71. The harmonic oscillation in the y direction is actually exact at
all energies and constitutes what we have called the vertical family of main periodic
orbits. The x-oscillation, on the other hand, couples with the vertical degree of
freedom as the amplitude increases, and the trajectory assumes the “boomerang”
shape shown in Fig. 5.1, forming what we call the horizontal family.

The vertical and the horizontal orbits are the two main periodic families at low
energy. Below E=0.8 {the saddle points are at £=0.75), all other periodic families
can be obtained by bifurcation from one of these two. Both families are stable at
low energy, and between them we find a family of tori that we call the “bottom
family.” At higher energies there are many other stable periodic families, each of
them surrounded by a two-parameter family of tori, but most of our study was
done with the bottom family.

We found that the bottom family of tori connects the ¥ and H periodic families,
and that most tori bifurcated from J continue to exist for energies higher than the
energy at which V itself becomes unstable. Figure 5.2 shows x — y projections of

595/186/2-11
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I, 5.1, y—x plot of some trajectories of the H family superimposed over the equipotential lines of
the MARTA potential.

FiG, 5.2, y—x projections of several tori in the bottom family. The rotation number changes
horizontally and the energy vertically. The threc rows, from top to bottom, have energies 0.05, 0.08, and

0.L1, respectively. The columns, from left to right, are V6/11, V579, V15726, HS52/31, H44/27, and
H37/23. :
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these quasi-tori, labeled with the notation Fb/m, where F stands for either V or H,
and b/m is the rotation number in the notation of Section IV. Three different
energies are shown, with a variety of rotation numbers for each energy. In this
figure we have intentionally plotted two quasi-tori with rather simple rotation
numbers, namely, ¥6/11 and V'5/9 (see caption). These quasi-tori clearly show one
important difference between a real torus and a highly winding orbit: its symmetry.
As shown in Refs. [6, 16], orbits bifurcated from symmetric librations with period
n-upling, may lose one of their symmetries, depending on whether » is even or odd.
The real tori of the bottom family, on the other hand, always have the x - —x and
time reversal symmetries. So, a symmetric torus may eventually be approximated
by an asymmetric orbit. For the bottom family, it turns out [6, 16] that there are
three different kinds of n-upled orbits: symmetric librations, asymmetric librations,
and symmetric rotations, Of course, if the number of windings is big cnough, these
three kinds of orbits become undistinguishabie in practice, as is the case with the
other quasi-tori in Fig. 5.2.

As we increase the energy above E=0.1, which is approximately where V
becomes unstable, the bottom family of tori cannot touch the ¥ main famly
anymore, but the tori approximated by Vb/m are still connected with the H main
family. If we try to push them toward ¥ at constant energy, these tori break down
into chaos in a way which is described with some detail in Ref. [17]. Their quasi-
tori approximants, however, will continue to exist in the form of main families of
periodic orbits. It is important to note that our method allows us to calculate quasi-
tori labeled by Fb/m even when V itselfl is already unstable.

Figure 5.3 is a plot of Tr .# versus energy for the quasi- -torus H45/26, Note that
the point where Tr .4 becomes different from 4 is quite weli-defined: the transition
is very sudden. From that point on, the orbit stops being a good representation of a

Tr M —

0.00 0.06 0.12 0.18 0.24
Energy

FiG. 5.3. Tr(.#)xEnergy for H45/26 showing the sudden transition between the “4” and “non-4”
regions. The oscillations are due to numerical imprecision.
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torus and starts to develop its own family of second-order tori. The same transition
occurs for all our orbits, but the energy where it occurs is highly dependent on the
rotation number, as discussed in Sections II and IIL

The connection between J and H through the bottom family is displayed with
action coordinates on Fig. 5.4. The energy contours are the very slightly convex
lines which span the diagram with a negative slope. Recall that the slope of the
normal to such a contour is the rotation number, according to Eq. (2.1). Note that,
if we lower the energy of the torus at constant rotation number, we end up with a
branching upon either the ¥ family, represented by the horizontal axis, or the H
family, represented by the vertical axis, but not both. In other words, the tori of the
bottom family can be classified into two categories according to rotation number:
those with p <1 /\/5 arise by branching from the ¥ family and raising the energy;
those with p > 1/\/5 arise by branching from the H family and raising the energy.
(Here we have defined p such that p <1, which corresponds to p=h/m in the
vicinity of ¥, but to p=m/b in the vicinity of H.) We sce, therefore, that in the
notation Fp/m which we use for a quasi-torus of the bottom fammly, F is unique,
either ' or H. Moreover, if (1 /\/5 ). is a rational approximation to 1/\/3, 4 1/\/5),
is contiguous to H(./3),. . .

Ju
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Fro. 54, JyxJ, plot of MARTA’s bottom family. The lines J, =0 and J, =0 correspond o the -
horizontal and vertical periodic orbits, respectively. The energy contours are at E=003, E =003,
E=008, E=0.11, and E=0.15. Note that the last two contours are not touching the vertical family,
which becomes unstable at £~ 0.10. :



INVARIANT TORI 375

As we said earlier, for each periodic trajectory labeled by Fb/m there exists an
energy at which it stops “behaving like” a torus to become an ordinary periodic
orbit. This means that a whole neighborhood of the destroyed rational torus Fb/m
is also being destroyed by the non-linearity of the equations of motion. If we were
to mark this transition point for every periodic orbit in the (S Jy) plane, we
would get a very complicated line separating the bottom family of tori from a
region containing lots of unstable orbits surrounded by chaotic regions. Note that
this line is not the boundary between the regular and chaotic regions, because
roughly half the remaining periodic orbits are still stable, at least for a while, with
second order tori around them, etc. ... But this line is the boundary between what
we might call “the mostly regular region” and the rest of phase space. It is “mostly
regular” because every periodic orbit in this region is either a main periodic orbit
with 0 < Tr .# < 4, or a quasi-torus with all four eigenvalues of .4 close to unity.

Unfortunately, this boundary cannot be drawn in the plane of the actions, the
reason being that, as we saw in the last section, we cannot make a good calculation
of the actions of Fh/m when m is a small number. Orbits with small m, however,
should be very important to the curve we are trying to draw, since they are the
main sources of chaos. Therefore, we shall introduce new variables, 1, and 1,
whose accuracy does not depend on m being large. These are the partial periods
simply defined by

n=1b,  t,=t/m, .

where 1 is the true period. The average time take by the particle to complete the
loop 7, once is 1, and similarly for v,, and 7,,. Note that 7, and 1, should be con-
tinuous as one moves from irrational to rational rotation number and vice-versa,
Le., they do not distinguish between quasi-tori and real tori. :

We shall transport our (J,,, J, ) curves at constant energy to a (15, v,-) plot. We
call 1, that partial period which, in the limit of a very thin torus around the H
family, reduces to the period of the H family; similarly for t,.. We shall call 74, and
7}, the two partial periods of very thin tori surrounding the main family F (= H or
V). In the continuum limit, we have (see Ref. [9] for modifications due to the finite
time-mesh)

THE) = (2n//3) e (E)  TUE)=2r//3
THE)=1t"(E) tH(E}y=1"(E)/a"(E),

where (2n/\/§) and t¥(E) are the periods of the V and H main familics, respec-
tively, and 2rna"'(£) and 2na®(E) are their stability angles.

Figure 5.5 shows the (74, 1,) plot for the bottom family of quasi-tori. In this
plot, the curves of constant energy are concave, and those of constant rotation
number are straight lines. The end point of each of these straight lines corresponds
to the energy where Tr . starts to become “non-4.” If we connect these points by
straight segments, we get an approximation to be boundary between the mostly
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FI1G. 5.5. tuxt, plot of MARTA’s bottom famity. The energy.contours are the same as those in
Fig. 5.4. The three big notches in the boundary curve correspond {from left to right) to H8/5, H5/3, and
H12/7,

regular region and the rest of phase space. This is the zig-zagged curve of Fig. 5.5.
The more points we take into account, the more zig-zags the curve will acquire,
resembling a fractal in the limit. As expected, the deeper holes in the curve
correspond to the simpler orbits, while the peaks represent more “complicated”
rotation numbers (see the figure caption for more details).

The question of what happens to the periodic orbits after this boundary is
reached turns out to be very interesting and non-trivial. Preliminary results show
that, as the energy is increased beyond the boundary, some of the highly winding
orbits start to wind around simpler nearby periodic orbits, as though phase-space
had been “scarred” by the simpler orbit. This phenomenon of “classical scars”
seems to be analogous to the “quantal scars” discovered by Heller [18], which
consist of an accumulation of probability, for certain quantal stationary states, in
the vicinity of some simple, periodic, classical orbit. These classical scars and their
relationship with Heller’s results are now being actively investigated.

VI. CoNCLUSION

We have presented a method for calculating tori using periodic orbits. Its main
advantage is that it allows the systematic calculation of any family of tori, not only
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those existing in the integrable limit. Moreover, we can very easily calculate the two
topologically independent circuits on the torus, and therefore the actions, without
the necessity of using Poincaré sections.

Our results with the MARTA Hamiltonian show that the horizontal and vertical
families of periodic trajectories are connected through tori. However, it is not very
likely that all families of tori are bounded by two periodic orbits, as is the case for
the MARTA bottom family. Some of themn may be destroyed too fast, before
reaching any other stable periodic family. A possible example of such behavior are
the tori around the tiny stable branches of the vertical family (in MARTA or
NELSON—see Refs. [6, 8]) occurring in high energies, where the phase space is
mostly chaotic. On the other hand, we believe that there may be connections
through tori between other families of periodic orbits, other than the horizontal and
vertical families. A better place to look for such connections is the NELSON
Hamiltonian where at least four different families of stable periodic orbits can be
found at fairly low energies,

We also applied our method to the calculation of a non-obvious family of tori (a
family that does not exist in the integrable limit) in the NELSON Hamiltonian,
namely, the tort around the “/” family [8]. Although any etiergy surface containing
a stable member of I possesses other unstable orbits, as well as chaotic regions, we
had no numerical problems doing this calculation: everything works as well as in
the regular region. _

Finally, we repeat that the numerical methods used here to calculate quasi-tori
are essentially those described in Ref. [97]. The major difference is that we had to
develop a method to enable us to jump from one quasi-torus to another of different
rotation number. This procedure, described at the end of Section IIL, allowed us to
explore the two dimensions of a family of tori.

APPENDIX:
ToroLoGICAL PROPERTIES OF CLOSED CURVES oN A TORUS

The notations y, 9/, ... will denote individual closed curves on a torus 72 The
notations Iy, I',, .. will denote complete sets of topologically equivalent closed
curves. We call y, i, .. the individual members of the set I';; we call y,, 75, ...
the members of I',, etc. ... Therefore, if I'y# 1, v, and y] can be continuously
deformed into one another, but neither can be continuously deformed into 7,.

Now we wish to consider pairs of closed curves. Since we are only interested in
topological properties, we shall represent an inequivalent pair by (I, ), with i # j,
and with the understanding that any element v, of the set I', can be used as the first
member of the pair, and any element y; of I; can be used as the second member.

Among all these pairs, there are some that have the following property: an
arbitrary closed curve y, on the torus can be written as

P

r,=mi+n,T; ' (A.1)
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where m, and n, are integers and = means “topologically equivalent.” We shail call
the pairs satisfying (A.1) “coordinate pairs.” They are not unique; but neither do
they include all possible pairs. We illustrate by an example.

Let the torus consist of all points

{x modulo 1, y modulo 1)

in the xy plane, and consider the following four closed curves

ey = {4, (1)) = (z;, 0)}

va(tz) = {(x(2:), p(1,)) = (0, 1,)} (A2)
valts) = {(x(:), p(13)) = (13, £3) }
Valts) = {(x(t4)= Ytad) =114, *‘&]}

with 0<¢,<1. Fig. A.l displays the four curves. [t is easy to see that the pairs

(FI’ F2)5 (Fl, FS): (Flz Jr—'4); (r29 F3)9 (FZ,FcI) all satisfy (Al)’ bl.lt (F3s‘r4) dOES
not. To show the latter, it is enough to note the relation

Iy =30+ 4T, (A3)

which has non-integer coefficients.
In general, if (I";, ') is a coordinate pair, all other coordinate pairs (A, 4,) can
be generated by the equations

Ay =mIi+n, 0 (A.4a)
Ay =y Ly + 0,0y, (Adb)
Y
1 -},2 73
¥q
(] 1 X
Ty

FiG. A.l. Four closed curves in the “unit square” torus.
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where the n/s are integers satisfying the relation

n1n4—n2n3= i}. (AS)

That this is a sufficient condition is obvious, since it makes it possible to solve for
(Fy, I';) in terms of (A;, 4,) with integer coefficients. To see that the condition is
also necessary, let n,n, —n,n,=d be an integer different from =+ 1. Since it must
be possible to express (I, [7,) in terms of (A,, A,) with integer coefficients, we
conclude that n,, 1y, 115, n, must all be multiples of 4. Then, the following closed
curve must exist on the torus,

2= (nyfd) 'y + (np/d) T, (A.6)

and Eq. (A.da) gives us the relation
Z=—A4,. (A7)

But this contradicts the assumption that (A, A4,) is a coordinate pair, since the
coefficient is not an integer.

Whenever we are looking for two curves on the torus to serve as “coordinate
axes,” we need to choose two members of a “coordinate pair,” otherwise, the coor-
dinates will not be one-to-one. For instance, referring to the curves of Fig. A.1, a
point on ¥, plus a point on y, define a unique point on the torus, and vice versa.
But this is not true of the pair (y;, y4): the points t1;=1¢,=0 and ¢, =1,=1/2, for
example, correspond to the same point on the torus. In mathematical terms, a-
coordinate pair on 77 is a pair of generators for the “fundamental group” of the
torus [19]. The fundamental group (or Poincaré group) has for elements all closed
curves passing through a fixed point of a torus, and the group multiplication
operation is the “+” used in the equations of this Appendix.

The “angle variables” of two-dimensional integrable Hamiltonian systems are an
example of coordinate pairs in the above sense. The reader is referred to Arnold’s
bocok [15] for an extended treatment of the connection between angle variables and
the fundamental group. Moreover, it can be shown that all EBK-like quantization
rules need to be based on coordinate pairs of closed curves. For instance, in the
case of two decoupled harmonic oscillators, quantization along the closed loops
(v, v4) of Fig. A.1 would yield extraneous and incorrect levels.
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