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We investigate the effect of the compact Hilbert space associated to the spin degree of
freedom on the Husimi distributions of a spin-boson system (maser model). In the classical
iimit, the phase space associated to such a degree of freedom is limited to a circle. of radius

Vv 4J (J being the total spin). Therefore for high enough energies the classical trajectories
exhibit many self crossings and cusps. In this work we show that such characteristic behavior

1s also reflected in the corresponding quantum regime. Marked intensity enhancements are
found. © 1992 Acadcmic-Press, Inc.

1. INTRODUCTION

In recent years much effort has been dedicated to the understanding of manifesta-
tions of chaos in quantum mechanics in “simple” Hamiltonian systems (two degrees
of freedom), partially motivated by possible applications on more “complex”
systems (many degrees of freedom) such as atoms, nuclei, and molecules. Beside the
important question of the dimension of the phase space, there is another question
which still deserves more investigation: The role played by the spin in many-body
systems. Most of the known many-body systems are formed by particles with intrinsic
spin. These particles couple to a total spin which is generically a good quantum
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number; 1ts components, however, can exhibit a very interesting dynamics which
correspondence with chaos would be very elucidative to understand. The difficulty
starts on a very primary level: To put spin in correspondence with classical
mechanics is not trivial because of the very structure of its Hilbert space. The main
difference between a spin and particle degrees of freedom is in their associated
Hilbert spaces: A finite Hilbert space is associated to the spin in distinction to the
general situation where one faces an infinite Hilbert space. We will call a particle
degree of freedom the one associated to an infinite Hilbert space. Although the
SU(3) Lipkin model has been extensively studied [1-47, not much more attention
has been devoted to the consequences of such a difference. In this paper we present
a study of a model Hamiltonian which has one spin degree of freedom and one
particle degree of freedom. Moreover, this model has been shown to exhibit chaos
as well as regular behaviour on dependence of some parameters. These facts make
the model suitable for understanding the main differences arising from the finiteness
of the phase space.

The first studies relating quantum mechanics and classical chaos were purely
“phenomenological.” They established a universal connection between the level
statistics and the classical phase space empirically. Most of the efforts in order to
establish a more fundamental connection between quantum and classical mechanics
for nonintegrable systems are based on the semiclassical work of Gutzwiller [5].
Using the Gutzwiller trace formula and the Hannay-Ozo6rio de Almeida sum rule
[6], Berry [7] was able to give partial answers to the question of universality. The
level statistics of the model considered in this paper was already extensively studied
[8]. The results are in agreement with the empirical expected behaviour. Since the
system i1s not scalable, a full understanding of the quantum spectrum in terms of the
classical phase space is a more than ambitious project. On the other hand, recent
investigations of the quantum wave functions of classical chaotic systems open
novel interesting possibilities. Wave functions carry signatures of the classical phase
space even for chaotic systems. Observation of the enhancement of eigenfunctions
were reported 1n the numerical work of MacDonald and Kaufman [9] followed by
Taylor and Brumer [10] for the quantum version of classical chaotic systems.
Heller and collaborators [11] quoted the concentration of wave function densities
around the region of periodic orbits and called them “scars.” The corresponding
analytical results- were obtained by Bogomolny [12] and Berry [13]. In all the
quoted works, systems associated to infinite Hilbert space have been considered. To
our knowledge not as much effort has been devoted to finite Hilbert space systems
as, for example, spin systems.

In a previous work [14], henceforth referred to as (I) a detailed numerical
analysis of the classical limit of the maser model 1s given. There we show that one
of the main effects of the finiteness of the spin phase space in the chaotic regime is
the following: as the energy increases and due to the energetic border in the spin
phase space the corresponding projections of periodic orbits (mainly unstable)
exhibit many self crossings and cusps. In this contribution we show that such classi-
cal border effect has its quantum counterpart. We investigate the structure of exact
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individual wave functions via projections of Husimi distributions in both degrees of
freedom. Most of them exhibit increases in intensity which correspond precisely to
the vicinity of the classical periodic orbit self crossings or cusps. Moreover, in the
particle projection of Husimi distributions we find scars of classical unstable
periodic orbits (of smallest periods). When the contributing classical orbits are
not 1solated in period interference effects are present [15]. In the particle Husimi
distributions the above-mentioned border effect is even more conspicuous: the
intensity enhancement of the wave functions due to self crossings and cusps are very
marked and survive even in the presence of interference effects.

The structure of the papers is as follows: In Section 2 we introduce the model. A
discussion of the Husimi distribution as a tool for the understanding of the wave
functions in terms of the classical phase space, as well as explicit formulas for the
maser model are presented in Section 3. Section 4 contains a detailed numerical
analysis of the Husimi distributions in both integrable and nonintegrable situations.
Our conclusions are summarized in Section 5.

2. THE MASER MODEL

The maser model was conceived in 1952 by Townes and realized experimentally
bu Gordon, Zeiger, and Townes [16] three years later. The basic idea of the maser
1s the following: One works with ammonia molecules (NH,), due to the fact that,
despite its quite complicated structure, only two energy levels appear to be relevant
for the maser. The nitrogen N can be located at either side of the hydrogen H plane
with an energy splitting of approximately 12.500 MHz (corresponding to a
wavelength greater than 1 cm). One can model this behaviour of the NH; molecule
by a one-dimensional system.

Let us consider the nth atom of a two-level system and label its ground state by
18" > and the state corresponding to level 2 by |8Y”>. Any operator acting in this
system can be expanded in the set of Pauli matrices ¢\, ¢\, ¢! plus the identity
matrix /" associated with this particular atom. The two-level system discussed
above 1s thus represented by a spin 3 system for which spin-up and spin-down

operators are defined by
¢ =3(a{" t16\"),
where the Pauli matrices obey the usual commutation rules

[ﬂ.{ﬂ) (__f}:|=20'{”), [O.(n) (_f)]=0'£,"}.

The Hilbert space of the assembly of N atoms is spanned by the set of 27V product
states,

N
1113 = l—[ (”} (Irr - 1: 2)
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Collective angular momentum operators are now defined as
! (n)
J#=§ZJP (u=2x, y, z)

Jy=2 07 (1)
Ji=Ti+ T+ T2

The coupling of this assembly of atoms with the electromagnetic field determines
the dynamics of the system. The field operators, considering one single mode can
be represented by Bose operators which are dynamically represented as a harmonic

oscillator. The simplest Hamiltonian which realizes the Dicke maser model can now
be written as [17, 18]

G G’
(aJ, +a'J )+—=(a'J, +aJ_), (2)
VN VN
where a'(a) are the Bose operators of the quantized mode with frequency ¢,. The
spin operators represent at least 2J (J is the total spin) two level atoms with separa-
tion energy ¢,. In what follows we consider ¢, =¢, =1 and the coupling constants
G and G’ measured in units of ¢.

An enormous amount of work has already been done in connection to the above

Hamailtonian in the various field of its application. These can be traced back from
references [ 17, 18].

|

H=¢ a'a+¢,J, 4

3. HusmMi DISTRIBUTIONS

In this section we present the definition of Husimi distributions. It is well known
that they constitute a powerful tool to investigate scars of periodic orbits on the
wave functions [19, 20, 3, 4]. Essentially as described below Husimi distributions
give the wave intensity in the coherent state representation. The appropriate
coherent states for our model are the Glauber states (for the particle degree of
freedom) and Bloch states (for the spin degree of freedom) [21-2317.

In order to compare classical versus quantum features, we face the problem that
the classical solution is best described as a phase-space trajectory, whereas the
quantum one i1s described by a coordinate wave-function <{q|y¥ > or momentum
wave functions (p|y ) (with the Heisenberg’s uncertainty principle forbidding the
precise knowledge of q and p simultaneously).

It 1s known since Wigner [24] that one can define a distribution of both q and

p as
1 u u Ip-u
Wiq, p)= (27h)P <q+-2- ¢><w q—5> exp (T) (3)




HUSIMI DISTRIBUTIONS 317

where D is the number of degrees of freedom. Though such a distibution function
does provide by projection the correct probability densities,

¥(a) = | Wig,p)dp=1<qI¥>I%

(4)

v(p)=| Wia p)dg=I<pl¥O13
one is not allowed to interpret W(q, p) as a phase space probability density due to
the inconvenience of it being necessarily negative in some regions of the phase space
[25].

It has been conjectured that a smoothed version of the Wigner distribution,
averaged over volumes larger than those of minimum uncertainty, would always
provide a positive function. However, in a recent paper [26] a counterexample of
such an averaging conjecture has been constructed showing that this may not
always be true if the averaging i1s nor Gaussian.

Hence, let us stick to the Gaussian smoothing of W(q, p) or the so-called Husimi

distribution [27], which may be written as the wave intensity in the coherent state
representation [ 28, 29 ]

hz, w)y= 1<z, wl{ > (5)

where the coherent state |z, w) is given by the direct product of |z > = e %™ |0)
and [wY>=(1+ww) ' e+ |J—=J), where z and w are complex numbers, [0) is
the harmonic oscillator ground state, and |J—J) is the state with spin J with
projection J,= —J on the z-axis.

One can interpret A(z, w) as the probability of finding the system in a phase space
region of volume # centered on the point (z, w).

The Husimi distributions are calculated for each eigenstate as follows: Let |y,
be the /th eigenstate of the Hamiltonian operator H defined in Eq. (2). In terms of
the basis |n) ® |Jm ), the direct product of a harmonic oscillator state times a state
of spin J and projection J,=m on the z-axis, |{,> 1s then explicitly given by

iy=12 2 C.ind>®Im), (6)

ﬂ=0 Hl = —

where the real coefficients C! have been calculated by solving the secular matrix

for H under the chosen basis. Now, we project |,)> into the coherent state |z, w)
and take its modulus squared,

bz, w) =<z wlg )

= Y X ChnConwlImyIm'|w)lziny(n'[zy. (7)

r

T =
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Then, using the normalized version of the states |z> and {w), the functions {n|z)
and {Jm|w) can be explicitly calculated,

—2Z/2 Z”

niz> ==

W+ 27)!
Imiw = (1+ww)' N (J+m)(J—m)

(3)

For systems with two degrees of freedom, Iike the Dicke Hamiltonian, A,(z, w) is
a function of four real vanables and, so, difficult to display. Therefore 1in order to
visualize the behaviour of the particle and spin degrees of freedom we define the
following projections of 4,(z, w) 1n the space of particle and spin, respectively:

27+ 1)

h,(z2) =jh,.(z, w) d[Re(w) ] dlIm(n)] ~ T

-y ¥ Cme,mf-\/— o)

and

d[Re(z)] d[Im(z)]

T

2I+m+m
;W (2J)!
”Zomm;_ C Cnm(1+ww)2.f (J+m)' (J—m)'

7))
><\/(J+m')! (J—m')! 10

Both A,(z) and h,(w) are now functions of only two real vanables and their
contour plots can indicate the regions where the probabilities associated with the

particle and the spin are large. These plots can then be compared to the projection
of classical structures presented in Paper I.

hi(w) = | iz, w)

4. NUMERICAL RESULTS

In this section we compare the Husimi distributions as defined in the previous
section to classical periodic orbits and provide for a detailed analysis of their
stignatures on the projected Husimu distributions for both degrees of freedom. The
complete classical analysis of the present extension of the maser model has been
given 1n (I). Therefore we shall briefly recall the main results, which are necessary
for the comparison. As discussed in [30] the maser model presents a superradiant
phase transition when the parameters are such that (G + G') = ¢, this means, in par-
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Fic. 1. (a) Energy versus period for the simplest families of periodic orbits. The coupling parameters
are G=0.5 and G'=0.2. (b) Same as Fig. la for the coupling parameters G=1.0 and G’ =04.

ticular, that a bifurcation of equilibria will occur. In order to visualize this situation
and recall the corresponding families of periodic orbits (p.0.) we present the
Energy x Period (E x t) plot for the two cases of interest:

(a) Before the phase transition with parameter values G=0.5 G =02
(nonintegrable case, see Fig. 1a).

DIAGP DIAGZ

DIAG 3 DIAG

F1G. 2. (a) Sequence of spin projections of periodic orbits with parameter values as in Fig, 1b for the

family DIAGP. (b)}-(d) Spin projection of classical periodic orbits of the families indicated in the figures
(parameter values of Fig. 1b).
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(b) After the phase transition with parameter values G =1, G' =04 (see
Fig. 1b).

The analysis of the families present in Figs. 1 as well as Poincare sections are
given in (I). Here we shall only refer to the family names and show the relevant
trajectories for the sake of comparison with the quantal results.

We now proceed to examine the energy region around 8.5 corresponding to
Fig. 1b. Note that in this energy region the orbit families have similar periods and
could therefore interfere (see Fig. 1b). In Figs. 2(a—d) we show the spin projection
of unstable classical p.o. belonging to the various families. It is important to observe
the presence of many self-crossings and cusps due to the limitation in phase space,
as discussed before. The spin projection of the Husimi distributions in this energy
range exhibit intensity enhancements which can be attributed to the self crossings
and cusps (compare, for example, Fig. 3a) with the trajectory in Fig. 2b, Figs. 3¢
and d seem to show enhancements at self crossings of more than one classical p.o,
for instance, Figs. 2(a—b) (corresponding to 3c) and Figs. 2(c—d) (corresponding to
Fig. 3d). Figure 3a should be compared to the trajectories in Fig. 2a. The intensity
enhancement in this case seems to be connected to the presence of cusps in the
classical p.o.

The corresponding particle projection of the Husimi distributions are shown 1n
Figs. 4(a—d). Figure 4a shows a scar of the indicated p.o., DIAG?2. The blackened

Fig. 3. (a){(d) Contour plots of A,(w), where the blackened area represents the distribution from

maximum to 95 % of the maximum and contours are drawn at 90, 80, and 70 % in figures with three
contours.
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FIG. 4. (a)-(d) Same as Figs. 3(a—d) for k,(z). Classical periodic orbits are drawn.

areas can be interpreted as projections of the enhancements in the full Husimi
distribution due to the self crossings due to the spin degree of freedom. Figure 4b
exhibits an enhancement which we attribute to cusps and self crossings of orbits
belonging to the family DIAGP. Figure 4¢c also seems to reflect signatures of
DIAGP and DIAGS3. Figure 4d shows an intensity enhancement which can be
connected to orbits from the family DIAGP.

We have also analyzed the Husimi distributions for the case in Figs. 1a, as well
as for G'=0 and simply quote the results here. In the absence of chaos (G'=0)
both projections of the Husimi distribution show annular regions of concentration.
This can be interpreted as being due to the presence of tori. When the energy is
high enough we observe two regions of annular concentration in the Spin projec-
tion, whereas the particle projection always has only one annular concentration.
When a small amount of chaos is allowed (G’ =0.2) the Husimi distributions are
essentially analogous to the ones we have presented in this work, in the sense that

they have the same qualitative features. The transition from integrable to the
chaotic situation (in Fig. 1b) seems to be smooth.

5. CONCLUDING REMARKS

In the present work we analyzed characteristic effects of finite Hilbert space
systems 1n the nonintegrable situation. In the classical limit the projections of
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periodic orbits in the spin degree of freedom are restricted in phase space: they
should be contained within a circle of radius \/47 When the energy is high enough
such trajectories exhibit many self crossings and cusps (I), as a consequence of this
limitation. The quantum analogue of this effect is a marked intensity enhancement
of the wave functions with the corresponding energies. We believe this effect to be
quite general and investigation of other spin systems are in progress.
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