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Abstract —Compact billiards in phase space, or action billiards, are defined by truncating the classical
Hamiltonian in the action variables. The corresponding quantum mechanical system has a finite
Hamiltonian matrix. In this paper we define the compact analogue of common billiards, i.e. straight
motion in phase space followed by specular reflections at the boundaries. Computation of their
quantum energy spectra establishes that their properties are exactly those of regular billiards: the
short range statistics follow the known universality classes depending on the regular or chaotic nature
of the motion, whereas the long range fluctuations are determined by the periodic orbits.

1. INTRODUCTION

Motion 1n a square well illustrates many of the important features of wave mechanics,
though the corresponding classical problem is ignored in elementary texts. In two or more
dimensions, however, the corresponding billiard problem iltuminates important features of
both classical and quantum mechanics. This is because the motion inside the billiard is
trivial, so that the regular or chaotic profile of the classical motion and its quantum effects
depend exclusively on the shape of the billiard boundary.

In spite of this vast simplification, it must be noted that the billiard is bounded only in its
position coordinates. In contrast the momenta suffer no restrictions, so that the accessible
phase space is unbounded. As a consequence the Hilbert space spanned by the eigenstates
of the quantum billiard is also infinite, which implies the practical need to truncate any
basis used to calculate energy eigenvalues or eigenstates. This is especially distressing in
studies of the semiclassical limit, where the need to use an ever growing basis arises in an
uncontrolled way. ‘

This difficulty has stimulated interest in the study of the quantization of maps defined on
compact phase spaces [1-3]. A novel approach was proposed by the authors of Ref. [4]
where instead of compactifying the phase space we can effectively limit the motion to a
compact domain by introducing cut-offs to the classical Hamiltonian, thus creating an
“Action Billiard’. The corresponding quantum mechanical effect was shown to be precisely
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the truncation of the Hamiltonian matrix in the harmonic oscillator representation that one
would perform n a practical calculation.

As first envisaged action billiards were applied [4, 5] to problems where the cut-off did
not perturb much of the classical motion. In this they contrasted with normal billiards
where the boundaries inevitably break the free unperturbed motion. The purpose of this
paper 1s to present new forms of billiards that have identical properties to normal billiards,
that 1s, straight motion in phase space followed by specular deflections at the boundaries,
though the phase space motion is bounded. These are action billiards as defined in [4] so
that the free motion is in action with the angle kept constant. Though this appears
unnatural, we show in Section 2 that it can be interpreted as a distortion of ordinary
motion in a square well, to which it tends smoothly in the limit of small energies. The
Hamiltonian operator corresponding to the action billiard is discussed in Section 3, where
we derive the smoothed ‘Weyl term’ of the energy level density. Section 4 is devoted to
numerical results for various features of the level density fluctuations. In Section 5 we
discuss the way in which this entirely novel quantization of billiards confirms existing

hypotheses and theories connecting the chaotic or regular character of the classical motion
to the spectral statistics of the quantized system.

2. COMPACT BILLIARDS

A particle in a one-dimensional box has the free Hamiltonian

H(p, q) = p*)2 (2.1)

inside the box, so that between collisions with the hard walls the momentum remains fixed

at p=* V(2E) where E is the constant energy. For fixed energy the motion remains
bounded in phase space as the momentum switches periodically between its allowed values

at each collision. However, the allowed region of phase irrespective of energy is the infinite
strip shown in Fig. 1(a).

One way to compactify this region is to consider the vertical lines intersecting the
horizontal axis at g; and g, to be approximations to concentric circles centred on the ¢
axis. The further the centre is the from g, and g,, the larger will be the region where this

PA (A) (B)

il

Fig: 1. (a) Ordmary one-dimensional billiard with walls at q; and ¢;; (b) compactification of phase space
generating the action billiard.



Compact billiards in phase space 379

approximation holds. The advantage of this view 1s that now the annular region bounded
by the two circles is finite. Placing the centre at the origin and switching to canonical polar
coordinates in phase space (i.e. the action-angle variables of the harmonic oscillator):

p* + q° =21, p/q = tan @, (2.2)

we obtain the simple equation I = ¢3/2 = I, and I = gq3/2 = 7, for the boundary circles.
All that remains 1s to choose the Hamiltomian for this compactified square well. For
small E the free Hamiltonian (2.1) is quite satisfactory, but for E > g%/2 the character of
the motion changes completely. It is therefore better to use the fact that in the action-angle
variables the motion in the compactified well [Fig. 1(b)] will look just like that of the
ordinary well if we choose the Hamiltonian as an even function of 6. The simplest choice is

H(I, 8) = —cos 0, (2.3)

so that we obtain straight radial motion between the circles that i1s reversed at every
collision, as shown in Fig. 1(b). For small energies, we have

H(I, ) = —1 + 6*/2, (2.4)

so that we recover the usual motion in a box by approximating the radial motion by that
along horizontal lines.

The generalization for two-dimensional billiards is now immediately
H(8,, 8,) = —cos8; — cos 6, (2.5)
within its walls. These are functions only of the actions:
F(I,, I,) = constant. (2.6)

Since the one-dimensional motion for the compactified box is the same in polar (7, 8)
coordinates as that for the original box in (p, g) coordinates, we obtain the same law for
the specular reflection of orbits at the boundary, that is, the angle of reflection must equal
the angle of incidence.

The validity of the present billiard problem can be ascertained by considering the sharp
collisions with the boundary to be the limit of smooth Hamiltonians. This was 1n fact the
procedure followed in [4]. The present billiards fit perfectly into the general class of action
billiards treated there. Hence we will be able to use the previous treatment for quantizing
these new action billiards, even though the Hamiltonian has an unusual form. The
advantage is that now we can treat billiards whose classical motion is well known. In this
paper we shall consider square and circular billiards, which are known to be integrable, as
well as the chaotic Bunimovich billiard or stadium.

3. QUANTIZATION

The general rule deduced in (4] for calculating the Hamiltonian matrix of a general
action billiard is first to calculate the matrix elements of the free Hamiltonian (without
billiard walls) in the harmonic oscillator representation. In the present case, the simplest
choice is to start from

q
I [ ] il
cos O \/(q2 n pz) (3.1)

Using step operators a and a* we have



380 A. M. Ozorio pE ALMEIDA and M. A. M. bE AGUIAR

a+a’

g = V2 (3.2)

so we then obain for each degree of freedom

H = \1/5 [a(a*a + aa*) ™ + (ata® + aa*)a*). (3.3)

In the one dimensional case, this corresponds to a tridiagonal Hamiltoman matrix with
zero elements at the diagonal. As a consequence the trace is zero. Since the spectrum of
cos 8 is the same as that of —cos @, the eigenvalues come in symmetry pairs. One may

worry over the singular nature of this Hamiltonian, but in the harmonic oscillator
representation, to which we shall keep, we simply have

(ata + aat) V2 |n ) = [(n + 2] 2|n). (3.4)

The limitation of the classical phase space now manifests itself in the fact that only the
states [n,n,), such that I, = (n; + ;)h and I, = (n, + 2)h lie inside the billiard, are to be
kept in the expansion of the Hamiltonian. The billiard boundary uncouples these states
from all the others so that the basis is finite. In the semiclassical limit, h — 0, the number
of states participating grows without bound, but the size of the Hamiltonian matrix 1s finite
for each non-zero h.

Once the spectrum has been obtained we shall be interested in its statistical properties.
Besides the nearest neighbour distribution (NND), the density of states

nE) = 2 (E — E,)

is of great interest. According to Gutzwiller [6], in the semiclassical imit this can be
separated into a smooth term, called the Weyl term, plus a series of oscillatory quantum
corrections due to periodic orbits:

W(E) == nWeyl + R ose

where

1
e = | 8 - Eyav. (3.5)

Moo = 2 Ap‘u-ei5ﬁ+phases
p-©.
and A, are weights depending on the stability and period of each periodic orbit.
Before getting to numerical results let us first calculate the Weyl term analytically for the
Hamiltonian (2.5). We start with the smooth step function

1 1
N(E) = - | e - Eyav = e 4 (3.6)
and then calculate
dN
nwal(E) = dE_'

If o~ is the area enclosed by the billiard, then

C

N(E) = ; | 46,a6,.
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For -2 < E <0, 1t 1s easy to check that

44 (° 44 [°
N(E) = 2 L 8,do, = 2 L arc cos(—E — cos 8,)d0;

where
cosa = —F — 1. (3.7)
Differentiating with respect to £ and using (3.7) we get
44 [ dé,
PWesl = 2 o V[l = (—E — cos 6)°]
which, in terms of the new variable

y =cosw, + E/2

simplifies to

8.4 ¢ d
nWe:}rl =_7J. L (38)
h* 0/ R(y)
where
R(y) = (»* — a2)(y* — al),
at = (1 ¥ EfR).
Expression (3.8) can be identified as a complete elliptic integral of the first kind {7]:

8t
nWeyI = hz F(ﬂ/za ﬂ_/ﬂ+) (39)

a,

where

F(n/2, K) = J’m a9
| ’ 0 V(1 — K?*sin’8)

It is easy to check that . (E) = fwea(— E) and that ny.,(0) = .

Remembering that ny,, is constant for common two-dimensional billiards we see that
the price to be paid for the unusual Hamiltonian (2.5) 1s a much more complicated
expression for the Weyl density. Nevertheless, equation (3.9) still gives a closed form for
nwey and we shall discuss this formula in the next section in connection with the numerical
results.

4. NUMERICAL RESULTS

The billiard geometries considered in this paper are displayed in Fig. 2. The dimension of
these billiards will be kept constant throughout this section, and only h will vary. For a
given h, the harmonic oscillator basis states define a grid in the action space (see Fig. 2).
The points on the grid enclosed by the billiard are the basis states to be used in the
quantum billiard. Of course, the smaller h 1s, the larger the quantum matrix.

The classical dynamics of both circle and square billiards [Fig. 2(a) and (b)] is integrable
while the Bunimovich stadium [Fig.2(c)] is chaotic. Figures 3-5 show the respective
nearest neighbour distribution (NND) for different values of h. The spectra for the circle
and square action billiards follow a Poisson distribution while the stadium has a GOE type
NND distribution of random matrix theory [8]. Once this general feature has been
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established, we proceed to a finer study of the spectral properties of the Bunimovich
stadium in connection with classical periodic orbits.

According to equation (3.3), in the semiclassical limit the oscillatory part of the level
density is given by a sum over all periodic orbits with energy E. Smoothing the level
density with Gaussians of width A cuts off the contribution of orbits with peniods greater
than T = h/A. Therefore, controlling A helps select only the shortest periodic orbits in 7.
The smoothed density of states is then defined by

, 1
f(E) = (2mA?)~12 f > &E' — E,)e E-EVP¥GE" Ve >, e ETEFRE (4.1)
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Fig. 2(a). Caption on p.383.
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Fig. 2. Billiard enclosures for (a) quarter-circle, (b) rectangle and (c} quarter-stadium. The grid points indicate the
harmonic oscillator states entering in the quantum matnx.

It is important at this point to discuss the numerical calculation of the Weyl term. One
could naively expect that ny., should be obtained as 7(E) in the limit of very large width
A. Notice however that the quantum spectrum is limited to the interval [—2, 2| and that any
Gaussian smoothing will tend to zero necar the borders, since the spectrum terminates
there. The exact calculation equation (3.9), on the other hand, gives a finite value for ny.y
(£2). Therefore, this numerical procedure will introduce errors near £ = * 2 in a region of
size A. Then, the larger A the worst the result. It must be noticed, however, that this is not
a contradiction: in the strict semiclassical limit, where the number of levels per energy
interval goes to infinity, any A can be considered very large. Therefore, the regions where
the numerical calculation of ny,, 18 bad vamsh.

In practical situations, where the number of energy levels is finite, the Weyl term can
still be computed using the combination of two ingredients: periodically repeated spectrum
and self-consistency. That is, the original spectrum contained in the interval [—2, 2] is
periodically repeated through the energy axis to avoid the tendency of getting zero ny,, at
E = + 2. This, however, i1s not enough as can be seen in Figs 6 and 7 where the spectrum
has been repeated periodically in the interval [—4,4]. It is seen that good results at the
border E = + 2 can be obtained only at the expense of a flat maximum at E = 0, instead
of the divergence of the exact result. This 1s because of the very different values assumed
by the local density of states. A given A may be very large when used near £ = 0 but still
small for E near * 2. This is why self-consistency is needed: once #(E) has been
calculated, a local width is computed as A(E) =1/A(E) and the calculation is re-started.
As this process is iterated the smoothed Weyl density gets closer to the exact calculations,
as shown in Fig. 8. We shall call sy, (E) the numerical self-consistent calculation of the
Weyl term. For any Gaussian width A we define the oscillatory density

Eusc(E) = ﬁA(E) — ﬁWeyl(E)* (42)

Before showing the results for 7 . let us first study the behaviour of the simplest
periodic orbit families in the stadium. The shortest orbits are the so called ‘bouncing ball’
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Fig. 3. Nearest neighbour distribution for the quarter circle for different values of h and matrix dimension N. In
(a) h=0.035, N = 162; in (b} h = 0.020, N = 494 and in (c) h = 0.015, N = 870.
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Fig. 4. Nearest neighbour distribution for the rectangle for different values of h and matrix dimension N. In (a)
h=1/25, N =156, in (b) h= 1/50, N = 561, in {(c) h = 1/70, N = 1065.
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Fig. 6. Weyl density of states for the quarter-stadium for h = 0.02 and energy smoothing A = 0.1, The broken
curve was obtained with a periodically doubled spectrum and the continuous curve is the usual calculation.
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Fig. 7. Weyl density of states for i =0.02 with the periodically doubled spectrum and different smoothings:
A=0.1 and A = 0.6. The broken curve is the exact result.
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given by
I, = I, = constant

12 = tSiﬂ 62[]

6, =0o0r7
6, = 0y
E= —-1-cos8por E =1 — cos8y.

The period of such orbits can be easily calculated in terms of E and R, the radius of the
semi-circles forming the stadium (see Fig. 2). For E >0 (8, = 7) it gives

2R
r= V(Q2E — E?)

with a similar expression for £ >0, as displayed in Fig. 9.

Other periodic orbits present similar E X T plots, with the period depending strongly on
the energy and with 3T/0E (E = 0) = «, Therefore, the best place to look for scars of
periodic orbits is in the vicinity of E =1 or E = —1. Besides, concentrating the calculation
in these regions avoids the numerical problems with the Weyl term occuring near E =0
and £ = +2.

Figures 10-12 show plots of n,(E), A.(E) and the Fourier transform of #.(E) for
different values of A (0.03,0.02 and 0.01 respectively). The Fourier analysis of A (E) is
restricted to the energy interval [0.5,1.5]. Figure 10 shows a single peak at T =1,
corresponding to the shortest orbit, the bouncing ball [notice that R = 0.5 in equation
(4.3)]. As A diminishes new orbits start to contribute to 7. Figure 11 shows a second
peak at ¢t =1.75, corresponding to the periodic orbit running horizontally above the lower
boundary of the quarter-billiard (this is the second shortest orbit). Finally Fig. 11(c) shows
several other peaks: T =2 represents two repetitions of the bouncing ball; T = 3 counts
three repetitions of the bouncing ball plus 2 repetitions of the horizontal orbit; between
I' =2 and T = 3 several other orbits (more complicated) can also be distinguished (see for
instance {9]).

(4.3)
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Fig. 9. Energy vs period plot for the horizontal orbit.
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Fig. 11. The same as in Fig. 10 with A = 0.02.
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5. CONCLUSION

The results of the previous sections show that action billiards are very good models for
the study of quantum chaos. Indeed, they can be chosen to present dynamics ranging from
integrable to completely chaotic, always with finite quantum analogues. We have checked
that, for the case of the Bunimovich billiard, the results of the usual semiclassical theory of
pertodic orbits apply exactly as in common billiards. It is important to emphasize that the
present quantum system 1s radically different from the usual quantized stadium. The
verification of the validity of the GOE nature of the spectral statistics and the contribution
of individual periodic orbits to its fluctuations provides a dramatic confirmation of how
these features are exclusively determined by the underlying classical motion.
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