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Particle-Spin Coupling in a Chaotic System:
Localization-Delocalization in the Husimi Distributions.
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Abstract. — The wave functions of the Dicke Hamiltonian, describing a spin coupled to a bosonic
mode, are studied via Husimi distributions. A classical analogue of this system is also obtained.
For several energy ranges studied, the Husimi distribution of the wave functions show the scar
of simple periodic orbits when projected into the boson phase space. Surprisingly, these same
distributions, when projected into the spin phase space, are spread through large regions. An
explanation of this fact is given in terms of semiclassical theory and border effects associated
with nonsemiclassical behaviour.

In Hamiltonian systems deseribing the motion of particles, it is known that in the
semiclassical limit groups of wave functions tend to concentrate along the classical periodic
orbits. These results were obtained analytically [1-3] and tested numerically for particle
systems [4]. Phase space for particle systems are generally infinite and some very important
theoretical results so far obtained strongly hinge upon this fact. Hamiltonians with compact
phase spaces were recently studied [5]. However, these systems have only a finite number
of eigenstates which restricts, among other things, statistical analysis. When we consider a
nonintegrable Hamiltonian where a spin is coupled to a particle, we obtain a system which
allows for an infinite number of states together with a phase space which is finite in the spin
degree of freedom.

The Hamiltonian we are going to study in this letter is well known from quantum optics
as the Dicke Hamiltonian [6], and reads

H=e@a'a+J)+-2(J.a+J.a)+-2—(J a+J.a), (1)
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where a’, a are the Bose operators of a harmonic-oscillator mode with frequency ¢, J, and
J+(J_) are the usual z-component and raising (lowering) spin operators. Throughout this
paper we shall use ¢ =1,

The fluctuation properties of the level distributions for the case J = 9/2 were extensively
studied [7]. In particular, for the case G’ =0, it has been shown that the system already

behaves semiclassically in the sense that it approaches the mean-field approximation (which
1s exact for J— =) [8].

To this quantum Hamiltonian we have associated a classical one via coherent states:
Hy(Qy, Py, Qs Py) = (zw|H|zw), (2)

‘where |zw) is the direct product of the oscillator and spin normalized coherent states:

exp[— 2z/2]

A+ wim) explzd'™+wJ, 1|0, —J), w= L (P, +1Qy) (3)

V2

lzw) =

and

t=— (P, +iQy).

V2

The classical Hamiltonian (eq. (2)) can be rewritten as
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Fig. 1. — Energy vs. period for the three simplest families of periodic orbits. Thick (thin) lines
eorrespond to stable (unstable) orbits.
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where

4. 4.
G:=Gx(G', = P , = , =pP,, = 5.
+ 151 1\/2+P§+Q% =@ J2+P¥+Q% P2 2 gz = Q2

The phase space of H, is limited by a circle of radius V47 in the (p,, q;) variables (which
we shall call «the border»), plus a regular infinite space in (p, ¢»).

The basic ingredient for studying the semiclassiecal limit is the classical periodic orbits.
We have calculated the simplest periodic orbits of eq. (4) using an extension of the method
developed by Baranger et al. [9, 10] and we found three main families as shown in fig. 1in an
energy « period plot. We have also caleulated Poincaré sections, at several energies and
found that a considerable amount of chaos is present [10]. Notice that as the border is

approached the motion becomes chaotic. Also, the equations of motion become divergent in
this limit:

. G, 2J - H P
= —D1 Pe \/ -+ 1 (Gip1p2+G-q192),
V2J 2V2JV 2J - H,
G_ 2J - H
| P1=aq, + QZ\/ 1 o (Gip1p2+G-01q2),
VaJ 2V2JV 2J - H, 5

1

: G 2J—H
I G2 = — P2 +p1\/ 1 ,
| VaJ

G . V2J-H
Pe=-+qs+ =4 -,

Wbere H,= (pi +¢D/2.

.. In order to compare classical vs. quantum features, we have calculated the Husimi
distribution for several eigenfunctions:

Mz, w) = |{zw|d)|?, (6)

where |¢;) is an exact eigenfunction of Hamiltonian (1). The Hamiltonian (1) has been
diagonalized in the basis |nm) = |n) ® |m), where |n) are the eigenstates of a'a and |m)
the eigenfunctions of J? and J,:

) = 2 Clulnm) . (7)

n=0 m=-J

The behaviour of the particle and spin degrees of freedom are best visualized by the
following projections:

_ @QI+1) e |
h(z) fh(z, w) d[Re(w)] d[Im(w)] Aok Eﬁ ChmCim(zIn){n'|2) &)

and
) = [ iz, w) d[Re(z)id[Im(z)] S, Cla Clom(20lm) (|0} . )
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Fig. 2. - a) Contour plots of h(w) for the eigenstate no. 55, energy E =8.19. The blackened area
represents the distribution at 95% of its maximum; the shaded area from 95% to 90%. Contours at 80%
and 70% have been drawn. b) The same for i(z).

We have selected three most representative wave functions. Further details of “both
classical and quantum calculations shown here will appear elsewhere [10].

Let us analyse what happens to the particle degree of freedom: from fig. 2, 3 and 4 (part
b)) we notice that the particle’s Husimi distribution concentrates along the classical orbits of
smaller periods, DIAGP, DIAG2 and DIAG3 (see fig. 1 and 5). The behaviour of the
oscillator’s Husimi distribution is not new, it has been observed for several other particle
systems and can be understood in the context of presently available semiclassical
theories [3]. Surprisingly the same Husimi distribution when projected into the spin phase
space are spread through large regions. The presence of scars here is by far not as
conspicuous (see part a) of the same figures).

An explanation of this fact can be given in terms of semiclassical theory: consider the
Poincaré section of a coherent-state wave packet as in eq. (3) centred on a periodic orbit.
Then propagate this packet using classical dynamiecs and study its subsequent overlaps with
initial packet. According to Heller’'s semiclassical arguments [2], the scar of this orbit will be
found in the eigenstates if these overlaps are large for several iterations of the map. In fig. 6
we show the evolution of such a packet centred on the orbit DIAGP at E = 8.6 for both spin
and oscillator degrees of freedom (actually only the 80% and 90% contour levels are
shown—see captions). Notice from fig. 1 that at this energy, all calculated periodic orbits
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Fig. 3. — Idem fdr eigenstate no. 58, K =8.93.
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Fig. 4. — Idem for eigenstate no. 60, F = 9.32.

are unstable, DIAGP being the least unstable of them. From this figure it is readly seen that
the wave packet stretches along the unstable manifolds after a single return, but still
preserves its Gaussian shape. For other orbits, which have much larger Liapunov
exponents, the wave packets get completely distorted after a single period and no
considerable overlap with the initial packet results. According to this reasoning, the orbit
DIAGP is the best candidate for scarring the eigenstates, and indeed, this is what happens
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Fig. 5. — a) Projection of the periodic orbits DIAGP (dotted) and DIAG3 (continuous) onto the g; X p;
plane. The dashed circle represents the border. b) The same orbits projected onto the g, X p, plane.

¢) Projection of DIAGI (dotted) and DIAG2 (continuous) onto the g; X p, plane. d) The same orbits of
¢) projected onto the ¢ X ps plane. All orbits have energy about 8.5.
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Fig. 6. — Poincaré sections of a classically evolved coherent-state wave packet centred on orbit DIAGP
at 7=4.34 and E = 8.6. Only the 80% and 90% contours are shown. In part @), the section is at ¢, =0,
and in part b) at ¢, = 0. The dotted curves represent the initial packet, while the continuous curves
show the evolved packet.

for the oscillator degree of freedom. However, no scars can be identified in the Husimi
distributions for the spin degree of freedom. Therefore, we conclude that the Dicke model at
J = 9/2 has the interesting property of exhibiting semiclassical behaviour in only one of its
degrees of freedom (the oscillator). To the authors’ knowledge, this peculiar behaviour was
never observed before. The deviations from the classical behaviour can be attributed to the
proximity of the border. Larger values of J would put the border further away and a
semiclassical regime would eventually appear. In fact, a simple estimate shows that as J
increases, the percentage of phase space area affected by the border decreases as J~' and,
therefore, the corresponding number of quantum states also diminishes: let us define the
phase space area affected by the border considering that in the equations of motion the
effect will be due to the divergent factor

foy=—=~1—,
V4J —r?

where 72 =p? + ¢% (appearing in eq. (5)). We then choose an arbitrary radius 7, such that
fir) > & (2 > 0) for r> r, and define an area A, between the border and the circle of radius r,
in the plane g, p;. If we compare A, with the corresponding total area A and take the limit
J— o we get

. Ay .o ome® 1
hmA— = = ().

J—+®
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The authors are indebted to A. M. OZORIO DE ALMEIDA and W. WRESZINSKI for
enlightening discussions.
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