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We present a powertul and very simple method to calculate the eigenvalues of one-dimensional Hamiltonians of the form H =
$p°+ 27 a,x** The method converges extremely fast for mz 2. We show that E, ~ n2™/("*+1) for large n and verify it numeri-

cally for m=2 and 3.

The numerical solution of the eigenvalue equation
Hy=Ey for the Hamiltonian H(p, x)=1p%+ x>
+Ax* has been considered as a paradigm for the fail-
ure of the usual perturbation theories in the param-
eter A. In fact, the perturbation series based on har-
montc oscillator eigenfunctions can be shown to be
asymptotic and have zero convergence radius [1,2].
A number of methods have been developed in the
past years to minimize this difficulty, from varia-
tional techniques to renormalization procedures,
most directed to the calculation of the ground state
energy [3]. Other methods, based again on har-
monic oscillator wave functions, have been used to
get the low energy part of the spectrum with good
accuracy [4], but only for small enough values of 4.
In this Letter we propose and test numerically a new
method, based on infinite-square-well wave func-
tions, that works very well for all Hamiltonians of
the form

H:%pz'f' Z akxl“, (])
k=1

independent of how large the coefficients a, might
be. Contrary to other methods, the larger the m the
faster the process converges.

In order to make our procedure intuitive, let us
first look at the matrix elements Hy,={g.|H|¢,>
where [¢,) are the wave functions for the oscillator

Hy=ip*+a x*.

A simple calculation shows that H,, is a band-
diagonal matrix. A term like x* in the Hamiltonian
produces several off-diagonal elements, including
those proportional to (n#)d, .. Every power of x
also contributes to the diagonal elements, including
the (n+3)#% term from the oscillator H,. Then it is
clear that for small #, there 1s always a N, such that
the truncated matrix Ny XN, has all off-diagonal
terms smaller than the diagonal ones. However, as
the matrix size increases the off-diagonal elements
start to dominate and, from this point, increasing the
size of the matrix affects all eigenvalues and no sta-
bilization 1s obtained. From the classical point of
view this corresponds to energies such that a,x*
dominates over a,x? and, therefore, the former can-
not be thought as a perturbation of the latter. In fact,
for very high energies, the Hamiltonian (1) can be
approximated by

H~1p2+gq, x*m, (2)

with classical turning points at

1/2m
(2" o

A

If m 1s large the potential a,,x*™ is very steep and,
therefore, an infinite square-well with width L is a
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much better representation for this system than a
harmonic well. This is made clearer when one real-
1zes that the square well potential may be seen as

S(x)= lim (x/L)?* .

K— oo

Then, any power like x°™ is small compared to .S(x)
and the perturbation theory should work well. In
terms of matrix elements this implies that the off-
diagonal terms { ¥ | H| ¥, are always smaller than
the diagonal ones if |¥,) are the square-well wave
functions.
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Of course the wave functions [y, ) go to zero at
x=* L and those ot eq. (1) do not. However, if m>2
the wave functions go to zero very fast (like
exp(— |x|**!)) and, choosing L properly, a large
number of eigenvalues can be easily obtained. In fact,
for high energies, a simple calculation shows that the
eigenenergies of eq. (1) behave like E, ~ n2™/ n+ 1)
To see this, consider the energies of the square-well
given by
P hinln?

" 8L°

g
:

[ W T U I TAN B N T TR A N A U U Y TR N A A S T A R B |

rrqa4171rn1ri1raqi rTryrrryprrrrryra

210, ~5.00 0.00 5.00 10.00

|

|

|

|

|

3000.00 [
|

!

|

|

2000.00 |
|

100G.00

0.00
-5.00 —5.00 —-1.00 1.00 3.00 5.00

Fig. 1. The anharmonic potentials (full lines) are plotted against the square-well {dotted lines) for the cases (a) f=1,1=6=0; (b) =4,

A=0.1,6=0; (¢) f=1,1=1.0,8=0and (d) f=A=1, §=0.
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It one now approximates the Hamiltonian (1) by the
square-well and realizes that the “width” L depends
on E like in eq. (3) one obtains

E - fiirn? |
8(E,/a,)''"

Solving for E, gives
En= (ﬁnzﬁzalfrﬂ)m!{m+l}nlm,’[m+l}* (4)

Notice that for m=1eq. (3) gives E, =const X », and
tor m— oo it gives E, =const X n2, which are the cor-
rect power laws for the harmonic oscillator and
square-well respectively. For m> 1 eq. (3) interpo-
lates between the two. Actually, eq. (3) can also be
obtained from the WKB approximation in the limit
of high energies.

Theretore, we propose that the eigenvalues of (1)
should be calculated by diagonalizing the Hamilto-
nian in a proper square-well basis. This basis is ob-
tained as follows: given the size N of the matrix to
be diagonalized, eq. (4) is used with n=N to esti-
mate a maximum energy £ up to which we expect
good convergence of the eigenvalues (conversely,
given E we estimate N). Then, eq. (3) is used to ob-
tain the square-well width L= (E/qg,,)!/?™. With
these definitions the basis states are simply

1
W (X =—ﬁ5m(%ﬂmx/L—-%nn).

Notice that the matrix elements { y | x¥|w,> can be
easily evaluated analytically.
We now particularize for the Hamiltonian

H(x,p):%p2+ﬁx2+ix4+5xﬁs%p"“-i-U(x) (5)

and we present the results of numerical calculations
for four situations (=1):

(a) f=3, A=6=0,

(b) =3, A=0.1, 6=0,
(¢) B=3, A=1.0, 6=0,
(d) =1, iA=L, 6=10.

In figs. la-1d we show the potential U(x) for each
of the situations above and the square-well that fits
in each case.

The worst case is {a). Table 1 shows the eigenen-
ergies from the 31st to the 50th state of a 64 % 64 dia-
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Table |
Eigenenergies 31-50 for the harmonic oscillator (case (a)). The
first 30 energies (not shown) agree with the exact result with all

figures used in the table.

31  30.5000000 41  40.5009624
32 31.5000000 42  41.5023567
33  32.5000001 43  42.5054289
34  33.5000004 44  43.5117390
35  34.5000014 45 445237825
36 35.5000047 46  45.5451020
37 36.5000151 47 46.5801143
38  37.5000404 43 47.6336150
390 38.5001348 49  48.7101415
40  39.5003706 50 49.8133731

gonalization (actually 32X 32 for the even states plus
32X 32 for the odd) and we see that even in this case
the first 33 states are in very good agreement (9 fig-
ures ) with the exact result. In table 2 we present the
results for case (b) (see caption). The ground state
for this set of parameters has been obtained from
variational methods *' and agree with our results to
all decimal places displayed in ref. [1]. We have di-
agonahized first a 100X 100 matrix and then 2z
200X 200 matrix. The first 61 eigenvalues of the for-
mer agree to 10 decimal places to those of the latter,
showing a very strong convergence (60% of the total ).

For situation (c¢), the convergence is even better.
Fig. 2 displays a plot of log E, versus log n for the
converged eigenvalues of cases (b) and (c), showing
very good agreement with the prediction of eq. (3)
(for both cases a 100X 100 diagonalization has been
performed).

The convergence for the sextic oscillator, case (d),
18, as expected, even stronger. Table 3 presents the
results of a 200 200 and 300 x 300 diagonalization
(only the first 10 and the 110th to 140th states are
shown ). It 1s seen that the first 119 states of both cal-
culations agree up to 14 decimal places, and the first
150 agree up to 6 decimal places. Fig. 3 shows again
log E,, versus log 7 for this case, confirming again the
power law of eq. (3).

We have also computed the eigenvalues of Ham-
itonian (5) in cases where f<0 and A> 0 and found
again very fast convergence.

* * See for instance ref. [ 1]. Notice that our energies are twice as

large as those in ref. [1] due to a different definition of the
Hamiltonian,
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Table 2
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First 20 and 60th—80th energies for =1, A=0.1, =0 (case (b)). The second column shows the results of a 100:< 100 diagonalization
and the third column the results of a 300 X 300 diagonalization. Again, the energies 21-59 {not shown) of both calculations coincide up

to 9 figures.

0.5591463

i 0.5591463 60 157.0994258 157.0964257
2 1.7695026 1.7695026 61 160.5327704 160.5327704
3 3.1386243 3.1386243 62 163.9840018 163.9840017
4 46288828 4.6288828 63 167.4529313 167.4529312
5 6.2203009 6.2203009 64 170.9303753 170.9393749
6 7.8997672 7.8097672 63 174.4431548 174.4431540
7 9.6578400 9.6578400 66 177.9640958 177.9640940
8 11.4873156 11.4873156 67 181.5020287 181.5020246
9 13.3824748 13.3824748 68 185.0567890 185.0567801
10 15.3386420 15.3386420 69 188.6282177 188.6281983
11 17.3519076 17.3519076 70 192.2161622 192.2161212
12 19.4189434 19.4189434 71 195.8204799 1958203945
13 21.5368743 21.5368743 72 199.4410402 199.4408674
14 23.7031866 23.7031866 73 203.0777362 203.0773926
15 25.9156598 25.9156598 74 206.7304941 206.7298259
16 28.1723150 281723150 75 210.3993293 210.3980266
17 30.4713752 304713752 76 214.0842404 214.0818570
18 32.8112340 32.8112340 77 217.7861708 217.7811823
19 35.1904307 35.1904307 78 221.5040597 221.4958706
20 37.6076303 37.6076303 79 225.2402283 225.2257929
80 228.9946399 228.9708228
1.80 3 1.80
1.70 g 1.80
1.60 3
1.70
1.50 3
1.60
1.40 2
3 e e A TTE—— 1.50 e e e T ——————
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Fig. 3. Log E,, versus log n for case (d ). The dashed line indicates
the asymptotic behavior 3.

Fig. 2. Log E, versus log n for cases (b) (lower curve) and (c¢)
(upper curve). The dashed line indicates the asymptotic behav-
ior  according to eq. (4).
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Table 3

First 10 and 115th-140th energies for §=A1=1, d=1.0 (case (d)). The results are for a 200 %200 matrix {second column) and a 300x 300

PHYSICS LETTERS A

matrix (third column). The energies 11-114 (not shown) also coincide up to 14 figures.
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I 0.8746434986 (0.8746434986 122 1828.9697254472 1828.9697254469
2 3.1113928416 31113928416 123 1851.4815436300 1851.4815436295
3 6.1972326442 6.1972326442 124 1874.0845872640 1874.0845872631
4 99327731892 0.9327731892 125 1896.7784865797 1896.7784865780
5 14,.2063201790 14.2063201790 126 1919.5628762683 1919.5628762651

6 18.9537131297 18.9537131297 127 1942.4373953925 1942.4373953865
7 24.1296504930 24.1296504930 128 1965.4016873005 1965.4016872893
8 29.6998402405 29.6998402405 129 1988.45353995421 1988.4553995215
9 35.6371491991 35.6371491991 130 2011.5981837877 2011.5981837501
10 41.9194016778 41.9194016778 131 2034.8296957496 2034.8206056813
132 2058.14959510635 2058.1495949835
115 1673.97335160661 1673.9733516661 133 2081.5575454316 2081.5575452113
116 1695.8358435615 1695.8358435615 134 2105.0532141242 2105.0532137325
{17 1717.7922822205 1717.7922822205 135 2128.6362723480 2128.6362716566
118 1739.8422639326 1739.8422639326 136 2152.3063949767 2152.3063937650
119 1761.9853901477 1761.9853901477 137 2176.0632605514 2176.0632584431
120 1784.2212673670 1784.2212673669 138 2199.9065512559 2199.9065476147
121 1806.5495070370 1806.5495070368 139 2223.8359529194 2223.8359466770
140 2247.8511550606 2247 8511444382

To conclude, the infinite square-well basis works References

very well for anharmonic potentials and results 1n a
strongly convergent algorithm. Although extremely
simple, this method seems to solve the old quantum
mechanical challenge of computing the spectrum of
such Sys.tems. and may be of value fnr_ computational [3]1E.J. Weniger, J. Cizek and F. Vinette, Phys. Lett. A 156
calculations in several fields of physics. (1991) 169, and references therein.
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