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The eigenvalues of a simple one-dimensional Hamiltonian matrix are studied in the framework of ““action billiards™. We show
that the effect of truncating the quantum matrix can be understood in terms of the underlying truncated classical dynamics. The
exact spectrum is compared to that of the truncated matrix and the WKB approximation for the billiard. The point where the
different calculations start to deviate from one another corresponds to the energy of the first orbit hitting the billiard boundary.
Above this energy the truncated spectrum shows quasi-degeneracies, not present in the exact spectrum, due to quantum tunneling

between disjoint parts of the classical orbits.

The energy levels of bound systems are the eigen-
values of their corresponding Hamiltonian matrices,
which are generally infinite. Since numerical calcu-
lations are restricted to finite computer memory, the
process of obtaining the eigenenergies consists of
diagonalizing a truncated matrix followed by a con-
vergence test. In several situations, like 1n the study
of the semiclassical limit of chaotic systems, one is
often interested in statistical properties of the spec-
trum and, therefore, 1t 1s essential 1o have a large
number of “converged” energy levels. This might be
a very cumbersome job depending on the Hamilto-
nian system. In a recent paper [1] it was proposed
that this difficulty could be overcome by a redefi-
nition of the classical and quantum problems. Ac-

cording to ref, [1], if the original matrix 1s written

in a harmonic oscillator basis, then a new quantum
system 1S defined simply as the finite matrix corre-
sponding to a given truncation of the original ma-
trix. The classical analogue of such a system would
be an “action billiard”. This is the original classical
problem truncated in the action variable. It has been
shown 1n ref. [1] that the properties of action bil-
liards are exactly those of common billiards with only
two differences: first, the particle is not free in the
accessible region and, second, the phase space 1s fi-

nite. For these systems the guantum diagonalization
1s always exact and, as far as the semiclassical hmat
1s concerned, they are very good models for numer-
1cal studies.

In this Letter we consider a model one-dimen-
sional action billiard but we adopt a slightly different
point of view. Here, instead of concentrating on the
quantum billiard, we study how the eigenvalues of
the truncated matrix depart from the exact calcula-
tions, in terms of the truncated classical dynamics.
In other words, we explore the connection between
quantum basis states and classical orbits for trun-
cated (classical and quantum) systems. This rela-
tion has been studied along the years in several dif-
ferent contexts, starting with the WKB method [2].
An important approach, introduced by Wigner [3,4],
consists in associating to the wave functions a con-
venient phase space distribution satistying a number
of desired properties. The semiclassical limit of the
Wigner functions associated with the eigenstates was
studied 1n detail by Berry [5,6] and Voros [7,8]. In
particular, 1t has been shown that for integrable sys-
tems they tend to concentrate sharply on the clas-
sical torl with quantized actions, showing clearly the
link between cigenstates and phase space invariant
structures {(these are simple trajectories for one-
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dimensional systems). Finally, wave-packet meth- ()
ods were extensively explored by Heller {9-11]1,
Davies [12-14] and more recently by Littlejohn 80.00
[ 151, where classical orbits were used to construct
improved basis states adapted to each particular
problem. In this paper we study a new aspect of this

]
-
-
_
classical to quantum connection and show that the 60.00 —
classical trajectories can be of value to understand 1
the whole spectrum of truncated matrices provided 9 ]
the classical dynamics is itself truncated. As a by- :
product we derive a reliable criterion for the con- 7 40.00 -
vergence of the eigenvalues and obtain new insight ]
into the semiclassical behavior of action billiards. j
Consider the following Hamiltonian, ]
H({I, 8)=I+alcos*8, (1) 50.00 _4
- - _1
where (I, &) are the action and angles variables. The )
associated quantum operator is S P i
H=ph(ha*a+4i)+tah?(a’+a™*?), (2) 500 - | |
. T T T T T r T I rTTrrrrrrrr g
: ey ey 0.00 Z2.00 4 .00 6.00
where a*, a are the usual creation and annihilation O
operators for the harmonic oscillator H=7 and
B=1+}ia. (3) (o)
70.00 -
For non-zero « the phase curves of eq. (1) are not .
straight lines, and the classical solutions are the level :
60.00 /N /
curves = S ;
| E g \\ / \H, {
I-(8)= 4 50.00 - / /
) = T cos? 6 (4) 1 / \ /
; Ny VY
as displayed in fig. 1a. From the quantum point of 40.00 > AN
view o introduces off-diagonal matrix elements. Be- T 3
fore considering the corresponding action billiard we .
notice that the Schrddinger equation for the Ham- 30.00 3
iltonian (2) can be exactly solved. Indeed, the ca- :
nonical transformation (I, 8)— (J, ¢) given by 20.00 3
J= el (sin? 6+ £2? cos? 6) 5
2 ’ 10.00 3
tg o= lt ¥, (5)
g(ﬂ—Qg ? 0.00‘-'|r||r|||T||1|||;||1||||lTllrlril
0.C0 2.G0 4 G0 6.00
where @
0= /1+a ’ Fig. 1. Level curves for a=0.5 in terms of {a) 7 versus #and (b)
J versus ¢. The boundary at /=¥ is represented by the dotted
takes eq. (1) into line. The pieces of orbits above the boundary are discarded in the
action billiard and the segments below the boundary are con-
H({J, p)=87 (6) nected by jumps parallel to the 7= line.
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and maps the level curves (4) into straight lines

E

Je(p)= 0O

as shown 1n fig. 1b.
The transformed Hamiltonian (6) quantizes as

H=Qh(hb* b+
and, therefore, the exact eigenenergies are just
ES=h02(n+1), (7)

where the superscript e stands for “exact™.

In the original basis, however, H has off-diagonal
elements and a truncation will introduce errors in
the calculations. Therefore, let us forget for a mo-
‘ment that the exact solution (7) is possible and dia-

gonalize a truncated version of H in the basis {#) of

a™a with n from 0 to N— 1. This introduces a clas-
sical cut-off at I=N#= ¥ and the corresponding ac-
tion billiard i1s

Hy(I,6, ¥Y=H(I, 0), ifl<¥,
—0, if I> &,

(8)

The orbits of H,, are of two kinds: for energies such
that /1{0) < & for all 8, they coincide with the cor-
responding (same energy) orbits of H. For higher
energies the orbits of H,, consist of the pieces of the
corresponding orbits of H where /< % connected by
instantaneous jumps in the angle variable (see ref.
[1] for more details).

Notice that the straight line /=% is mapped into

27
I+ sin? g

J(p)= (9)
by the transformation (5). The billiard in the vari-
ables (J, @) is also well defined, but has a curved
boundary (the inverse transformation (J, ¢)— (7, §)
may be seen as a simple example of how to treat
complicate boundaries in more dimensions — see ref.
[1]).

The eigenenergies for the action billiard are ob-
tained numerically and we call them E%. Plots of E,
versus # are displayed in figs. 2 and 3 for some val-
ues of N and a with fixed #. From these plots it is
clear that E}, are excellent approximations for £€ up
to a critical energy E*. This corresponds exactly to
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Fig. 2. E, versus n forfi=1 and a=2. («) Exact, (O ) truncated
and (A ) WKB results. (a) ¥=10, (b) N=50, (¢) N=100.
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Fig. 3. The same as fig. 2 for #=1 and N=350. (a) a=0.25, {b)
a=0.35, (¢c)a=1.0.
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the energy of the first classical orbit that hits the
boundary, £E*=%1 From E* on, £2> E¢. which is
also easy to understand: in terms of action, energy
levels are, on average, spaced by 2rf. Since the cut-
off at = % throws away the area above the boundary
in the (I, &) plane, we have to go higher in energy
to overcome the lost area. This argument suggests
that the WKB approximation applied to the billiard
would give good results. Indeed, for energies below
< no orbit hits the boundary and WKB reads

2n 2n
j 1d6= dega: (n+1)h,
0 0

or
EVKB_f0Q(n+3)=E¢, ifEVKB .o (10)

For £> ¥ the cut-off introduces a new effect. Since
the wave functions must go to zero at the boundary,
this corresponds to a particle confined by infinite
walls, like a particle in a box. In these situations the
WKB approximation reads [2]

2
S= J. Idf=nh.
0

The integral on the left-hand side is just

2nE 4E
S=—+%2n-0*)— —tg~ (D *
Q+(Tl: %) th(cntgﬁ),
where 6* is the solution of
E
_— ‘I' .
1 4+« cos? §* mod(37)

The WKB results are also displayed in figs. 2 and
3 and, indeed they are fairly good approximations
for E®.

Another interesting feature of the truncated eigen-
values 1s the neat appearance of doublets for energies
close to the boundary. This is probably due to quan-
tum tunneling between the two disjoint parts of the
classical truncated orbits.

We conclude that the errors introduced by trun-
cating quantum matrices can be completely under-
stood 1n terms of a classically truncated system. The
results obtained in this way will be in good agree-
ment with the exact eigenvalues for energies corre-
sponding to orbits that never touch the billiard
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boundary. This can be used as a convergence crite-
rion for the energy levels, instead of the usual pro-
cedures of increasing the matrix size or estimating
bounds via variational techniques. For a simple har-
monic oscillator and a straigh cut-off, no orbits ever
hit the boundary and any truncation will give the
exact quantum energies. For a potential like
V(x)=3x?+Aix? on the other hand, the classical or-
bits will be very steep for high energies and no agree-
ment ¢an be expected [16].

From the point of view of action billiards, where
the finite diagonalizations are considered exact, we
sec that the WKB method can still be applied suc-
cessfully. Moreover, the example considered here
shows that the discontinuity of the classical orbits at
high energies introduces quasi-degenerate doublets
through quantum tunneling, an effect due only to the
truncation,

As a last comment we notice that, contrary to Hel-
ler’s work [10,11], the classical orbits are not being
used here to set up new basis states and improve the
numerical convergence, but as a guide to understand
the quantum behavior of truncated matrices.
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