Physica D 41 (1990) 391-402
North-Hollend

PERIODIC LIBRATIONS AND THEIR FFFECT ON THE QUANTUM

ENERGY SPECTRUM*

AM. OZORIO BE ALMEIDA

Instituto de Fisica “Gleb Wataghin®, Universidade Estadual de Campinas, Campinas, §.P., 13100, Brazil

~and

M.AM. DE AGUIAR

Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA

Received 17 Tanuary 1989
Revised manuscript received 1 October 1989
Communicated by G. Guckenheimer

Classical Hamiitonian systems with time-reversal symmetry have periodic orbits of two kinds — symmetry pairs (rotations)
and self-symmetric orbits (librations). For integrable anharmonic oscillators with two freedoms, almost all of periodic orbits of
any period are rotation pairs, However, we show that a KAM-type perturbation alters this balance, such that a finite fraction
of the low-period orbits are librations. The generic bifurcations undergone by kibrations are isomorphic to those of
non-symmetric orbits of structurally stable Hamiltonians, with the addition of an exira type of periodic bifurcation. We
determine the unfolding of this bifurcation as time-reversal symmetry is broken. The effect of this non-structurally stable
bifurcation on the quantum mechanical density of states is also obtained. The present results also hold for systems that are
symmetric with respect to general anti-unitary symmetries in quantum mechanics, corresponding to anticanonically reversible

Hamiltonian classical systems.

1. Introduction

There are many important Hamiltonian systems
that are not structurally stable, i.e., they have a
peculiar property that can disappear as a result of
an arbitrarily small perturbation. An important
example is the time-reversal symmetry characteris-
tic of Hamiltonians of the form 1p? + Vig), where
p and g are the canonical momenta and coordi-
nates in phase space. If the Hamiltonian describes
the motion of a charged particle and we add an
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arbitrarily small magnetic field specified by the
vector potential eA(g), the coordinate motion loses
the symmetry by which exchanging p for —p is
equivalent to exchanging ¢ for — . The time-rever-
sal symmetry is only the most famous example of
a wide class of anti-unitary symmetries [1], for
instance Robnik and Berry [2] show that a general-
ized time-reversal invariance may still hold under
special conditions, even in the presence of a mag-
netic field,

The classical limit of these systems belongs io
the general class of reversible systems [3] with
respect to  anti-canonical transformations. We
show in the appendix how an anti-canonical re-
versing involution can be reduced by a canonical
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change of coordinates to a simple time-reversal, so
we will restrict our discussion to this physically
important case.

Birkhoff [4], De Vogelaere [5], Devaney [3] and
Greene et al. [6] have discussed the way that
reversibility can be an aid in the calculation of
periodic orbits. These are the basic ingredients in
the celebrated semi-classical sum formula for the
density of energy eigenstates [7] in quantum me-
chanics. However, early attempts to calculate the
energy spectrum from the symmetric periodic or-
bits proved disappointing [8]. We shall discuss
below why we should indeed expect that symmet-
ric periodic orbits would be insufficient for this
purpose. The more surprising fact that the simpler
families of periodic orbits can all turn out to be
symmetric will also be explained.

Through any phase point x=(p,q) there will
pass an orbit (usually non-periedic), and there will
also be an orbit passing through its symmetry
image (—p,q). If the number of freedoms is
greater than one, there is zero probability that
both these orbits are the same. The reason is that
all points on the orbit will then have this property
and it must therefore pass through the plane p = 0.
The orbits crossing this plane fill an (L + 1)
dimensional manifold within the 2 L-dimensional
phase space, so typical orbits do not have this
property. This genericity argument holds for both
integrable and non-integrable systems.

We refer to self-symumetric periodic orbits as
generalized librations and symmetry pairs as rota-
tions in analogy to the simple pendulum. Among
the periodic orbits of any period, almost all are
rotation pairs instead of being self-symmetric, in
the case of integrable systems discussed in section
2. The situation for fully or partially chaotic sys-
tems is less clear, though one may intuitively
expect that rotations will dominate over librations
Jjust as do general non-symmetric orbits over open
self-symmetric orbits. (For canonical, as opposed
- to anti-canonical symmetries, there can be an
identification of symmetric orbits with periodic
orbits, as remarked by Gutzwiller [9].) An indica-
* tion that librations do comprise a negligible pro-

portion of the long-pericd orbits of a chaotic
system is the success of this assumption in ex-
plaining universal statistical properties of the
quantum energy spectrum [10-12].

Here we draw attention to a surprising excep-
tion to this dominance of rotations over librations.
For non-integrable (but time-reversal preserving)
perturbations of two-dimensional harmonic oscil-
lators, it is mainly periodic rotations that are
destroyed, whereas periodic librations are pre-
served. (There is no necessary contradiction with
the assumption of the previous paragraph, because
the overwhelming rotations should be long-period
orbits assoctated with high-order KAM island
structure). As the energy and therefore the effect
of the anharmonicity is increased, the librations
will undergo successive bifurcations, but symme-
try will constrain almost all the products of
these bifurcations to be again librations. The only
exception (among the bifurcations that may gener-
ically occur in systems with time-reversal symme-
try) is an isochronous {period-1) bifurcation which
was added by Rimmer [13, 14] to the list of
generical bifurcations occurring in structurally
stable systems derived by Meyer [15]. This bifur-
cation produces a symmetric pair of satellite rota-
tions which coalesce with the central libration.

The analysis of two-dimensional anharmonic
oscillators, leading to the result that a pair of
librations survive the breakup of a resonant torus
under a KAM perturbation is presented in section
2. In section 3 we supply the generating functions
for the Poincaré map of Meyer’s generic isochro-
nous bifurcation and the symmetric type of Rim-
mer. We also determine how the bifurcation un-
folds into the generic form when the time-reversal
symmetry is broken by applying catastrophe the-
ory [16].

Finally we consider the effect of librations on
the energy spectrum in section 4. It is shown in
ref. [17] that the contribution of bifurcating peri-
odic orbits to the periodic orbits sum is not singu-
lar as in the original theory of Gutzwiller [7]. The
amplitude of the bifurcating orbit is given directly
in terms of the generating function for the Poincaré
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maps. As recently verified [18] these orbits gener-
ate sharp nearly periodic peaks in the density of
states, Due to the importance of librations among
short-period orbits, it is necessary to add the sym-
metric bifurcation to those already established for
Meyer’s generic list. We also derive semiclassical
conditions for the cases when bifurcating orbits of
systems which nearly have time-reversal symmetry
must be treated by using the unfolded generating
function for the symmetric bifurcation.

2. Time-symmetric periodic orbits in anharmonic
oscillators

Consider a two-freedom system with a classical
Hamiltonian of the form

H(p,q)=1pi+ipi+ Vg, q,), (1)

where V(g) is a convergent power series whose
lowest-order terms are

Vz(q.le ‘12) = %“-’%‘hz + %“’%‘-’122- (2)

A canonical change of scale of the p and ¢ axes
brings (1) into the standard form

H(p,g) =[5 p2+g2)] + @[3 p2 + ¢2)]

The motion is constrained to the energy shell
defined by the initial conditions { py, ¢,), that is,

H(p(1),q(1)) =H(po.q,) = E. (4)

Since the origin is a local minimum of the Hamil-
tonian, the energy shell for E =0 reduces locally
to a single point. For small E > ( all the points in
the shell are close to the origin, so the Hamilto-
nian is dominated by its quadratic terms. In other
words, the motion for small E is approximately
that of a pair of uncoupled harmonic oscillators
for which

L=3{pi+q¢}) and I,=3%(pi+4q}) (5)

are constants of the motion. In this approximation
each orbit lies on a forus that projects onto g
space as a rectangular box (a Lisgjous figure)
touching the energy shell as shown in fig. 1a. The
orbits for all tori on all the energy shells will be
periodic if the frequency ratio w,/w, is a rational
number. If this ratio is irrational the orbits will be
non-periodic, with the exception of the orbits ly-
ing on the ¢; or g, axes, that is, in the case of
degenerate infinitely thin tori.

The effect of the non-harmonic terms in the
Hamiltonian become more important as the en-
ergy is increased. An improvement on the har-
monic approximation is then provided by the

+ Y annzq{iléé‘l. (3) Birkhoff f'eormal for:m (see e.g. ref.. [19] or [10]).
nz3 There exist canonical transformations (g, p)—
a, a g
2EVL
>\(UTZ)2
2ENL
< |\ )
oo g :
H, {0,q}=E Hyfo,q)=E
N
o (c)

Fig, 1. Projeétion on ¢ space of a box torus for (a) H,(g, p) and (b) H, (g, p). Infinitely thin torl are shown in (¢).
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(@, P) that reduce the Hamiltonian to the form

H(p.q)=Hy(3{P2+0}), 3( P2+ 02))
+ )3 PPOPPIO,

my ity R, zIAN

(6)

where the normalized Hamiltonian H,, is a poly-
nomial of order N in its arguments whose
second-order terms coincide with the harmonic
terms in (3). The motion generated by H,, is still
bound to tori determined by the actions

I=(3(P2+01),3(P}+03)).

However, the frequencies for the motion on each
torus are now specified by

. aH ] H
bi=aD) = G5 hme(D)= gt ()
s0 that their ratio is no longer constant. We thus
find periodic orbit tori (periodic tori for short)
densely interspersed among the tori with irrational
frequency ratios.

We are now ready to consider the quesiion of
time inversion symmetry. This is a property of the
g-motion for both the original Hamiltonian (1)
and the normalized Hamiltonian H,. There is a
known result [20] that the corners of the tori are
structurally stable with respect to perturbations
that preserve the time-reversal symmetry. The ba-
sis for this fact is that self-symmetric rion-periodic
orbits are dense on the tori on which they iie. The
generic caustics of these tori on the =0 plane
are hence double folds, whose generic meeting
occurs in hyperbolic umbilics, rather than the cusp
points of single folds. The addition of symmetric
non-harmonic terms to H,, in either the normal-
ized or the original coordinates will not unfold the
‘corners of the :t:ori. It follows that all the tori

* corresponding to H,, will project as distorted boxes
as shown in fig. 1b.

The cornersf of the boxes lie on the level curve
Hy(0,q)= E.l The g-orbits which touch these

points have time-reversal symmetry, ie. they re-
trace themselves exactly and are referred to as
librations. A non-periodic torus is densely covered
by its librations. This is not the case for periodic
tori, with the exception of the degenerate tori,
corresponding to a single periodic orbit. Almost
all the periodic orbits of the integrable system
with the Hamiltonian H,, are therefore pairs of
rotations. This statement also holds for each range
of periods, since it was obtained individually for
each periodic torus, where all periodic orbits have
common period determined by the frequencies (7).

The above result does not prevent the librations
of an integrable system from being dense. This
property indeed follows from the existence of peri-
odic tori arbitrarily close to any quasi-periodic
torus. Therefore the dense symmetry orbit in the
latter can be arbitrarily well approximated by the
very long librations in the former.

For low energies we can account for the small
perturbation represented by the remainder
of (6) within the framework of the theorem of
Kolmogorov, Amol’d and Moser (KAM, see ref.
[19] for example), The result is that most of the
tori will only be slightly distorted by the perturba-
tions. Therefore they will still be of the box type.
A theorem of Lyapunov [21] and Weinstein [22]
also guarantees the survival of both periodic orbits
corresponding to infinitely thin pericdic tori. Since
these touch the energy curve in fig. 1c, they are
necessarily librations.

The KAM theorem does not consider the peri-
odic tori. Typically these are broken up, but ac-
cording to the Poincaré-Birkhoff theorem (see,
e.g., ref, [23]) there do remain pairs of isolated
stable and unstable periodic orbits. Working di-
rectly with (6) so as to obtain resenant normal
forms as in ref. [19], one finds that usually there
only remains a single pair of periodic orbits with
the same period as those of the original torus.
Many more periodic orbits will appear in the rich
island structure (see ref. [23] or [10]), but these will
have much longer periods.

We will now show that a pair of periodic libra-

- tions always survives the breakup of a periodic
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Fig, 2. Tori on the energy sheil are specified by a single parameter A, such that the libration that starts on the comner is periodic for
A =10, as shown in (a), (b) and (¢). These librations survive a perturbation that breaks up the periodic torus. The periodic libration
. still separates the different types of non-periodic librations shown in (d).

box-torus by a perturbation of the normalized
Hamiltonian. To this end we first note that each
corner of the box corresponds to a single point of
an orbit in phase space. Therefore we can follow
its superimposed forward and backward g-image
in time; having finite length, its double image
must end in a different corner. There are hence
exactly two librations in each unperturbed peri-
odic torus.

Fix now an energy surface and consider the
non-periodic tori of H, in the neighborhood of a
given periodic torus and their librations that start
out from neighboring comers as in fig. 2. The
images of these orbits lie very close to that of the
periodic orbit until it reaches its second corner,
where there is a parting of ways: the non-periodic
librations cannot touch the level curve If,,(0,¢) =
E, lest they should termminate. Assuming that
d{w;/w,)/d ], # 0 on the periodic torus, then the
difference of frequency ratios

A=w, /w0, —a, (8)

where  is the rational ratio for the periodie torus,

changes sign with a change of position of the

torus, c.f. the corner of the periodic torus. There-
- fore, the order in which the orbit touches the two

sides of the box near the opposite corner is inter-

changed when A changes sign as shown in figs. 2a,
~2b and 2c for @ =1.

The version of the KAM theorem for symmetric
systems [24] guarantees the existence of tori with
irrational frequency ratios close to the rational
torus if @ is not a low-order rational. There thus
exist orbits similar to those of figs. 2a and 2c even
in the perturbed system. If we now dismiss the tori
and consider the librations as a function of the
starting point on the energy level curve, we are
faced with a continuous set of curves with the
property of being tangent to the level curve in
another region, but in two opposite senses, as
shown in fig. 2d. The boundary between these two
classes must be a periodic libration.

There will be two periodic librations, corre-
sponding to the four corners of the box-torus.
There are no more librations, but there may ex-
ceptionally be quartets of periodic rotations —
symmetric pairs of stable and unstable orbits.
Even in this case, the abundance of librations with
respect to rotations among short-period periodic
orbits will be remarkably enhanced in comparison
to that found for the normalized Hamiltonian.

It should be pointed out that general 'nearly
integrable time-reversible systems need not dis-
play box-tori of the form we have assumed. For
instance, an isotropic system of the form (1) with
Vig)=V(g>) will have symmetric pairs of tori
with no corners [20]. Their surviving periodic or-
bits under general weak perturbation will be
rotation pairs rather than Hbrations. However, an-
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harmonic oscillators such as the Hénon-Heiles
system form a physically important class of sys-
tems that have been the object of an increasing
computational literature, Evidently, our results can
be immediately generalized to reversible Hamilto-
nian systems whose integrable tori touch the curve
H(0,g)=E in the coordinates presented in the
appendix.

3. Bifurcations in time-symmetric systems

The complete classification of the generic bifur-
cations of the periodic orbits in area-preserving
maps was obtained by Meyer [15]. This classifica-
tion applies to almost all the periodic orbits of
maps with no special property (such as being the
square of another map, for example). Even for
maps with some kind of symmetry, however,
Meyer’s classification holds for periodic orbits that
arg not constrained in any way by the symmetry.
Thus the rotations of a time-symmetric system can
be expected to behave generically, since we can
impose any change in a rotation as long as this is
accompanied by its time-symmetric pair.

The generic classes depend on the ratio 1/n of
the period of the orbit to that of the satellite orbits
which coalesce with it at a periodic n-upling bifur-
cation. In all cases there is a single generic form
for each period, except for the case with » = 4, for
which there are two alternative forms. The pres-
ence of time-reversal symmetry in the original
Hamiltonian system carries over into its Poincaré
maps [3]. It was shown by Rimmer [13] that the
only effect of this extra symmetry is to add a new
possibility for isochronous bifurcations (n=1) of
symmetric orbits, corresponding to librations of
the full system. This new kind of bifurcation will
be found with zero probability in general systems
or among rotations of time-symmetric systems,
but it is likely to eccur among librations.

Taking ¢ to be the bifurcation parameter
(monotonically ‘related to the energy of the
Poincaré section for the full system) the normal
© forms for maps with isochronous bifurcations are

given in ref. [17] as
Sp.q)=qp' +eq+q*+3p™? (9)

for the generic bifurcations and, for symmetric
bifurcations, the form

SH(pa)=qp g’ + g+ 4p” (10)

can be shown to be equivalent to those given by
Rimmer [13]. In both cases the central and the
satellite periodic orbits are fixed points of the map
(g, p) — (¢, p") given implicitly by

¢'=75, P=3, (11)

There exists a canonical transformation that locally
takes typical symmetric maps with isochronous
bifurcations into one of these normal forms. It is
straightforward to see that in the normal coordi-
nates the fixed points for S, and S, are, respec-
tively

Pe=0, g=+(—1)"”? (12)
and

1,2
p=0,  g,=0, (-1} (13)

Fig. 3 shows the fixed point and invariant curves
corresponding to both these typical maps. The +
sign in eq. (10) corresponds to the two possibilities
shown in fig. 3b (the fixed points in eq. (13) are
the same for both §* and S$7). The generic type
(fig. 3a) is known as a saddle—center bifurcation
and it clesely resembles the generic saddle-node
bifurcation of dissipative maps (see ref. [25] for
example). The orbit structure for the symmetric
bifurcation resembles that for the generic period
doubling bifurcation (n = 2), as does its normal
form (10). However, in this case there is a sym-
metric pair of satellite rotations with the same
period, as opposed to a single orbit with double
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Fig. 3. e X7 plot and invariant curves near the isochroncus
bifurcation for (a} the generic case and (b) the two symmetric
possibilities. In the ¢Xx7 plot, stable (unstable) orbits are
represented by continuous {doited) lines. Thicker lines corre-
spond to a symmetry pair of rotations.

the period. The energy-versus-period plot for (12)
and (13) is also shown in fig. 3.

What happens to the symmetric bifurcation if
we break the time-reversal symmetry? The answer
is provided by catastrophe theory (see e.g. ref.
[16]): The ¢* term in (9) is the germ of the
simplest catastrophe — the fold. It has codimension
1, that is, it can be unfolded by the single parame-
ter € (the catastrophic singularity occurs for € = 0).
In (10) we also recognize g* to be the germ of the
next catastrophe —the cusp. However, this catas-
trophe has codimension 2, that is there are two
unfolding parameters, whereas there is only € in
(10). Thus we can understand (10) to be a special
section of the generating function

SEp.q)=q' +ogxeqi gt +3p”?,  (14)

where the symmetric map is obtained for o =0.
The universality of catastrophe-generating func-
‘tions implies that we can always locally transform
the generators of ‘the Poincaré maps for a family
of Hamiltonian systems with isochronous bifurca-
tions, so as to coincide with (14). From now on we

shall restrict ourselves to $*( p’, ), as the analysis
of S7(p', g) is completely similar,

The map generated by (14) according to (11) is
P=ptotlegtdq’, g =q+p, (15)
with the fixed points given by
p=0, 4¢°+2eq+0o=0. (16)

The bifurcating periodic orbits also satisfy the
supplementary condition that

det|d( g, ¢')/3(p.q)|=0, (17)

i.e. in this case

12¢%+2¢=0
or -
g= (1" = =1 (19

Eliminating the double root ¢(e¢, o) from (16), we
thus obtain

e=—3—g%¥3 (19)

as the cusp-graph shown in fig. 4 for the energy
parameter at which the bifurcation occurs as a
function of the symmetry-breaking parameter. The
single root of (16) is

q:(m%e)l/zz —gl/?, (20)

o

Fig. 4. Fixed points g = ¢(¢, o) of the map generated by eq.
(14). The bifurcations correspend to projection singularities of
a(e, 6), specified by the cusp equation €= — 362/3
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(a) (b)

Fig. 5. Invariant curves and e X plot for §¥(p, q) for (a)
0 =0 and (b) o+ 0. The notation is the same as for fig, 3.

For 6 # 0 the catastrophe that is obtained by
taking e through the value specified by (19) is
merely the fold, ie. we obtain a common
saddle—center bifurcation at p =0, g=(— 1e)'/%
However, the neighboring environment of this bi-
furcation is not typical due to the presence of
ariother fixed point that does not participate in
this bifurcation. This structure is displayed in fig.
5, where a numerical calculation of the invariant
curves of the map (15) was performed for both
o=10 and o # 0. Fig. 6 shows the same structure
for the map generated by S7(p', g).

So far we have not considered the symmetry of
the orbits resulfing from a bifurcation. In all the
" generic bifurcaiions there either appears a single

{a) {b)

Fig. 6. Invariant curves and ¢ X7 plot for $7(p,¢) for (a)
o =0 and (b) o+ 0. (See fig. 3 for notation.)

satellite periodic orbit or a single pair of stable
and unstable orbits. It follows that generic bifur-
cations of librations must result in new librations,
because of the absence of symmetric pairs of
satellites. Only the symmetric isochronous bifurca-
tion produces a pair of satellites of a new type,
that is, a pair of rotations.

Réturning to the subject of section 2, we thus
find that following a set of librations that exist for
low energies of an anharmonic oscillator, there
will emerge a large population of new periodic
orbits from successive bifurcations, The great ma-
jority of these must also be librations. So the
prevalence of rofations at long period must have
alternative sources in the island structure and ho-
moclinic motion.
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4. Effect of bifurcating librations on the energy
spectrum

The density of states n(E) for a quantized
system with a known classical limit can be for-
mally written as a sum over each mth repetition of
all the periodic orbits. Each term has the form

74, i .
mexp(gm}rr.]-— E,U.m'n'), (21)

where 7 is the period for a single repetition,

D) = Sﬁpdq (22)

is the action for a single repetition and p,, is the

Maslov index (see e.g. ref. [10]). The form of the

amplitude A,, that holds through a bifurcation or
resonance was found to be [10, 17]

1 8%, |2
An= mdedQ}anQ
xexp{ 5[5,(P.) - Po]). (23)

Here (P,Q) are the variables in the Poincaré
section and S, (P, Q) is the generating function
for the mth iteration of the Poincaré map.

According to the discussion in section 3, it is
only the isochronous bifurcations of librations
which may typically differ from those of generic
periodic orbits. After a single repetition of the
periodic orbits, we thus obtain the amplitude near
a bifurcation by merely inserting (9), (10) or (14)
in (23). Thus, in the case of a generic bifurcation,
.integration over P and rescaling A~ /3Q = x leads
o

= 1 e i x3 4 cB—23
A= (2ﬂih1/3)1/2fdxexp[1(x +eh™¥%)].

(24)

"I the two stationary phase points (12) are suffi-

ciently distant, that is
(—=€)*=h, (25)

we may treat both stationary points separately, so
as to obtain distinct contributions from the stable
and the unstable orbits. For both of these the
dependence of A, on Planck’s constant is can-
celled. If (25) does not hold, however, we must use
the full Airy function form of (24) [26]. It is
interesting that for small € > { the bifurcation still
contributes to the density of states, though the
real periodic orbits no longer exist.

The other case is obtained by substituting {14)
into (23), so that integrating over P and identify-
ing A~'*Q = x we obtain

A= (2wint/2y”?

dexexp[i(x4+eh'1/2x2+ah3/4x)]. (26)

The purely symmetric case is specified by o =10.
The stationary points are then specified by (13), so
that the phase difference between these will be
large if

(—¢)’ > h. (27)

Therefore, the resonant range of ¢, where we must
treat the orbits collectively, is larger in the semi-
classical limit for the symmetric bifurcation than
for the generic bifurcation. Also we note that both
A, and A, diverge rnight at the bifurcation as
A7 — 0, but A, has the stronger singularity.

Time-reversal symmetry is broken if o # (. The
bifurcation is then of the generic type, though in
close proximity to a non-participating orbit. In-
serting (18) and (20) into (26), we find that the
resonance can be separated from the extra orbit
only if

lo|*? = h. (28)

Otherwise, we must use the entire Pearcey func-
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tion [27] form of (26), even though there is no
longer an exact symmetry in the system.

5. Conclusions

Increasing the energy of anharmonic oscillators
enhances the remainder of the Hamiltonian with
respect to its Birkhoff normal form. The chaotic
regions originating in the breakup of the resonant
tori will gradually increase and overlap in the
manner described by Chirikov in ref. [28]. In this
process the low-period orbits surviving the breakup
of periodic tori will undergo successive bifurca-
tions, but most of these will not alter the predomi-
nance of librations, deduced for the KAM region
at low energies. This is in agreement with recent
calculations shown in refs. [14, 29, 30]. However,
most of these computations were carried out for a
system whose potential had a reflection symmetry,
so that the Hamiltonian was not generic within
the class of those with time-reversal symmetry.
Adding further symmetries increases the number
of generic bifurcations allowed within the result-
ing restricted class of Hamiltonians, as shown in
refs. [14, 31]. There is therefore much work that
can still be done to unravel these more special
cases.

We argued in section 1 that as a whole the
proportion of librations to rotation pairs must be
negligible. Direct evidence of this for chaotic Sys-
tems is provided by the success of the semiclassi-
cal theory for universal statistical properties of the
quantum energy spectrum [10-12] that relies ex-
clusively on the pairs of rotations. Even so, these
universal properties depend on the limit of long
periods. The individual features of the Hamilto-
nian determine fluctuations in the density of states
on a scale that is large in comparison to the level
spacing. These are tied to the distribution and
amplitude of the short-period orbits. The bifurca-
tions undergone by librations therefore determine
a clustering of energy eigenvalues that causes
overall peaks in the smooth density of states for
- anharmonic oscillators [18] at high energies.
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Appendix

A diffeomorphism R is defined to be a reversing
involution [3] if it satisfies the two special proper-
tics:

(i) R? = identity;

(1) the dimension of the R-invariant manifold is
L if the phase space has dimension 2 L.

The reversibility of the vector field ¥ under the
corresponcing tangent map is expressed by

DR(x)=i(Rx). (A1)

It is shown by Devaney [3] that the flow ¢, gener-
ated by a reversible vector field has the property

¢, = UR, (A.2)

where U is also a reversing involution. Evidently,
the time-reversal symmetry Ry (p,q) = {(p'.q")
with

pP=-pr. q¢=gq (A3)

is an example of a reversing involution, as is Ry,
where ¢, is the flow for any Hamiltonian with
time-reversal symmetry. It is possible to extend
the definition of reversibility so as to include
non-Hamiltonian systems.

Notice that R, defined by (A.3) is ansi-canoni-
cal, that is, its corresponding matrix satisfies the
equation

RJR= —J, (A4)
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where

(7 )

and R’ is the transpose of R. Since the flow for a
time-reversible Hamiltonian system is canonical,
i.e., its Jacobian matrix M satisfies

(A5)

M'IM = J, (A.6)
we find from (A.2) that all the involutions defined
by

‘U=MR, (A7)

are also anti-canonical.

Reversible Hamiltonian systems with respect to
general anti-canonical involutions comprise a
larger class than that of time-reversible systems. It
is easy though to construct canonical transforma-
tions that reduce the former systems into the latter
class. The important peoint to notice is that the
invariant plane for an anti-canonical reserving in-
volution is always Lagrangian, i.e. all closed loops
on it have zero symplectic area or action. This is
because the Jacobian matrix for the flow is M = UR
and the invariant surface is defined by Rx = x, so
on it

Mx=URx=Ux. (A8)

It follows that in this surface M is both canonical
and anti-canonical, a contradiction unless the
plane is Lagrangian. )
We therefore find canonical transformations that
will, at least locally, transform the R-invariant
surface p = pgplg) into the p’ =0 plane. One ex-
ample of such transformation taking R — R, is

’

P=p—pxlq), 4'=q (p>palqg)) (A9)

and

= ~Ry(Rx) (p<pald)), (A.10)

that is

¢ =qRx) (p<palg)).
(A.11)

pP=-p (Rx),

This transformation is symplectic, because the
shear (A.9) is, whereas (A.10) is the product of
two anti-symplectic transformations. It is smooth
across the invariant surface, since both R and R,
are diffeomorphisms.
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