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We analytically derive the possible types of isochronous and period doubling bifurcations undergone by periodic solations
of two degrees of freedom, non-integrable, Hamiltonian systems possessing reflexion and time-reversal symmetries. We find
that one of the isochronous bifurcations numerically found in refs. [3] cannor exist. In the case of period-doubling we predict
the existence of a type of bifurcation not found in refs. [2] and [3] but confirmed by Further numerical investigation.

1. Introduction

The periodic solutions of non-integrable two degrees of freedom Hamiltonians form one parameter
families (the parameter is the energy E or the period 7). As the parameter is varied, one moves along the
family and there exist values of this parameter at which new families of periodic solutions are generated.
The points at which this happens are called bifurcation points (the parameter values at these points will be
denoted by 7, and E,). The period of the bifurcated trajectories will be an integer multiple of the original
trajectory i.e., a7,. Isochronous and period-doubling bifurcations correspond to n =1 and 2, respectively.
The periodic trajectory may or may not become hyperbolic when undergoing a bifurcation and the new
families branching off the bifurcation point may be either elliptic or hyperbolic. The quantity conserved as
the parameter varies across the bifurcation point is the so-called Poincaré index [1].

"Extensive numerical analysis of period r-upling bifurcations of period solutions have been performed
recently [2, 3] for non-integrable Hamiltonian systems with two degrees of freedom. Ref. [2] also presents
an analytic study of part of the results obtained numerically. In this work this analytical investigation will
be completed.

All systems investigated in refs. [2] and [3] were of the form

2

p:P '
H(x, p,, y, py)““ + 5+ Vix, »), (1.1)
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therefore having time-reversal symiunetry. Besides time-reversal symmetry, three of the systems also had the
reflexion symmetry x — —x. Due to time-reversal invariance, the periodic solutions of (1.1) are either
librations (trajectories whose x-y projections have turning points so that they are followed in both
directions) or rotations (trajectories whose x-p projections do not have turning points and are always
followed in the same direction). A libration is its own time reverse while a rotation has for time reserve the
trajectory followed in the opposite direction, which we consider here to be a different solution. If the
Hamiltonian (1.1) also possesses some reflexion symmetry, then it may have for periodie solutions
librations and rotations with the same reflexion symmeiry (x-reflexion for systems in ref. [2]). Therefore,
when V{(x, y) has one reflexion symmetry, the periodic solutions of (1.1} are of the following types [4]:
asymmetric rotation (zero symmetry), asymmetric libration and symmetric rotation (one symmetry),
symmetric librations (two symmetries). A study of the generic properties of mechanical systems possessing
reflexion symmetries can be found in the paper by Devaney {5]. One should note that both symmetries
considered here can be thought of as “reversing involutions” in the sense of Devaney [5] and all his results
~can be applied. Of particular interest here is the fact that, generically, symmetric periodic orbits lie on
one-parameter families of closed 0rb1ts Abundant numerical examples of such families can be found in
refs. [2] and [3]. _

It was found numerically [2, 3] that periodic trajectories possessing symmetries exhibit different types of
period n-upling bifurcations. The analytical study presented in ref. [2] accounted for all the period
n-upling bifurcations of periodic trajectories possessing zere or one symmetry (ie., bifurcations of
asymmetric and symmetric rotations, and asymmetric librations). However, in the case of symmetric
librations, only the period n-upling bifurcations with » = 3 were derived in ref. [2]. The isochronous (# = 1)
and period-doubling (n = 2) bifurcations of symmerric librations which were not obtained analytically in
ref. [2], will be derived in the present work.

In section 2 we derive the Poincaré map & appropriate for analyzing the isochronous and period
doubling bifurcations of symmetric librations. It turns out that, for these trajectories, the Poincaré map
can be written as the square of another map that we shall call 2772, As will be shown in the next section,
this is the fundamental property that one must take into account to properly analyze the bifurcations of
such orbits. The basic techniques used here to construct these maps and find its fixed points follow the
general ideas by Meyer [8]. The period-doubling bifurcation is presented in section 3. Qur analysis predicts
the existence of a new type of period-doubling bifurcation that was not contained in the numerical work of
refs. [2] and [3]. And this prediction has been confirmed by further numerical investigation. In section 4 we
present the isochronous bifurcations of symmetric librations. Our analysis rules our the existence of
isochronous bifurcationsin which the original family remains elliptic. Such bifurcations were found in the
numerical work of refs, [3], but we believe that these cases actually consist of two distinct bifurcations very
close to each other. Indeed, a careful numerical investigation of one of them has shown it to be double,
and therefore it has confirmed our analytical findings. Section 5 contains some final remarks and
conclusions.

2. The “square-root” map #'/*

In the vicinity of a periodic solution, we may introduce periodic coordinates and transform the original
time-independent Hamiltonian with two degrees of freedom into a time-dependent Hamiltonian with one
‘degree of freedom [6]. The coordinate varying along the trajectory plays the role of time, its period being
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Fig. 1. Dlustrating the Poincaré map of a section.

set equal to 2#. Using energy conservation,
H(x, p,, y, p,)=E, (2.1)
the time-dependent reduced Hamiltpnian is given by (choosing x to play the role of time)
h'(q,psr)%px(y,py,E,mx), | ' (2.2)

where we have set g=y, p=p, and ¢+ = —x. Variation of the action restricted to the energy shell gives the
following equations of motion in-the vicinity of the periodic solution

- ah _
TG, PT gy o (2.3)

the dot meaning ““time”-derivative. _
And the Poincaré map of a section which is the map of a plane x = const. (or y = const.) on itself,

resulting from the consecutive intersections of this plane and the phase space trajectory with p >0

(2, > 0) (see fig. 1) is given by '

(a(6), p(0)) 2> (g(t+2m), p(s+2m)), o e

with g(z+2#) and p(z+ 27) solutions of (2.3) with initial conditions g(z), p(¢). Thus, a periodic
trajectory is a fixed point of # (see fig. 1). Therefore, bifurcations of periodic trajectories correspond to
bifurcations of 2 and vice-versa so that the period n-upling bifurcations of periodic trajectories may be
obtained by anaiyzmg the fixed points of #” at the bifurcation point [7]. Any fixed point of 2 is a trivial
fixed point of #£" (it corresponds to going over the periodic trajectory n times). Period n-upling
bifurcations will occur when 2" has at least one set of n fixed points besides the trivial one. The
non-trivial fixed points of #" may arise whenever the eigenvalues of the Jacobian of the linearized 2 are

e2"U/m and e~27U/™  with / an integer non-commensurate with » [7]. This means that isochronous
bifurcation occiirs When the Jacobian of the linearized % has eigenvalues 1 and period-doubling’
~ bifurcation occurs when it has eigenvalues —1.
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The map £ is area preserving and has the same symmetries of the reduced Hamiltonian (2.2). Therefore,
it has the symmetry p - —p (the Poincaré map for the section y = const. has two symmetries: x — —x
and p,.— —p,).

Now, if the periodic trajectory is a symmetric liberation, the fixed points of the Poincaré map of section
Z are also fixed points of the area preserving “square root” map #1/? of the plane (g, p) on itself, defined
as

(g(6), p () Z5 (qle+m), p(1 4 ), (2.5)

where g(7+ @) and p(z+ =) are solutions of (2.3) with initial conditions g(¢), p(¢). This “square root”
map will also have the symmetry p - —p( Dy =D,

Remark. The map 2£'/? is not a map of a Poincaré section as phase space points having p, >0 are
mapped onte phase space points having p, < 0.
And the Poincaré map & for a symmetric libration can be written as

P= P2 P2, (2.6)

The above composability is the property characterizing the Poincaré map for a symmetric libration.

The eigenvalues of the linearized map #'? are the square root of the eigenvalues of the linearized &
therefore, at the bifurcation point, the linearized map #'/? giving rise to isochronous bifurcation must
have eigenvalues 1 or —1. In the case of period doubling, it must have cigenvalues e * 7/2), These P1/2
maps will be constructed in sections 3 and 4.

Before going on to the next section, a few words about stability of the trajectories are in order. The
periodic trajectories will have the same stability as the fixed points. Therefore, elliptic trajectories
correspond to elliptic fixed points and hyperbolic trajectories correspond to hyperbolic fixed points. At
elliptic (hyperbolic) fixed points, the cigenvalues of the Jacobian of the linearized map are e *i%(e =),
real. Note that elliptic or hyperbolic do not mean stability or instability, respectively: it is well-known [8]

. that in Hamiltonian systems a trajectory can be unstable even though its eigenvalues have unity modules.
In fact, every time the eigenvalues are of type e*27!"/% with r and s integers, the periodic trajectory
corresponding to s windings around the original one will have eigenvalues e + 27" = 1, which is exactly the
boundary between stability and instability. In this case one has to go to non-linear terms in the
perturbation expansion in order to determine the stability character, instead of stopping in the linearized
map. A classical example, discussed in detail by Arnold [9], is the period tripling point, where the
eigenvalues are e #2713,

3. Period-doubling bifurcations

Following the prescription of the last section, we shall express the Poincaré map £ in terms of map
#'/2, For the period-doubling case, as already mentioned, the eigenvalues of the Jacobian of #/2 must
be e*™D at the trivial fixed point at E=E,. Setting E=F,+e¢ (so that the bifurcation point
corresponds to € =0} and taking the origin as the trivial fixed point, the general polynomial expansmn for

the map #'/2,

‘q1/2 ; 1:/2( ql:)) .
= ) 31
(Pl/z) '@_ Po)’ (3.1)
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is[7]

Gi2=Po T Agy+ c(a0.+ agy + ay po) + a3i45 + ayaqy po -
+ 8y Pi+ G345 + anqdpot angeps + aspat o,
Pip= —qo+ Bgo+e(by+bigy+ bypy) + biad + brageps

(32)

+by 0§+ by + budipo + bundopd + by Py +
Area preservation plus the ¢-reflection symmetry p— —p imposed on (3.2) imply that A =8=0,

by=ay, by=b =a,=a,; ap=a,=by=>b,= byy=an, by=ay, by=dsy, ay=by= 3a;; and
b33 =ay, and, up to third order, the map #1/2 is given by '

G12=Po+elao+as(go+po)] + anlqo+ o)’ + aseqd + 303303 p0 + asagopl + ass i, _ (33)
Prp= —qo+elagtay(go+py)] + éll(% +po)’ + a33‘-]8 +aqgipo+ 3axnqopl + aypd. o
In order to analyze the fixed points of 12 wé define the following variables,
qg= 1/6_1’, p= \/Et_, : (3_4)
in terms of which the map (3.3) becomes a power series expansion in the e parameter [10]:
rl/-?_ =iyt \/e_[aO +a(r+ to)z] + e[az(r0 + 1} + aspls + 3assrdty + ayrytd + a33t3] + 0(5?),
b= —r0+\/;[a0+au(r0+t0)2] : ' (3.5)
Fela(ry+tg) + anrd + asrd + asrlty + 3azrytd + asptd] + 0(e?).
'Anc‘_l' subsiitution of (3'.5) in (2.6) yields the Poincaré map for the period-doubling case:
_rl. =—r+ 2\/5_[% + au(r02 + t%)]
+2¢ [yto —2rpagaqy, + agzrﬂzto + asgty + 2ad{ty— ) (ry + tO)Z] + 0(e?), (3.6)
=ty —dageryr, — 2e [yr0 = 208y F Ay ol + ayrd — 2ad (1 — 1) (ry + r0)2] + 0(€?),
where | |
Y=a,+2ay4ay,. ' (3.7)

Using the implicit function theorem [11] we obtain the fixed pomts of (3.5 and (3.6). The only fixed
pomt that & and 9’1/ ? have in common is

r=agle, i=0. (3.8)

_ Remark. This fixed point would be immediately obtained if we had used the transformation p= ez,
g = er instead of (3.4). However, if we use this transformation we will not be able to obtain the existing
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Table I

€ X7 plot and fixed points (with map invariant curves) at period doubling bifurcation points.

A full (dashed) line is used here to indicate a elliptic (hyperbolic) family. Thick lines (fult or
- dashed) indicate that there are two degenerate families branching off the bifurcation point.

e Fixed point of P2
* € <0 € =0 € >0
€y
W7 o o] s
/Tb 4T, T PO
Ng =0,
‘A
ol |
] i 1 |
, 4 -
o) f s
T, ,’41';1-
!
Ng =0,

non-trivial fixed points of #? as they are of order Ve and the resulting expansion will in this case start
with order e.
The eigenvalues of the Jacobian of the linearized map (3.6) at the fixed point (3.8) are

A= —1+2iey, : (3.9)

with y given by (3.7 Sd, the fixed point of & is an elliptic fixed point in the vicinity of € = 0. Therefore,
the corresponding trajectory remains always elliptic when e goes across zero (the bifurcation point).
The %% map is obtained by iterating (3.6). The result is

r2=r0——4eto(y+ar02+ﬁr§)+@(52),
1y =to+dery(y + Bri ) + 0(?), ' PR (3.10)

where

a=ay,—2aY, B=as,+ 24l - (3.11)
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44 |— BIFURCATION POINT—.’r; —
42— -
40— ) K E<E,

38 |— \ |
36 |- : _
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Fig. 2. EXr plot (r=38.36+ 107°T, E=0.9576769 + 10" %) at a period doubling bifurcation of the MARTA potential with the
two pairs of bifurcated trajectories being hyperbolic, one pair existing only for E > E,, the other only for E < E,. See caption of
table I for notation.

The above map has the following nine fixed points:

r=1{),
D {77 (3.12)
r=0, — i
m {(,_, /[=¥; and (" FTV B> (3.13)
i=0;
_ =7
il :
11I) , (3.14)
f= ) —2
“Vatp

with v, &, 8 given by (3.7) and (3.11), respectively. _
- The eigenvalues of the Jacobian of the linearized 22 map (3.10), calculated at the fixed points (3.11),
(3.12) and (3.14) are, respectively,

Ar=144iey, ' - (3128)
Ap=1+ 4\[2_‘]'0116/J_, : (3.13a)

' 16 | |
Np=11%- ‘/—Y““( adiah ks L | (3.142)
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From (3.12a) one sees that the fixed point (3.12) is always elliptic. This is also a fixed point of £ at € =0
(the bifurcation point). Therefore, it corresponds to the periodic trajectory of period 7, at € =0. The
remaining fixed points are only fixed points of %2, therefore, each pair corresponds to a periodic trajectory
of period 27, at ¢=0. So, assuming vy <0 (the case y >0 gives the same results) there are three
possibilities: . _
(1) If B <0 the pair of trajectories corresponding to the two sets of fixed points given in (3.13) are elliptic

while the pair corresponding to the two sets of fixed points (3.14) are hyperbolic (see (3.13a) and
(3.14a)). Both pairs exist only for € < 0. In the first row of table I we show the € X 7 plot for this case
in the vicinity of € = 0, together with the fixed points and invariant curves of 2

(ii) If 0< B < 2af, the pair of trajectories corresponding to the sets of fixed points (3.13) is hyperbolic
and so is the pair of trajectories corresponding to the set of fixed points (3.14) (see (3.13a) and
(3.14a)). One of the pairs existing for € <0 only and the other pair existing for € >0 only. The e X 7
plot for this case, together with the fixed points and invariant curves of #7 are shown in the second
row of table L.

(i) If B> 2af,, the pair of trajectories corresponding to fixed points (3.13) and (3.14), respectively, will
exist only for € > 0, the pair corresponding to (3.13) being hyperbolic and the pair corresponding to
(3.14) being elliptic (see (3.13a) and (3.14a)). This is the same as in case (i) with ¢ = —e.

Summarizing our results: when a symmetric liberation undergoes a period doubling bifurcation it always
remains elliptic-and two pairs of periodic trajectories with twice its period are generated that are either
both hyperbolic, one pair existing for € > 0 the other for € < 0, or one pair elliptic and another hyperbolic,
both existing only for € > 0 {or e < 0).

Case (i) (or (iii}) were obtained numerically in refs. [2] and [3]. It is observed at the bifurcations
occurring at points labeled Z? in those references. Case (i) was not obtained in those numerical
investigations but after it was predicted by our analysis we did a numerical check and confirmed its
existence. '

In fig. 2 we present the E X 7 plot of one of these bifurcations for the MARTA potentiai [2],

This was also checked for one of the potentials of ref. [3] (the NELSON potential) {12].

4. Isochronous bifurcations
In the case of an isochronous bifurcation, there are three possibilities for the “square root” map #1/%:

S Gia =gyt | po+ (1 +byayy) go/2] + 012(513/2 + %Po),

, : (4.1)
Pr2=pPot ‘_]0"' € [.bo +bigo+ (1 - b0a12)P0/2] + b1 - a3 p5/2, o
Ti2=dot Py + e(go+aypyt+ bq/z) +4a5,q0p0 + ands + a5 05,
P12=Pote [Bo+2(a, — agay, + agay ) o + (4, — 2agay, + 2a4ay,) Pyl (4.2)

+2a3190(qo + po) + (ay — 2a4,) pi,
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Tabte II .
¢ X 7 plot and fixed points (with map invariant curves) at isochronous bifurcation points.
See caption of iable 1 for notation,

Fixed points of P

€xT
€ L0 € >0
€,
\ :" \© x
0 ¢ T
Ty T
€,

i R
2 /{ T @ . (\?"}(\ ‘C:)‘,'
€
] |
L
. ;! r: T X * ‘@',’XI

and

Gip= —qo+elag+aigy+py) +angd+apnpe(g,—p),

Pipr= —PoT gt e[~ao/2+bigo— (1+a) po] + (2ay +ay, N qi/4 - qoPo) + a1, P3/2,

(4.3)

where ao(2a,; +a5/2)= —(1 + 2a,):

The maps (4.1) and (4.2) are the maps we obtained in ref. {2] for the isochronous bifurcation of
symmetric rotations or asymmetric liberation (trajectories having one symmetry). And map (4.3) is the map
obtained by us in ref, [2] for describing the period doubling bifurcations.

The map expansion in powers of the parameter ¢ is obtained for (4.1} and (4.3) by using the variables

p=vet, g=er. ' (4.4)
For map (4.2) we use the variables

p=vet, g=ier. ' | | (4.5)
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E-TAY PLOT FOR NELSON HORIZONTAL FAMILY
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Fig. 3. EX7 plot (r=T+21.0000) showing two consecutive isochronous bifurcations occurring in the NELSON potential [3].

Notice that if the resclution is not good enough, the bifurcating trajectory will seem to be always elliptic. See caption of table I for
notation,

After the above change of variables we obtam the three possible maps & by iterating the correspondmg
map #'/2. The result is

rn=ry+ 2\/5_1?0(1 +agpr,+ a33t§) + @{¢),

(4.1a)
ty =1ty + 2e (ry+ by — apa12/2) + 0(e),
=gk 2t + 4\/_[ o/2+ ayrd + (ag + ay /25 + (2ay + ay)rgty] + cu( ),
=to+ 2e [ by + 2a,,r¢ + tflczr,ur‘ot0 +13(3ay, — 2a,,)] + 0(e), (422)
and
n=ry— 21/;l0[(1 +agap,) + (a33 —ah )~ aurO] + 0(¢); (4.39)

t =ty ZJE({:O —ay/2+ay12/2) + 0(e).

Examining the above expressions we see that (4.1a) and (4.2a) have the same qualitative features of the
corresponding #!/% map, (4.1) and (4.2). Also, the map (4.3a) is essentially the same as (4.1a). Since maps
(4.1} and (4.2) have already been analyzed in ref. [2] (isochronous bifurcations of asymmetric librations or
symmetric rotations) we shall only list the results.
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Maps (4.1a) or (4.3a) have three fixed points, one corresponding to the main trajectory and the others
corresponding to two bifurcated trajectories. At the bifurcation point the main trajectory changes from
elliptic to hyperbolic (or vice-versa) and the two bifurcated trajectories have the same character {elliptic or
hyperbolic) (see table II).

Map (4.2a) corresponds to the generic [10] case; there is no bifurcation and the trajectory simply
switches from elliptic to hyperbolic or vice-versa. And it only exists either for € > 0 or for € < 0.

These are the only possible bifurcations of symmetric librations. In the first two refs. of [3] a bifurcation
. point labeled 4? was found numerically, at which a symmetric libration would remain elliptic when
undergoing an isochronous bifurcation, with two pairs of trajectories being generated, one pair elliptic, the
other hyperbolic. According to our results, this kind of bifurcation cannot occur for symmetric librations.
Therefore, we decided to make a careful numerical investigation of the point 42 found in one of the
potentials studied in refs. {3] (NELSON potential). And indeed, our numerical investigation has confirmed
our present analysis. What happens is that two isochronous bifurcations occur in succession. Fig. 3 shows
the £ X 1 plot of these numerical Tesults.

As we can see, the main trajectory becomes hyperbolic for a very small energy (period) interval. We
believe that this interval of instability is so narrow because we are at so low an energy that the system is
almost integrable and therefore should behave very much like an integrable one, which, as is well-known,
does not have unstable regions in the bounded domain.

5. Conclusions

Reflexion symmetries lead to important qualitative changes in the bifurcations of periodic solutions of
non-integrable Hamiltonian systems with two degrees of freedom. The relevant parameters for the
classification of period n-upling bifurcation of a given period orbit are the mulitiplicity » and the number
of symmetries N, of the orbit. In our study we restricted ourselves to a maximum of fwo reflexion
symmetries, one being time-reversal and the other the reflexion with respect to one spatial axis ( x-reflexion
has been considered). We found that if N, =1, (asymmetric librations or symmetric rotations) there exists a
new type of isochronous (n = 1) bifurcation [2] not observed in the case of orbits with N, = 0 (generic case
[2, 10]. And no new features are observed [2] if # > 2. When an extra symmetry is present, i.c. N, =2 (the
trajectories are symmetric librations), new types of period #-upling bifurcation will be observed only for
n>1. We found that the presence of an extra symmetry in the orbit does not lead to new types of
isochronous bifurcations. Therefore, the isochronous bifurcation obtained numerically at points denoted
by 42 in refs. {3] simply cannot exist, a fact confirmed by careful numerical imvestigation of one of these 42
points. Thus, when -undergoing isochronous bifurcation, the periodic trajectory always changes from
elliptic to hyperbolic or vice-versa.

In the case of period-doubling bifurcation we should note that the #/2 map is like the map % used in
ref. [2] to describe the period quadrupling of trajectories having one symmetry so that period-doubling of
symmetric librations is like period-quadrupling of symmetric rotations or asymmetric librations.

Finally, we would like to make a remark about the use of numerical data: it should always be kept in
mind that some properties cannot be observed unless the numerical resolution is high enough.
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