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Abstract. We construct the classical analogue of the phenomena of super-radiance in the
zero temperature limit and show that a simple geometrical interpretation can be given in
the integrable case. The non-integrable case is also studied and in both cases we find
bifurcation of equilibrium for the same parameter values where this phase transition is
known to occur in the thermodynamical context. The ground state of the system is also
studied in the framework of a mean field approximation and a simple analytical expression
obtained. A connection between the classical and quantum points of view is presented.

1. Introduction

The Dicke model of super-radiance [1] describes a system of N identical two-level
atoms in a linear cavity of volume V interacting with an electromagnetic field. The
separation between the atoms is assumed to be large enough so that their mutual
interaction can be discarded. Dicke, however, realized that, because the atoms
interact with the same radiation field, they should be treated as a single system, and
not independently [1]. One of the most important properties of the Dicke model is the
presence of a second-order phase transition from normal to super-radiance in the
thermodynamical limit where N-and V— » with N/V finite. This was first shown
rigorously by Hepp and Lieb [2]. In particular they evaluated exactly the partition
function and correlation function in this limit. The transition to the super-radiant
regime is found to occur for a critical temperature T, which is a function of the
parameters in the model. In the super-radiant phase (7<T,) all thermodynamically
relevant states are shown to be states with non-vanishing mean photon number and
excited atomic states. This phase transition is therefore usually interpreted as a
quantum phenomenon.

The existence of a classical limit for the Hamiltonian of Dicke’s model was also
rigorously shown to exist and to be unique [3]. In the present paper construct the
classical analogue of the super-radiant phase transition at zero temperature both for
the ‘model considered by Hepp and Lieb [2] and for its extension which includes
antiresonant terms. The classical problem is shown to present bifurcation of equilib-
rium points at the same parameter values where phase transition to super-radiance
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occurs. The character of the bifurcation depends on whether the antiresonant
imteraction is present or not.

Furthermore we present an analytical description of the ground state of the model
in the context of a mean field approximation. The ground-state energy is compared
with the exact one and shown to be in excellent agreement. The super-radiant phase
transition for the ground state has been numerically observed by Scharf [4]. Here we
present a simplified and analytical version of the phenomenon. Moreover the
connection between the classical and quantum points of view is clearly established.

In section 2 we briefly review the Dicke model and define its classical analogue.
- Section 3 is devoted to the study of the bifurcations of equilibria in the classical model.
In section 4 the study of the ground state in a mean field approach is presented as well
as its. connection to the classical results. Some concluding remarks can be found in
section 5.

2. The Dicke model and the classical analogue

The Hamiltonian at the Dicke mode] for a sihgle radiation mode  interactive with N
atoms is given by (h=c=1)

H= a*a+2( (aa +a'a; )) | (1

where a and 4" are creation and annihilation operators for the field, ¢ is the energy
differenice between the two levels of the atoms, A is the coupling parameter measured
in. units of the field energy v and o} —ox+10“y with o7, o} and o} the usual Paul
matrices for the jth atom.

Defining collective spin operators by

N )
Jt = % 2 C"j.'i
i=1
and noticing that N=2J, where J is thé total spin, we rewrite {1) as
H=H;+H,; o (3)

with

Hy=a'a+ef,
A ¥
H;ﬁ.—ﬁ(ﬂ.,. +a'J]).

The phenomenon of super-radiance is usually studied in connection with the
Hamiltonian (3), i.e. 4’'=0 with the radiation field treated classically [5]. We
summarize the argument in what follows considering the quantized radiation field (3).
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The rate of spontanc¢ous emission of radiation from the system in a transition from an
initial state |4;) to a final state |y, is proportional to

2

Az
|(wf|HI|QPi>|2=ﬁf_(tpflj+a+']—af|’{}yi>iz' (4)

For simplicity we assume in this discussion ¢=1. In order to calculate the above
matrix element it is important to notice that the spin projection plus the number of
photons is a conserved quantity, for [H,, H,]=0. Considering an initial staté with M
excited atoms and » photons |M, n) and the corresponding final state |M’, n’} we
notice that the matrix element (4) introduces the following selection rules

It

+
—
[
=
Il
H
ok

AM=+ (5)

and M+n=M'+n'. We assume [y;)=|3N—n,n) which corresponds to IN—n
excited atoms and the corresponding photon number n. We get

A \2 '
F(XfIHIWz')F:(\/_R,) NQ2n+1) I : (6)

where 0=rn=1N. Notice now that the maximum value for the rate of spontanecous
emission occurs for n=4N which corresponds to M =0, '

A . 2 .
Kyl H )P = (WV) N® for large N.-

This corresponds to coherent emission as compared to the incoherent result

(A/V/N)* - N which is obtained for the case where no photons are present # =0 and all

atoms are excited. : :
Finally, we include in (3) the antiresonant terms to get

+

A A .
=gt —_— ¥ ¥
H aa+£Jz+\f27(aJ++aJ_)+\/—ﬂ(aJ++aJ_). S (N
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The classical analogue to the above Hamiltonian is obtained via coherent states.
We start by defining the normalized coherent state

lzw) =|z)@|w) (8)
where

>= z#2 zat 0)
|zy=e"2 ™| ©

W)= |, =)

1
(1+ww)

and |0) and |J, —J) are the ground states of field and atoms respectively, such that -
aloy=0  J_|J,—T)=0. (10)

The classical Hamiltonian is then defined as

Hy={(zw|H|zw)
(11)
_ 1—ww 2\/271, B A s
=27 T3 wi +1+ww[ (Wz+ wz) (wz +wz)]
In terms of ‘action and angle’ variables I, @ defined by
J+ I\ .

- (J— 11) o #=Vhe™ (12)

(11) reads
: 202 1)V, ,
,Hd =gl + L+ A [4 cos(8,— 6,) + 1’ cos(6; + 6,)]. (13)

: i
Here, I; represents the classical projection of J,, varying from —J to +J, and [, the
density of photons. Making a last transformation to'Cartesian coordinates,

g:=[2(J + I)]"*sin 6, pr1=[2(J +1)]"* cos & 19)
q.=V2I,sin 6, pPa="V2;co8 8,
| we . arrive at
(2_]_ Hl)uz '
Hc1=8H1+H2_3-I+_\“/“_2}"_(A+P1P2'*“/LQ1‘12) (15}
where

H=}pi+q)  H=3pi+gd)  A.=ixd" (16)

Further details of these calculations can be found in [7].
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3. Bifurcations of equilibria

Defining a 4-vector X and the symplectic matrix A by

g 00 -1 0
& 00 0 -1

x=|, A= 6 o ol (17)
P> 01 0 0

Hamilton’s equations can be written in the compact form
X=AVH,. (18)

The equlhbnum points of (18) are defined by the condition X = 0 or VH,=10. Writing
this explicitly gives

. P2
= &P \}"(2—] HI)UZ

14 .
aVaTGr -y AP E A ) =0 @

)!!2

pi=¢ +i:~qj(2.l—H
PiTELT 00y 1

q
_2\/2.—)'(2.;'1—-H)1"2 Arpr1p2td-q1q2) =0 : (20)
1
2, |
o= pa= s QT HY=0 @)
: A-q
P2=42+'\/“2T";(2~I_H1)1’2=0 (22)

Solving (21) and (22) for p, and g, and substituting into (19) and (20} yields
pi[¥ (=A%) +22% pi+qi(ii +A%)]=0
q 4 (e—A2)+2A2¢ 1+ piAL +A2)]=0.

We first assume that 4’ #0 and also that A>4", so that 4, >A_. In this case, it is easy
to check that (23) plus (21) and (22) have the following solutions:

(A1) If A% <¢ (and therefore 1% <¢)

Gi=p1=q=p,=0 (th¢ origin). (24)
(A2) A, >cbut A_<e¢

origin and
2J(AT—g)\ 12
a=@=0  pr=x(=Tr—
: +

- _fIAA — e\
o=+ (T (the p-root).

(23)

(25)
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(A3) If 22>z and A2 >¢
origin,
p-root (as given above), and

_ ' 2J(AL —g)\12
pr=p2=0 q==x a7

J@A* — e\ 12 '
g,=F (T—-—) " (the g-root).
The stability of these solutions is given by the eigenvalues of the matrix
" aZH |
" a dy;
calculated at each of these points:
origin
¢ A, 0 O
e |2 10 -0
0 0 & A
0 0 A 1
cigenvalues: e+, et
det H'=(e—A%)(e—A%)
p-root
e+A3 Ao (A% +e\ 12
_ 2 T\ T2 0 | 0
J (A% He\in ) |
H'=1] A\ 2 ' 0 0
Fit 2 172
0 _ 0 Ai+e ¢ (/1?+ + 6)
' 2 12
0 0
¢ (li + s) !
' e+AL)AE -2
o2y ¢ TR
eigenvalue: roots of 5 ¥
. H(3A% +¢)
Z—ﬁ+2(ﬁi—s) =0

(LA —ed)
2

det H" =

(26)

@7

(28)

(29)

(30)

(31)

(32)

(33)
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g-root
244 RN | ‘
At +e s(ﬁi+£) 0 . 0 :
' 2 N12 '
(75) ! ° ’
H" = - 0 .0 e+ A% Ei A2 Nz (34)
: 2 A 2
0 o As AT +e\12 )
0 A\ 2 )
e+AL)AE —A
,uz—%,u(3£+12_)__( ')Zfl; )=O
eigenvalues: roots of ) 1GAE +£)+212 o (35)
TTare TR -
AL —AD)(At —¢?
dot Hr=— & l)zf ). (36)

The eigenvalues for the p-root can be easily shown to be positive if A2 > ¢ but those
of the g-root are two positive and two negative, characterizing a saddle point.

Thus, to summarize, the origin is the only equilibrium point for A2 <e. For 12 >¢
but A_<¢, the two p-roots bifurcate from the origin as new minima, the origin
becoming a saddle point. This is exactly the point where the phase transition to super-
radiance occurs. For A% >¢, the origin becomes a local maximum and the g-roots
appear as saddle points. Since no new minima have been generated, no equivalent
phase transition occurs at this point.

The case A’ =0 is very peculiar and deserves a separate analysis. In this case, the
expression in brackets in equations (23) degenerate in a single one. Therefore, besides
the origin we have

©oor

2(e—A)+ 1 (pi+g) =0 (37)
(A2~ e)—pid® _
Cﬁ"*‘“‘“-iz“] . (38)
Therefore we must have
27—
<2805 (39)

and again A*> ¢ for the solution to exist, and the phase transition occurs at the same
" point. But now we have a whole family of minima satisfying

2+ , ) . .

‘Using equations (21) and (22), we can calculate
" Hai+pH=Ri=H(1-£1%. | (41)
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Thus, R3=1I, (from (14)) gives a classical measure of the average density of photons in
the system, and R}=J+I, (from (14)) gives a classical measure of the number of
excited atoms in the system. It is easy to check that in general [, + 1, is a constant of
motion for £=1. We are now in a position to make a complete analogy with the
super-radiant phenomena discussed in the beginning of this section. The transition to
the super-radiant state corresponds to the bifurcation from the origin to a circle of
minima. Moreover the classical analogue of the maximum coherence quantum state
corresponds to ;=0 and R?half of this maximum value. This limit coincides with A>¢
in equations (40) and (41). We have therefore maximum area in both degrees of
freedom.

When 4’ is switched on, only four points on the circle remain: the p-roots and the
q-roots.

4. Mean field calculation of the ground state

We start this section by presenting a general framework for a mean field calculation
suitable for two interacting systems and proceed to analyse the ground-state proper-
ties of the Dicke model accordingly.

4.1. Mean field approach

Let us consider a quantum system composed of two interacting subsystems, described
by the Hamiltonian

H=H1'|'.H2+le (42)

where H, and H, correspond to the free Hamiltonians of each subsystem and H,; their
interaction. We wish to calculate the ground state and its energy in the context of a
mean field approximation. This can be accomplished by assuming the ground state to
be a product wavefunction of the type

lyp)= v ®ly) (43
which obeys the equation _
Hip)=E|y). | (44)

It is easy to check that inserting (43) into (44) and projecting onto |y} and |3,) yields
the following two coupled equations

By = Ed o) ' (45)
halps) = Eaj o) (46)
where A, (k) is a function of |y,) (1))
| hy=H,+ (3| Hypjpa) (47)
ﬁz=Hz+(Tﬂ1|H12|%> (43)

and _
_ Ey= E—(yalHaly) E,=E~ (i Hi|yy).
The pair of equations (47), (48) should be solved self-consistently.
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4.2. Solution for the ground state of the Dicke model

There are two types of solution. One corresponds to the product wavefunctions of the
non-interacting system and therefore zero average photon number and no excited
atoms. The other one is the ‘condensed’ solution which corresponds to the super-
radiant phase, when the coupling constants are chosen as discussed in the previous
section. This will be shown in what follows.

The mean field equations (47), (48) are highly non-linear and we shail solve them
for the Dicke model with the following ansatz :

[y} =12)®|w) (49)

where the states {z) and |w) are given by (9).
The calculation of A, and £, is now straightforward

L

hi=a'a+ 1_|_Ww*(l4z*a+wa)+1_|_Ww$(w”‘f,itu— wa) (50)
- l - + A"' . +
ﬁz=£fz+wj(2*1—+ZJ+)+W].(Z*J++ZJ—)- (51)
We can now calculate /,/z) and 4,|w),
al2) = s (w2 4 A
1|z)—1_|_ w*( wrz+ 1 'wz¥)|v)
) (52}
[ LEYTE U
+ (z+1+ww*(ﬂtw+l w ))a lo)
' ! A
oy wy= —£]+\/2~2]z w+\/-2-2]zw |w)
o (53)

A Al A Al
+ +— : i —— e Sy S 2y
(“’ Vo NG TNV TN ) i)
and verify that our ansatz is in fact a solution of the mean field equations provided the

following conditions are satisfied (the second term on the rus of (52) and (53) should
be zero)

(Aw+2'w*) =0 | (54)

z.+1+ww*
}' £ + A’. * 2._0 55
W+ij(z z*we) \/fj(z w) =0. . (55)

The above equations will determine z and w self-consistently. They correspond
precisely to the classical equations for equilibrium in the complex variables (11)

. . chl

t=0=—i—r corresponds to (54)
0z

. 1 chl i

w=0= —i5 o corresponds to (55)

where Q = (1 ww*)/(l +ww*}.
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This means that the energy minima will be exactly those found in the previous
section and the corresponding wavefunctions given by the coherent states. The
approximation was checked by comparing the energy minimum thus obtained with the
exact one [5] for A=1and 2'=0.4

&5 =—5.559543 Egs=—5.557959.

5. Conclusions

In the present contribution we constructed the classical analogue of the Dicke model
and studied its phase transition at zero temperature. The super-radiant phase is shown
to have a simple geometrical interpretation in the integrable case (A’ =0): the mean
photon density is associated with the geometrical area of the oscillator phase space,
the average number of excited atoms given by the area in the corresponding phase
space. The case 1" +#0 is also studied and the minima (in both cases) shown to exhibit
bifurcation of equilibria for the same parameter values where phase transition occurs
in the thermodynamic limit. _
Furthermore we obtain an analytical expression for the ground state of the system
within the context of a mean field approach and obtain an excellent agreement for the
ground-state energy as compared to the exact one for given parameter values. A
connection between the classical and quantum points of view is presented.
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