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Abstract: The potential used was motivated by
collective motion in nuclear physics. A large
number of mnumerical results have been organized
into E-T plots, whose branchings and topology
have been studied, Several general rules are
inferred. '

We have obtained extensive numerical data
concerning the periodic classical trajectories of
a particle moving in a non-integrable two-
dimensional potential. The details of the compu-
tational method will appear elsewhere;! a new as-—
pect is that it works as well for unstable as for
stable periodic trajectories. It has been recog—

' nized? that unstable periodic trajectories can
play an dimportant role in the quantization
problem.

A periodic trajectory has an energy E and a
period 1., It is well known3 that periodic tra-
jectories occur in one—parameter families, which
define a continuous curve in the E-T plane. Each
Hamiltonian is characterized by the geometry and
the topology of its E-t1 plot; see Fig. 1. Anoth-
er property of each periodic trajectory is its
4x4 monodromy matrix" M. Two eigenvalues of M
are always unity.“ The other two have unit pro-
duct., If they are complex conjugates, the tra-
jectory is stable and O < TrM < 4; if they are
real, the trajectory is unstable and TrM < 0 or >
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Fig. 1. E-7 plot of the main symmetric famflies,

showing also the beginnings of asymmetric branch-—
ings. . The circled capital letters are the family
names. ‘

4. The topology of the F~1 plot is determined by
its branchings. At an isochronous branching
there is a confluence of two distinct families
and M has four unit eigenvalues, TrM = 4. At a
period—~doubling branching, two elgenvalues must
be =1; hence, TrM = (. There are also period-
triplings (TrM = 1), period-quadruplings (TrM =
2), and so on. (See Fig. 1).

Most of our work was done with the
Hamiltonian

22 2
=1 2 2 - X2 x2 -
H"z{Px"'Py)"'( 2>+u2 (b = 0.1)

The potential consists of a deep valley in the
shape of a parabola, surrounded by high moun-
tains. The deep valley could represent a collec—
tive degree of freedom which, however, remains
coupled to other types of excitation.
Time-reversal invariance dictates that there
be two kinds of periodic trajectories, tradition-—
ally known as librations and rotations., On Fig.
1 we label the rotations by p; all others are
librations. We use heavy lines or the symbol s
for stable trajectories, thin lines or u for un-—
stable ones. In general, stable trajectories lie

_in regular regions of phase space and unstable

ones in chaotic regions.® The limiting values of
TrM, 4 and Z ("zero"), are also marked on the
plot, with 42 and Z2 for double solutions. On
Fig. 1 the period multiplying branchings are
shown connected to their parent family by a dot=-
dashed horizontal line.

At small amplitudes there are two harmonic
oscillations, one horizental, one vertical, with
two mnon-congruent perioeds. Note, however, that
the potential on the y-axis is purely quadratic
and therefore the vertical oscillations (V fami-
1y) retain their linear harmonic behavior and
their constant period for all amplitudes; they
appear in Fig. 1 as a vertical line. WNot so the
horizontal oscillations (H family); Fig. 2 shows
what happens to them as their amplitude increas—
es, A naive expectation might have been that
this family, as it grows, occupies the bottom of
the potential valley and can be identified with
the collective oscillations of nuclear physics.
Figure 2 shows that this is true for a while but,
suddenly, the trajectories start leaving the val-
ley to climb the walls, This corresponds to a .
sharp left turn in the E~1 plot (symbol o of Fig.
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Fig. 2. Actual
trajectories in
the =xy plane,
for some low-
energy members
of the H
family.

1). Another family, the I family, comes down
from the mountains then, occupies the valley for
a while, and returns to the mountains. Later,
the J family comes down, stays for a while, and
goes back up, etc. The real picture is thus
vastly more complicated than a single, continu-
ous, collective family. Note that in Fig, |
there is a sizable gap between the H and I fami-
lies, and anothetr between I and J, so that there
are values of 7T for which no wvalley trajectory
exists.

An interesting topological question concerns
the connectedness of the E-t plot. Fig. 1 shows
that H and V are connected in several ways, B and
A being part of the same cluster. As far as we
know, I and J, together with their associated ro-
tations and asymmetric librations, are not con-
nected to this cluster; they constitute two is—
lands. This could still be wrong if a connection
existed through the period-multiplied trajector-—
ies, which is a problem we have not investigated.
if they are islands, however, then it is not
possible to generate the entire E-t plot by the
systematic procedure which consists of starting
at a known point and following all the branches
by continuity.

There may be more than one stable region
within a given family. An obvious example is the
B family {Fig. 1) which starts stable at low
energy, has some important branchings, becoumes
unstable until E = 11.8, then enjoys another ex—
tended region of stability, all the way to infin-
ity. Similarly, the V family has very small re—
curring regions of stability at higher and higher
energies., This fact means that the standard sce-
nario® in which the stability gets passed on by
_period-doubling to successively more complicated
trajectories, though very attractive in its uni-
‘versality, can miss a lot of the information.

. The standard scenario suggests that there
might be something like “conservation of stabil-
i ity" at a branching. Let us call a “"channel” any

one of the E-T lines issuing from a branching,

including as separate channels both halves of the
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family which continues through the branching, and

including period-multiplying. The simplest
branchings have three channels and some have
more. Then, conservation of stability would mean

this: the number of stable channels emanating
from a branching must be even, and is usually
equal to two. We found this statement to - be
definitely false for some isochreonous branchings.-
On Fig. 1 there are two cases having only one

. stable channel and one case having three, For

simple period-doubling branchings (i.e., a single
Z) the statement is probably always true. For 72
branchings, the statement is probably always
false. For period-multiplyings higher than two,
the statement is also false. The general rule
for this case seems to be that there are two
period-multiplied branches, one stable and one
unstable, in addition to the two stable channels
of the original family. In short, we find that
the standard perlod-doubling scenario does seem
to occur with conservation of stability, but it
omits consideration of other - effects in which
stability is not conserved. '

Moreover, we found many cases where TrM = 4
and there is no branching at all. It happens in
all places, without exception, where the E-1
curve has a horizontal tangent. At these points
the trajectories switch from stability to insta-
bility, but there is no branching. We designate
these points on Fig. 1 by &. There, the M matrix
has a single eigenvector, the vector correspond-—
ing to an infinitesimal time-displacement along
the trajectory. At a branching 4, it has two
distinet eilgenvectors, only one of which is the
time~displacement vector.

Many of our results are in agreement with the
analysis of Meyer.2 However, he obtains a dif-—
ferent branching behavior for period tripling and
period quadrupling.
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