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Abstract. Truncation of the Hamiltonian matrix in the harmonic oscillator
representation of quantum mechanics corresponds to cutting off the action dependence
of the classicat Hamiltonian. The conjugate angle variable suffers a discontinuous jump,
when the orbit collides with the action boundary in a manner analogous to the specular
reflexion on the border of a common billiard. We derive the connection rule for the
angles by analysing the limit of smooth cut-offs in the classical Hamiltonian, for which
examples are given. It is found that different definitions of the classical cut-off may lead
to diverse orbit structures, though the corresponding finite Hamiltonian matrices are
1dentical.

PACS numbers; 0320, 0365

1. Introduction

In commen billiards the classical motion is contained in a finite region of position
space (with coordinates ¢) because there is a boundary at which the normal gradient
of the Hamiltonian diverges:

oH(p, q)/3g— . (1.1)

When an orbit hits the boundary, the corresponding momentum therefore jumps to
a new value with which it resumes its motion within the allowed region. Usually one
considers there the simple Hamiltonian

H(p, q)=p°I2 (1.2)

50 that the momentum is conserved between the collisions which truly determine the
motion. However, modifications of this interior Hamiltonian do not affect in any
way the bounce in the momentum. For instance, by introducing a large magnetic
field, the motion of charged particles in a billiard will be such that most describe
circles with no collisions. The few orbits that hit the boundary are still specularly
reflected.

Billiards have proved to be an important model for the study of chaotic classical
systems and for the difficult problem of understanding the semiclassical limit of
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corresponding quantum systems. Unfortunately, they are of no help in surmounting
the fundamental difficulty that the quantum representation of the Hamiltonian,
corresponding to an infinite classical phase space, requires an infinite matrix in any
basis. Computation of the eigenenergies and eigenstates therefore relics on an
uncontrollable cut-off of this matrix.

The great interest that has ensued in the dynamics of compact phase spaces is
therefore understandable. Of these the most studied are torus maps [1, 2], though
there is also important work concerning Hamiltonians on a sphere {3]. In these cases
the basis is always finite, so that the semiclassical limit can be more rehably
envisaged as an extrapolation from increasing though finite matrices.

Our purpose here is to define a.new class of dynamical systems for which the
quantum matrices are finite. This can be achieved as follows. Consider any given
Hamiltonian matrix and the finite block that one effectively diagonalizes. This
diagonalization is exact not for our original problem but for a perturbed quantum
Hamiltonian such that our chosen block is uncoupled from the rest of the
Hamiltonian matrix. Semiclassically, the basis states correspond to basis tori
embedded in a set that foliates phase space. A cut-off in the matrix corresponds
classically to a cut-off in the dependence of the Hamiltonian on the actions of the
tori lying outside a definite region. A sharp cut-off will lead to bounces of the
conjugate angle variables.

The resulting classical system is an action billiard. Contrary to common billiards,
we will be mostly interested in the cases where a large proportion of the classical
orbits does not hit the boundary. At first sight, this may seem incompatible with
ergodic and therefore chaotic classical motion; however, it must be remembered
that the motion can only be ergodic within the energy shell. Hence, if the energy
shells are compact, there can be a whole interval of energies for which the classical
motion is unaffected by the boundary. What of the orbits that do collide with the
boundary? We shall show that the angle bounce can easily be controlled by
considering the limit of smooth cut-offs for the Hamiltonian in a simple analogy to
normal billiards.

Once the classical cut-off has been established, we may study the semiclassical
limit of the corresponding quantized system. The discrete lattice of quantized tori
that fit into the action billiard will become tighter, hence the dimension N of the
Hamiltonian matrix will grow inversely with Planck’s constant, N ah™L, where L is
the number of freedoms, without altering the classical motion. Hence, it is only in
the limit #— 0 that N— oo,

It may appear that the foregoing argument depends intrinsically on some semi-
classical definition of the matrix elements [4, 5]. However, we shall show in section
2 that a proper correspondance can be achieved in the case of the occupation number
basis of harmonic oscillators. In section 3 we define and exemplify action billiards
with a single freedom, whereas the general case will be the subject of section 4.

Our main resuits concern the classical action billiard. Thus, readers who are not
interested in the quantum mechanical motivation can skip most of section 2, from
which they need only (2.5), (2.9), (2.16} and (2.17).

2. Classical correspondance of the occupation number basis
Consider an analytical classical Hamiltonian specified by its Taylor series:

H(p.q)= 2 Hy.pi...p7 ... q7" (2.1)
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where L is the number of freedoms. The complex canonical transformation

a;=2""%q, +ip)

*_ -1 : 2.2)
aj =27"(g;—ip))
takes the Hamiltonian to the form [6]
H'(a,a*)=> H; a7 ... dta™ ... ai™ (2.3)
I,m
whereas the canonical transformation to polar coordinates
=1"exp(ig,
j p(ig) (2.4)
af = I} exp(—ig))
defines the Hamiltonian
H', @)= Hp 1%, .. IP? explik - g). (2.5)
k.r

Thus, the Hamiltonian (2.5) appears in the appropriate action angle variables for
classical cut-offs, whereas we can immediately quantize (2.3) by defining the
quantum anatogue of (2.2} as the operator equation,

a;=2""%(g; + i)
a; =2""4(g,—ip))
and then substitute these for the equivalent classical variables in (2.3) after some

adequate symmetrization [7]. The matrix elements of H in the harmonic oscillator
representation [n) are simply obtained by use of the well-known formulae [8]

(2.6)

&Iln> =(hnj)1!2 I"l’ PR ,n,--—l, « .. ,nL>

2.7
&;‘ |n) =(fl(n,+ 1))”2 |n1, ey N + 1, “ ey nL).

In the special case where (2. 1) is a polynomial, we obtain an infinite matrix
\ii'i i | |n} that has zero elemenis far from the diagonal. The relation between the

indices in (2.3) and (2.5) is simply
n=>l+m,
k=1 —

5= &

(2.8)

m;

so that all the terms in (2.5) with a specific kX determine the elements in a given line
parallel to the main diagonal in the Hamiltonian matrix.

We can now generate the perturbation that uncouples a given block by working
directly with the Hamiltonian. Consider an analytical hat function ®;(I}, such that
&, < ¢ outside a given region and 1= ®; >1~—¢ inside and the width of the
boundary in which £<®, <1— ¢ shrinks as A— 0 for arbitrarily small &. We can
identify its Taylor series

G =2 Du 7. . IF (2.9)
as a special case of the classical representation (2.5) and hence obtain

®i(a, a%) = 3 By (aal)" . . (acal)™ (2.10)
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via the transformation (2.4). Thus, we define the corresponding operator

&= By (ddl) .. (@ag)y 2.11)
which is diagonal in the occupation number basis:

(n'| ;) = 8., D2[(n + })h). (2.12)

In the limit where A— 0 then we can simply identify

N
do= 2 In)(n (2.13)
n=0
that is, & is simply the projection operator onto the finite number of states whose
corresponding actions lie inside the classical billiard.
It is now evident that our quantum Hamiltonian operator for a single block of
the original matrix is just

Hy=d, [0, (2.14)
which can be considered as the limit of the ‘smooth’ Hamiltonian

B, =&, A, (2.15)
which, in its turn, corresponds to the classical Hamiltonian

H(T, @) = H'(I, )(,(1))". (2.16)

The action billiard is therefore the limit of H} as A— 0.

Having identified ® with the projection operator, we see that it is wholly
irrelevant to quantum mechanics how we define our Hamiltonian for other values of
n, as long as the Hamiltonians in each region are not coupled. However, we shall
find that this possibility can alter the classical motion for those orbits that hit the
billiard boundary, so we shall also consider Hamiltonians of the form

H(I, @)= H'(I, 9)[@:(DF + H"(I, ) @(DF 2.17)

where H"(I, @) is some different Hamiltonian and ®;([) is the hat function for the
complementary volume in phase space and hence corresponds to the projection
operator for the infinite complementary set of states [r) as A— 0.

3. One-dimensional action billiards

The motion in common billiards reduces for one dimension to the trivial problem of
a particle in a box. Though this is usually analysed only in quantum mechanics, we
can obtain the classical reflection rule at the boundary by considering the limit of
smooth ever steeper potentials [8].

In the case of an action billiard, we consider the Hamiltonian H(I, ¢}, Whose
phase curves can be obtained by solving

H(L, ) =E (3.1)
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for Ix(8). The simplest action billiard is then defined as

{H(I ®) (=5}

Ho(l, @; $y=H(l, )(O(F — D)’ = (I> %)

(3.2)
where ©(x) is the unit step function.

The orbits of the original system move along its continuous phase curves, which
for some energies will be cut by the boundary I = #, as shown in figure 1. The only
problem is to determine the branch of Iz(¢) to which the orbit will jump
instantanecusly. To this end we analyse the smoothed billiard

Hil, ; $) = H({I, ¢)(8:(F — D)) (3.3)

where ©; is a smoothed step of width A.
The trajectories are the solution of Hamilton’s equations:

8H, —dH(, ¢)

I= _a_tp = T (©:(F - I))* (3.9)
3= 22 =209 (6, (5 - 1y + HUL @) S @145 - DY

The second term of ¢ diverges in the limit A— 0, whereas the other terms in the
phase velocity remain finite. Hence, the billiard limit generates very fast motion in
the direction parallel to the boundary.

A first impression could then be that the boundary merely ‘squashes the phase
curves’, but this need not be so. For instance, it is usual to have H(I, ¢) positive
and growing with I, so that ¢ >0. However, ©,(# — I) decreases with [ so that
@, < 0. Thus, in this case the phase curves actually close in the opposite direction to
that of continuous squashing, as shown in figure 2. This feature can be understood
as the creation of pairs of stable and unstable equilibria near the boundary: moving
up in action along the @ = & line in figure 1 we are climbing up a valley, whereas we
ascend a ridge along the @ =0 line. In the first case, the sudden decline generates a
col, whereas the ridge attains a maximum before the forced descent.

We conclude that the billiard limit may involve the presence of degenerate
equilibria at points where the phase curve is tangential to the boundary. Even so,
neighbouring points jump instantaneously to a neighbouring branch of 1:(@). The

<00 N
3.00 7
2.00 §

1.00 ]

Figure 1. [ x ¢ level curves for the Hamiltonian of (3.6)
000 280 4.0 T ed  with @a=0.5. The dotted line at f=3.0 is where the
® Hamiltonian will be truncated,
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4.00 4 {al 4.00 (b}

Figure 2. The same level curves of figure 1 for the
smooth Hamiltonian H,: (2} A™'=3, (b) A™'=5 and
{c) A~'=15. All parts show the separatrix through the
@ hyperbolic point. The dotted line is J = # =3.0.

choice of direction for the jump in the case of Hamiltonian (3.2) depends on the sign
of H.

The presence of degenerate equilibria on the billiard boundary can be eliminated
by the use of more general billiards such as (2.17). An alternative to (3.3) is

(i, g; #) = H(I, )}(©,(F — N)* + A(0,(I — #))*. (3.5)

Thus, if the constant A is chosen larger than H(#, ¢) for any ¢, the slope of H, to
the boundary is always positive, so that there are no equilibria for /< .$. The
topology of the classical orbits can therefore be completely different in the two
cases, though the corresponding finite quantum matrices are identical!

We will now illustrate the action billiard with a concrete example. Let

H(I, ) =I(1 + a cos ¢) a<l. (3.6)

The orbits are level curves of H{J, @),
I(@) = ————
=(¢) l+acosq

and three of them are shown as figure 1.
To form our action billiard we choose ¥ = 3.0 in (3.2).
The jump Ag can be immediately obtained from

F(1+acos )= F(1+acos ¢y
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or
Q=21 — @,

The three corresponding curves of H, in figure 1 can then be identified: the two
curves that do not touch the wall at % = 3.0 are not affected, and the third curve is
made of the two pieces below # connected by a straight line from (%, ¢;) to (¥, @)
that is traversed in zero time.

Now consider the smooth version H, by replacing the step function by

_1—tanh AN I-9)

0, 3

As A goes to zero, ©, approaches to Oy(I — #).

In figure 2 we show the same three curves of figure 1 for three different values of
A and verify the appearance of two new equilibria (not present in ff). The
separatrices through the unstable point are also displayed in the figures. This can be
seen directly from the equation of motion:

L e, )

h=(1+ L -
= acosqo)( * " cosh?A™'(I — %)

[ = —lasin @63,
For non-zero A we find ¢ = =0 for ¢ =0, & and

AT

9 - cosh® A7Y(I — %) =0.

In the limit of small A, this can be approximated by the simpler transcendental
equation

A =21 - 9)

which means that as A—0, [— % and the separatrix passing through ¢==rx
coincides with the orbit of H that is tangential to the line / = #. Therefore, this
cut-off introduces an island structure that, for finite A, allows for tunnelling in the
quantum mechanical picture! Besides, the level curves above the unstable equi-
librium look very much like a harmonic oscillator with a large frequency.

Next we illustrate the alternative cut-off of (3.5). Figure 3 shows the same level
curves for the case of A =5.0, and the squashing effect replaces the equilibrium
points of the previous figure.

As a last one-dimensional example we show the orbits for the system

H,=I(1+acos2¢)®i(I — %). 3.7

In this case the orbits of Hy;=I(1 + a cos 2¢) that cross the wall / =.% will do so
twice. The effect of this double crossing in H, is shown in figure 4 for A7' =15,
where two islands are generated.

Notice, however, that the initial trajectory oscillating back and forth twice has
split into two separate orbits at the same energy. The equation for & in terms of 6,
is, in this case,

cos 2@, = cos 2¢;
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300+ - -~ - -~ e 3.00 —:r
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0.00 Frmr e e 0.00 5

Figure 3. The same level curves of figure 1 for the  Figure 4. I X ¢ level curves for the smooth ‘do-

smooth Hamiltonian given by (3.5), Here A =5.0 uble hump’ Hamiltonian (3.7) with A~'=15. In

and A~!=15. Notice that, contrary to figure 2, no  this case two hyperbolic points have been created

equilibrium points have been generated. and the original (non-truncated) orbit has split in
two parts.

with solutions @;=21— @;, & — @;, &+ ¢,. To obtain the right solution we must
find the values of @ corresponding to the tangencies of the level curves with I = #.
In this case, dI/dp =0 with d*//d@* <0 gives ¢, = /2 and @, =37/2. Any orbit
hitting the border must be confined between those angles, and that defines the
jump: if @ < @i <@, then ¢, <@ <@ and if ;< @1, @> @,.

It is clear that if we replace cos 2¢ by cos ng, a chain of » islands will appear and
the above results are immediately extended.

4. Two-dimensional action billiards

How does the system bounce from the billiard wall in the general case of more than
one freedom? Evidently, we cannot take over the standard rule that equates the
angle of incidence with the angle of reflection from common billiards, but the
supporting principle can be generalized: this is that coordinates in the neighbour-
hood of a bounce point of the boundary can be found such that the collision takes
place instantaneously in one canconical pair of coordinates, while the others remain
fixed. In the case of a Hamiltonian of the form p?/2 + V(q) with dV/dg—® we
obtain the reversal p— —p, so §— —§. Since the other velocities remain in-
staneously constant, specular reflection results.

In the general case of an action angle Hamiltonian, the boundary will be given
by

f=0 (4.1)
which may be linearized around any of its points as
w-I=4 4.2)

Of course, the coefficients @ and # are only determined within a constant, but we
shall choose this so that the right-hand side of (4.2) represents Iy, one of the L new
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actions resulting from the orthogonal transformation I—I'. As is well known [9], in
this instance of a point transformation we obtain a full canonical transformation by
simply applying an identical transformation to the corresponding angles g¢— ¢g’.
Thus, near a given bounce point, we obtain the Hamiltonian for the billiard that
generalizes (2.16) as

Hy(T, @) = H(I, 9)[0:(F —w - DF (4.3)
or, in the new coordinates,
H(I', ¢")=HI', 9)[0:(F —I)]. (4.4

To determine the outcome of the collision with the boundary in the limit A—0, we
merely keep the variables I}, ...,1I;,_;, ¢\, ..., ¢, fixed and ascertain which
branch of the phase curve the system jumps to, for the one-dimensional problem
analysed in section 3.

The discussion above resolves the problem of boundary collisions for billiards of
any dimension. In the important case of two-dimensional billiards we will now
consider the situation where I, = #, determines a wall, i.e.

“0(! - - I (I 'p) (12 = ~¢2) (4. 5\
e Lo (L > %). hid

Then, at the boundary ¢, receives an impulse proportional to §(L — #), while all
the other phase velocities remain finite. By energy conservation the initial ¢,; and
the final ¢; must satisfy

H(I!'”ﬁ Q?o)—H(II f? @i, Q?g_f). (46)

The possibility of stable and unstable equilibria appearing in the reduced
Hamiltonian H(L, @,; I;, ¢,;) now has interesting consequences. These are orbits of
the original (non-truncated) Hamiltonian and, therefore, will not generally be
periodic (separable Hamiltonians being an exception). These equilibria are the locus
of orbit collisions where @, does not jump, so they correspond to tangencies in
common biliiards. The hyperboiic fixed point is the iimit of orbits that do not coliide
with the wall, analogous to orbits that glance off a dent within a concave billiard.
The erbits in the neighbourhood of the elliptic point collide repeatedly with the wall
and hence correspond to ‘whispering gallery orbits’ of convex billiards. Thus, the
non-trivial dynamics within the action billiard allows for analogies to zero-angle
bounces which appear only in distinct types of common billiards.

We can now iruncaie in the [, direction as well. Assuming that a generic orbit
will not hit the boundaries at #, and %, simultaneously, the above considerations
are naturally extended for the I, variable. Therefore, the projection of an orbit in
the [y X I, plane will look like a billiard, as shown schematically in figure 5(a).

The expected behaviour in the planes /, X 6, and L X 0, is displayed in figures
S(b) and 5(c)

nte talran tha nl Aokt H

l‘UllW I.l.ldl lhc Jullly al. ‘hc w“noluu l-l'\.lllll.n Lanywoy Lllc ll.l.lll.(ll UlUlI.
orbit of the original (non-truncated) system at the same energy surface.

Here we can also define a smooth version of H, (by simplicity we assume that the
cut-off is only in L):

H, =H(I, 9)©35 - L). 4.7
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% / """"""""

{b)

(g}

(c)

Figure 5, Projection of an imaginary orbit hitting the
boundary of the billiard. The projection is on (2) I, X I,
| (b) Lyx @y and (¢) I, X .

L)

In this case, the ‘whispering orbits’ turn into smooth curves that wander very close
to I, = . but with @, changing very fast. Depending on the coupling of ., this can
cause the other variables to oscillate rapidly (see the example below). Besides this
‘soft whispering gallery’, there will also be orbits that, coming fom other regions of
phase space, approach the elliptic point and leave after having spent an arbitrary
amount of time trapped among the whispering orbits. By continuity, these orbits
must also exist in the limit A—0. This fact suggests the possible existence of
structures analogous to Cantori around the elliptic point.

As an application of the ideas and methods developed above we chose the
Hamiltonian originated in the normal form expansion around a 3:1 resonance [6, 9].
Truncating this expansion so as to get an integrable approximation near the
resonance yieids

2
H(J, ) =G -MW+L+ 2 CJiUur+ i cos(36,— 6,) (4.8)

n+m=2

where A measures how far off-resonance the system is. Choosing C;;=Cyp=0,

C.; = v and adding an extra term to break integrability gives
H({J, 8)= (3 — AW, + L+ yI3 + ad V2% cos(36, — 6)

+ 7,J; cos 26, (4.9)

The quantization of this Hamiltonian is then obtained by using (2.4) and (2.6).
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Therefore, to the variables (7, 0) there corresponds a set of basis states |n,n,) in the
sense of (2.7).

To these action and angle variabless we associate regular (p, g) Cartesian
coordinates by inverting the transformations (2.2) and (2.4):

p,—=\/2_.l,-cos 6,
g = V2J;sin 6, i=1,2.

The Poincaré sections for this system will be presented in the above variables
(instead of (J,8) or (I, )—see below) for the sake of clarity. However, it is
convenient for classical puposes to make the canonical transformation (J, 0)—
(I, ), generated by

S5(0, 1) =1,(36, — 8,) + L,(26,). (4.10)
This takes (4.9) into
H(I, @)= Hy+ aH, + BH, (4.11)

where
Ho=3AL + 2L + 9y
Hy=3V3L"V2L ~ I, cos ¢,
H, =3L,(2L — L) cos @,.

If B =0, the system is integrable and L, is conserved. Figure 6 shows a Poincaré
section at ¢, =0 and the 3:1 unstable periodic orbit, together with its stable and
unstable manifolds. The quantum mechanical version of this problem has the
Hamiltonian matrix decoupled into finite blocks of constant f,. When § is switched
on, these blocks are coupled but remain finite. In this case it is enough to truncate
the matrix by limiting /, to a maximum value. Classically, the same is true due to the
square root factor V2L, — I;: if I, is limited to #, I, <2.#, and the billiard will have a
triangular shape, as shown in figure 7.

7.00

-3.00 4

RN
S

]
o
©

q, I
Figure 6. Poincaré section of the separatrices at  Figure 7. Billiard shape for the Hamiltonian of
g,=0for §=0and E =11.0. The full curve is the  (4.11).
projection of the surface [,=5.80 at the same
energy.
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6.00

B S —
Z800 —300

S - .
2.00 7.00 ~6.00 —2.00 2.00 .00

9 K

Figure 8. (2) Poincaré section of the separatrices as in figure 6 but for § = 0,003, Notice
that the separatrices hit the continuous line only far from the periodic orbit. (b)
Enlargement of (¢) showing the winding of the separatrices.

Figure 6 also shows the curve corresponding to I, =.% =5.8. Therefore, for
B =0, the orbits of H, are exactly the same as for H, except that all orbits having
L > # are omitted, but no trajectory ever hits the boundary, since L is a constant of
motion.

For B +0, the separatrices do not join smoothly and start to zig zag near the
hyperbolic points. This is shown in figure 8, where the boundary at %, =5.8 also
appears. We see that, in this case, the separatrices hardly cross the ‘billiard wall’ and
no big changes are expected for H,. In figure 9 J=5.6 and, therefore, we can
forecast some changes in the analogous curve of H,.

Before showing the separatrices of H, for different values of #, we define the
smooth Hamiltonian H, as in (4.7). Figure 10 displays a comparison between the
orbits of H, H; and H, for three different values of 4. It is important to notice that
we had 1o use a time step four times smaller in order to achieve the same numerical
precision in the orbits of H, that we obtained for the orbits of H or H,, This is due
to the strong nonlinearity near L, = #. If the orbits shown in figure 10 were to be
integrated for larger times, the time step would have to be progressively diminished.

6.00

Figure 9. Enlargement as in figure 8(b) but with the
full line showing the surface at I, = 5.60. Notice that
now this ‘boundary’ intersects the separatrices much
9, earlier than before.
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Figure 10, Projection on the [, x f, plane of an orbit of
H, (4.11) for {(a) the non-truncated system, (b) the
sharply truncated system (A=0), () A7'=50, (d) A"'=

1, F =5.60.
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Figure 11. The projection on the I, X @, planc of the orbit in figure 10 for (@) A =0, (b)
A~'=150 and (c) A~' =400. (d) The I, X @, projection for the three situations above.
The full curve represents A =0, the short-broken curve A1 =150 and the long-broken

5.59

(&)

.......

Figure 12. Soft whispering otbit projected on (a) L X1, and (b) LX ¢, planes for

A"'=150.
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This makes it very hard to calculate precise Poincaré sections of H;. In Figure 11 we
show the projection of the same orbit in the J, X ¢, plane (parts a~c) and in the
J, X @, plane (part d). This figure indicates that for a large enough value of A this
orbit gets trapped in the ‘island’ generated by the smooth step function, as discussed
before. As A is decreased, the trapping disappears and the motion tends to that of
H,. Another interesting feature is the smoothness of the I, X ¢, projections. The
three curves of (a—c} of figure 11 almost coincide in this projection.

An example of a ‘soft whispering’ orbit is shown in figure 12 for a fairly smooth
Hamiltonian (A~" = 150). The orbit appears to be on a torus, but this is probably not
s0, as can be seen by the accumulation of windings near the left side of the plot.
Figure 13 shows projection on the I, X I, plane of the same orbit (same initial
conditions) for a smaller A. There, it is clear that a torus does not support the orbit
since a very complex structure appears. In figure 13(c) the whispering orbit is shown
for A=0 (sharply truncated system). _

Finally, in figure 14 we show the Poincaré section of the separatrices of H, for
various values of #. To understand these figures, consider a small segment of the
separatrix near one of the hyperbolic points and evolve it in time as sketched in
figure 15. Suppose that this segment does not reach I, = # during its first loop back
to the section and that the points on the nearby segment all touch L = # at some

5.60

{5

he il Aoy NN

LN OGRS X

559 |‘I‘.‘:-§' ‘\":‘4/‘5}“‘-\‘”@”"\’:{5’ ‘

\7
/

ki

il
i

Iz 5.55
5.57 ]
5,57 drrrrrrrrr e ] 5,56 Frrrerrr —
0.00 2.00 4.00 £.60 8.00 16.00 0.00 2.00 4.00 6.00 8.00 10.00
I, 1
561
{c)
5.60 ]
Iz =59 3
558 4
557 3 . Figure 13. The soft whispering orbit of figure 12
00 260 a00 600 B0 100 projected on the L x Jy plane for (a) A1 =400,

d (b) A" =600 and (c) A = 0.



538 M A M de Aguiar and A M Ozorio de Almeida

6.00 7 2] 6.00
2.00 1 2,00
P, il
-2.00 - -200
]
=8.08 o -suoi., S — e —
X k : L ~6.00 -2.00 2.80 6.00

9

q, 4,
Figure 14. Poincaré sections for the sharply truncated Hamiltonian (4.11). The full
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Figure 15. Schematic Poincaré section showing the orbits hitting the boundary. The
orbits on segment A do not hit the boundary and are mapped onto A'. The orbits on the
segment B hit the boundary (each at a different point), jumping to other orbits that
finalty hit the section at B”,
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point. Then, instead of falling at the separatrices of H, each point will jump to a
different curve on its way around. Therefore, we expect to see¢ holes in what were
the sepatrices of H plus a set of disconnected curves. This is exactly what is shown in
figure 12. As A decreases, more and more holes and pieces of curves appear.

5. Conclusions

It is not yet clear whether there is any intrinsic value in the study of action billiards
for classical mechanics. For quantum mechanics, it may be argued that the concept
in itself is more important than the details of the consequent classical motion, since
for a large range of energies the orbits may be wholly unaffected by the billiard
walls. This is the classical basis for the computational evidence that a certain
proportion of eigenvalues and eigenvectors often remain invariant with respect to
truncations of the Hamiltonian matrix. One of the main points of this paper is that it
is now unnecessary to seek convergence of the truncation process.

In many cases where truncation in quantum mechanics provides a good
approximation, action billiards merely supply a better justification for existing
practice. However, it is now valid to truncate even systems where this procedure is
wholly unstable. This will be the case when most orbits hit the walls, as with
common billiards. In such cases it will then be fundamental to understand the
classical motion in the manner that we have presented here.

Finaily, we point cut that the present analysis has supplied us with a fascinating
example where different classical systems, with diverse orbit topologies, correspond
to the same Hamiltonian matrices in quantum mechanics. Of course, it must be
noted that this duplicity depends on fixing a finite value for Planck’s constant. Thus
the different manners of smoothly cutting off the Hamiltonian outside the billiard
are not identical. If the boundary volume is narrow with respect to #%, the
Hamiltonian matrices for both cases coincide. Nonetheless, in the semiclassical
limit, for a fixed classical cut-off function, the Hamiltonian matrices for both cases
will exhibit the classical differences as #— 0.
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