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Abstract12

Organisms are often more likely to exchange genetic information with others that are similar to13

themselves. One of the most widely accepted mechanisms of RNA virus recombination requires14

substantial sequence similarity between the parental RNAs and is termed similarity-essential15

recombination. This mechanism may be considered analogous to assortative mating, an important16

form of non-random mating that can be found in animals and plants. Here we study the dy-17

namics of haplotype frequencies in populations evolving under similarity-essential recombination.18

Haplotypes are represented by a genome of B biallelic loci and the Hamming distance between19

individuals is used as a criterion for recombination. We derive the evolution equations for the20

haplotype frequencies assuming that recombination does not occur if the genetic distance is larger21

than a critical value G and that mutation occurs at a rate µ per locus. Additionally, uniform22

crossover is considered. Although no fitness is directly associated to the haplotypes, we show23

that frequency-dependent selection emerges dynamically and governs the haplotype distribution.24

A critical mutation rate µc can be identified as the error threshold transition, beyond which25

this selective information cannot be stored. For µ < µc the distribution consists of a dominant26

sequence surrounded by a cloud of closely related sequences, characterizing a quasispecies. For27

µ > µc the distribution becomes uniform, with all haplotypes having the same frequency. In28

the case of extreme assortativeness, where individuals only recombine with others identical to29

themselves (G = 0), the error threshold results µc = 1/4, independently of the genome size. For30

weak assortativity (G = B − 1) µc = 2−(B+1) and for the case of no assortativity (G = B) µc = 0.31

We compute the mutation threshold for 0 < G < B and show that, for large B, it depends only32

on the ratio G/B. We discuss the consequences of these results for recombination in viruses and33

for speciation.34
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I. INTRODUCTION39

Mate choice by phenotypic similarity, or assortative mating, is a form of non-random40

mating that plays important roles in evolution and speciation. The mechanism has been41

explored in several mathematical and computational models and is often implemented as42

occurring in a Mendelian trait determined by a single locus [1–3] or in a single quantitative43

trait determined by multiple loci with additive effects [4–8].44

Mate choice, however, often relies on multiple cues that are determined genetically [9–12],45

such that the effect of the state of these traits on phenotypic similarity is additive [13–15]. In46

the past twenty years different models have described this type of assortative mating [16–22],47

which may also be interpreted as a multilocus generalization of the Bateson-Dobzhansky-48

Muller model of intrinsic genetic incompatibilities [23].49

Interestingly, a form of assortativity also occurs in virus populations. Contrary to what50

was initially thought, recombination is now considered to be a general phenomenon in RNA51

viruses and might play a major role as a driving force in virus variability and evolution [24].52

Although the mechanisms of viral RNA recombination are only now beginning to be eluci-53

dated, in the most widely accepted mechanism of viral recombination the enzyme responsible54

for replication switches from one sequence to another during the synthesis generating a re-55

combinant genome [25, 26]. This sequence switch is known to be dependent of the extent of56

similarity between the recombining genomes [27–29] and referred to as similarity-essential57

recombination [30]. Although there is strong evidence that the genetic exchange promoted58

by recombination can offer advantages, random recombination destroys more good alleles59

than it creates, leading to a selective pressure towards close similarity in the process [31].60

In this paper we develop a theory for the evolution of recombinant haplotypes subjected61

to point mutations and similarity-essential recombination, but no other selective pressures.62

Each sequence will be represented by a binary string of length B and we will assume that63

sequences differing in more than G loci do not recombine. This mode of recombination is64

analogous to the assortative mating that often appears in models of population genetics, but65

may also represent replication of RNA viruses as described above. We will write the evolution66

equations for the haplotype frequencies and find their equilibrium solutions. For the case67

of zero mutation probability we will show that the population evolves to an equilibrium68

quasispecies where G loci are polymorphic and all the remaining B −G loci get fixed. This69
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equilibrium configuration is equivalent to that of a population with onlyG loci evolving under70

unconstrained recombination. However, which loci will remain polymorphic depends on the71

initial conditions. For non-zero mutation probability the scenario is more subtle. Our results72

show that, at least qualitatively, the population under similarity-essential recombination73

behaves in a way similar to the original quasispecies model for replicating macromolecules74

[32].75

The quasispecies theory was originally developed by Eigen and Schuster to study the76

evolution of prebiotic RNA molecules exploring the consequences of the mutation-selection77

dynamics in near-infinite populations. Mutation rates are thought to have been much higher78

in the early history of life. As a result, equilibrium populations can be described as a79

a distribution of related genotypes known as quasispecies [32, 33]. Later the theory has80

successfully been applied to the study of viral evolution, especially RNA viruses [34–36].81

One of the main results of the quasispecies theory is the existence of a mutation rate82

above which selection cannot overcome the mutation load (i.e. the error threshold). The83

amount of information that can be encoded in such evolutionary systems is limited by the84

genome length, since longer sequences suffer from mutations more than shorter ones. This85

leads to a logical enigma called Eigen’s paradox [37, 38]: given the mutations rates of this86

prebiotic scenario, these early genomes would not be long enough to encode the enzymes87

required to increase replication accuracy [32, 33]. Different mechanisms have been proposed88

to overcome or alleviate the genome size constraint imposed by the error threshold and89

warrant stable integration of information contained in the self-replicative units, like the the-90

ory of hypercycles [32], group selection models [39] and models incorporating recombination91

[40–42], and/or more complex genotype-phenotype mapping [43–45].92

Here we show that, as in the quasispecies theory, recombinant haplotypes evolving under93

similarity-essential recombination exhibit two equilibrium regimes separated by a critical94

mutation rate µc. In the first regime, which takes place for µ < µc, a dominant haplotype95

coexists with a cloud of closely related haplotypes. In the second regime, there is an in-96

formation crisis and an uniform distribution of haplotypes is obtained. Depending on the97

degree of assortativity, described by the parameter G, the error threshold can be as high as98

µc = 1/4 and independent of the genome size, or as low as µc = 2−(B+1), in contrast with99

the 1/B behavior obtained in the original quasispecies model. We compute the mutation100

threshold for all values of G and show that, for large B, it depends only on the ratio G/B.101
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II. MATERIALS AND METHODS102

We consider a population of haploid individuals with B biallelic loci. The genome of each103

individual is represented by a string of B binary digits104

i = i1i2 . . . iB (1)

where the alleles ik are either 0 or 1. We introduce the genotypic distance between two105

haplotypes as the number of different alleles between them:106

d(i, j) =
B∑

k=1

|ik − jk|. (2)

Similarity-essential recombination corresponds to forbidding mating if d(i, j) > G, where107

G ≤ B.108

A. Unconstrained recombination (G = B)109

Using the compact notation pi for the frequency of haplotype i = i1i2 . . . iB, the equation110

determining the frequency pt+1
i in terms of the frequencies at time t assumes the form111

pt+1
i =

∑
j,k

cµ(j, k; i)p
t
j p

t
k (3)

where cµ(j, k; i) is the probability that individuals with haplotypes j and k produce a recom-112

binant haplotype i if the mutation rate is µ, whereas ptj p
t
k is the probability of an encounter113

of haplotypes j and k at time t. To determine these coefficients we assume independent114

segregation (uniform crossover) and look at one locus at a time. For a given allele in there115

are three possibilities for jn and kn:116

117

(a) jn = kn 6= in.118

In this case the allele transmitted to the recombinant sequence is (1− in) and it contributes119

to pi only if it mutates to in. Therefore it contributes a factor µ to the probability. We call120

α the number of loci satisfying this condition:121

α =
B∑

n=1

[1− |jn − kn|] |in − jn|. (4)
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(b) jn = kn = in.122

The allele transmitted is in if it does not mutate. It contributes a factor (1 − µ) and the123

number of loci in this case is β:124

β =
B∑

n=1

[1− |jn − kn|] [1− |in − jn|] (5)

(c) jn 6= kn.125

The allele transmitted is either in or 1− in. It contributes a factor 1
2
(1− µ) + 1

2
µ = 1

2
. The126

number of loci of this type is127

128

γ =
B∑

n=1

|jn − kn| = d(j, k). (6)

It can be checked that α+ β + γ = B and that129

α =
d(i, j) + d(i, k)− d(j, k)

2
. (7)

With these considerations equation (3) becomes130

pt+1
i =

∑
j,k

ptj p
t
k (1− µ)B−α−γµα

(
1

2

)γ

. (8)

It is interesting to report the two limiting cases µ = 0 and µ = 1/2. In the first case only131

haplotypes with α = 0 contribute to offspring and d(j, k) = d(i, j)+d(i, k), showing that the132

sum of the genetic distances from the recombinant sequence to each original sequence is the133

genetic distance between the parents. If µ = 1/2, corresponding to maximum randomness,134

each pair of parental genomes contribute equally with weight 2−B.135

The normalization condition is136 ∑
i

cµ(j, k; i) =
∑
i

(1− µ)B−α−γµα

(
1

2

)γ

= 1 (9)

and can be easily verified explicitly (see Electronic Supplementary Material, section I).137

B. Similarity-essential recombination (G 6= B)138

When genomes whose alleles differ in more than G loci are considered incompatible for139

recombination, equations (8) have to be modified. In this case the sums over j and k on the140

right hand side have to be restricted to parental sequences with γ = d(j, k) ≤ G (see eq.(2))141
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and several terms are removed from the sum. Consequently, the equation has to be modified142

in order to satisfy the normalization condition
∑

i pi = 1. Normalization is ensured with the143

introduction of an auxiliary function Φ such that144

pt+1
i =

∑
j,k,γ≤G

ptj p
t
k cµ(j, k; i)− pti(Φ− 1). (10)

Summing over i on both sides and using that
∑

i cµ(j, k; i) =
∑

i pi = 1 we find145

Φ =
∑

j,k,γ≤G

ptj p
t
k. (11)

C. Analogy with the quasispecies theory and the error catastrophe146

The quasispecies theory is originally a theory of molecular evolution [32]. In the Eigen147

model molecules are represented by binary sequences of length L and the concentrations xi148

of each type follow the equation149

dxi

dt
=

∑
j

xjfjqji − xiφ, (12)

which assumes that the molecules replicate by cloning with mutations. In Eq. (12) fj refers150

to the replication rate (hereafter referred to as fitness) and the element of the mutation151

matrix qji = (1− µ)B−d(i,j)µd(i,j) gives the probability that a molecule of type i produces a152

molecule of type j if the mutation probability per digit is µ. If the master string 00...0 has153

fitness f0 > 1 and all the remaining ones have fitness fi = 1, it can be shown that a cloud of154

mutant sequences surrounding and including the fittest master sequence (wild type) settles155

in the population if156

µ <
log f0
B

≡ µc. (13)

Above the mutation threshold µc the population can no longer equilibrate in a mutation-157

selection balance and the selection information is lost (error catastrophe).158

Equation (10), which assumes similarity-essential recombination and discrete time, can159

also be written in a similar form as the discrete time version of the Eigen’s equation160

pt+1
i − pti ≡

∑
j

ptj Fj Qji − ptiΦ (14)
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with161

Qji =

∑
d(k,j)≤G

ptkcµ(j, k; i)∑
d(k,j)≤G

ptk
(15)

and162

Fi =
∑

d(i,j)≤G

pj. (16)

Qji is the average probability that a haplotype j produces i by recombining with all com-163

patible haplotypes k. At this point the definition of Fi as the fitness of individuals of type164

i comes about naturally, and is readily interpreted as the fraction of compatible individuals165

in the population. Note that Φ =
∑

j,k,γ≤G

ptj p
t
k =

∑
j pjFj is, therefore, the average fitness of166

the population.167

It is important to point out that the model assumes that all individuals are selectively168

equivalent regardless of their identities (neutral model). However, equation (14) demon-169

strates that frequency dependent selection arises from the similarity-essential recombination170

and can be quantified by equation (16). The fitness of an individual depends not on its171

specific haplotype but on the population composition. More importantly it is large if the172

individual is amongst compatible pairs (with which recombination is possible) and low if173

it is surrounded by incompatible mates. This idea concurs with the proper definition of174

quasispecies, at which natural selection is no longer directed toward a single variant but175

instead acts on the whole haplotype distribution [32].176

III. RESULTS177

A. Unconstrained recombination178

When G = B recombination is possible between every pair of individuals. In this case,179

since the alleles in each locus are segregated independently and there are no correlations180

between them, the result is that, for µ = 0 the allele frequencies remain constant from the181

first generation and the haplotype frequencies asymptotically reach the linkage equilibrium.182

For µ 6= 0 the haplotypes converge to the uniform distribution, and thereby all frequencies183

are equal to pi = 2−B. These results are well known [46, 47] and are demonstrated in the184

present context in the Electronic Supplementary Material, section II.185
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B. Extreme assortativeness186

In the case of extreme assortativeness, G = 0, individuals only recombine with others187

identical to themselves. In this case γ = d(j, k) = 0, α = d(i, j), Fj = pj and Qij = qij.188

Equation (14) becomes189

pt+1
i − pti ≡

∑
j

(
ptj
)2

qji − ptiΦ (17)

which is identical to (12) with Fi = pi. For µ = 0 the equation simplifies to190

pt+1
i − pti ≡

(
pti
)2 − ptiΦ (18)

and the only stationary solutions are:191

(a) the single haplotype solution pi0 = 1 and pi = 0 for i 6= i0 and;192

(b) the uniform solution pi = 1/2B for all i.193

For small mutations a cloud of haplotypes similar to i0 is generated. Which haplotype194

survives, along with its mutant cloud, is determined by the initial population [47–49]. As195

the mutation rate increases the cloud spreads and, at µ = µc, the uniform solution becomes196

stable. The mutation threshold can be calculated and results µc = 1/4, independent of197

the size of the genome B (see Electronic Supplementary Material, section VI). This should198

be compared with equation (13), where the threshold becomes small as the genome size B199

increases. If we define an effective fitness F0 as the fitness of the corresponding quasispecies,200

whose value is constant, that will result in the same error threshold, we find that 1/4 =201

log (F0)/B and so202

F0 = eB/4. (19)

The upper panel in figure 1 shows the frequencies of the haplotypes as a function of the203

mutation probability µ. The scenario displayed in the plot is essentially the pattern exhibited204

by the quasispecies model: a dominant haplotype surrounded by a cloud of closely related205

haplotypes.206

Interestingly, for G = 1 both expressions (12) and (15) work, even though Qij 6= qij. The207

reason for this coincidence is that for G = 1 reproduction occurs effectively with a single208

locus and is equivalent to cloning one of the original haplotypes with equal probability.209

Recombination affects only genetic exchanges between individuals with d(j, k) ≥ 2 [47].210

Indeed, for G ≥ 2 only (14) is true.211
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A proof that the uniform distribution is always a solution for any value of G is presented212

in the Electronic Supplementary Material, section V.213

C. Error threshold for arbitrary G and B214

Explicit stationary solutions of equations (10) or (14) are not known, except for B = 2215

[47]. Because of the mating restriction imposed by the condition d(i, j) ≤ G, the loci are216

not independent and the dynamics of allele and haplotype frequencies are more complex and217

richer. For zero mutation probability the haplotype frequencies converge to a distribution218

where B − G loci are monomorphic (fixed in either 0 or 1) and the remaining G loci are219

polymorphic in linkage equilibrium. Which loci become polymorphic depends on the initial220

conditions and there are many possibilities. Indeed, for a population with this type of hap-221

lotype distribution all individuals have maximum fitness Fi = 1, since the genetic distance222

between any pair satisfies d(i, j) ≤ G (see equation (16)). Moreover, Φ = 1 and equations223

(10) become identical to (8) with B → G.224

However, the introduction of a small mutation rate µ > 0 generates mutants that decrease225

the fitness of all resident types, resulting in further dynamics that converges to a single226

dominant type plus a set of low frequency mutants. As µ increases the distribution widens227

and the uniform distribution, where pi = 2−B for all haplotypes, eventually takes over. The228

mutation threshold for small values of G and for the limit case G = B − 1 are:229

µc(B,G = 0) =
1

4

µc(B,G = 1) =
(B − 1)

4B

µc(B,G = 2) =
(B − 1)(B − 2)

4(B2 −B + 2)

µc(B,G = 3) =
(B − 1)(B − 2)(B − 3)

4(B3 − 3B2 + 8B)

µc(B,G = 4) =
(B − 1)(B − 2)(B − 3)(B − 4)

4(B4 − 6B3 + 23B2 − 18B + 24)

(20)

and230

µc(B,G = B − 1) = 2−(B+1). (21)
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A detailed discussion is presented the Electronic Supplementary Material, section VI. These231

results are in qualitative agreement with previous numerical simulations in similar systems232

[50, 51].233

Figure 2 shows µc as a function of G/B for several values of B as calculated with the234

procedure indicated in the SI. For a fixed number of lociB the region under the corresponding235

curve indicates where a single haplotype or a set of closely related haplotypes dominates the236

population. It is interesting to note that this region is roughly independent of B and that it237

shrinks fast for G/B > 1/2. The more restrictive is the criterion for recombination (smaller238

G/B) the larger the interval of mutations leading to non-uniform distribution of alleles.239

This means that similarity-essential recombination turns the population less susceptible to240

the error-prone replication, i.e., the selective information can be kept for a broader range241

of values of mutation probabilities. This result is in contrast with the effects of standard242

recombination, which tends to lower the value of the critical mutation probability [49].243

Figure 1 also shows how the distribution of haplotypes changes with µ. It is quite noticeable244

the shift of the error threshold to lower values as the assortativity G is reduced.245

IV. DISCUSSION246

Here we studied the evolution of haplotype frequencies in an infinite population with247

similarity-essential recombination. We assumed that recombination is not possible if the248

genetic distance between two sequences is greater than a certain threshold G. In viral249

populations recombination often occurs when the replication enzyme switches from one250

molecule to another, and reducing G is equivalent to increasing the extent of similarity251

required for template switching. Depending on the similarity threshold the recombination252

is classified as precise or imprecise [24] and its value may be interpreted as a by-product of253

physical-chemical properties of the molecules involved in nucleic acid replication.254

We derived the evolution equations for the haplotype frequencies assuming that each255

locus segregates independently (uniform crossover, as in [40, 41, 50]). This assumption is256

known not to be realistic. However, it is the simplest case to consider in order to highlight257

the effects of assortativity in the process of recombination. The correspondence between our258

equations and the quasispecies model allowed us to quantitatively determine the contribution259

of this type of recombination constraint to fitness, which we have shown to be equal to the260
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fraction of all compatible sequences in the population. It is important to highlight that, aside261

from the differences in fitness resulting from this constraint, our model is essentially neutral,262

since all individuals are assumed to be selectively identical. In spite of this neutrality at263

the individual level, natural selection arises as an outcome of the internal dynamics, which264

favors the selection of common haplotypes.265

In the case of RNA viruses, most experimental studies are performed under strong selec-266

tive pressures, so that only the higher fitness types are detected [24]. Adding intrinsic fitness267

to the haplotypes would be a natural, though non-trivial, extension of our work. Depending268

on the initial conditions and on the strength of selection, the dynamics could give rise to269

a competition between the higher fitness types and those starting with large fractions of270

compatible individuals, leading to interesting properties of the haplotype distributions.271

One of our main results is the observation and calculation of the error catastrophe in272

a population under similarity-based recombination. We demonstrated that for small G/B273

the threshold tends to 1/4, which is very large and independent of the genome size. At the274

other extreme, where G = B − 1 the error threshold decreases exponentially as 2−(B+1).275

Both these behaviors are in contrast with the 1/B formula of the original Eigen model.276

The main consequence of the information crisis is the prediction of a maximum length for277

the sequence size beyond which the selective information is lost. In the context of prebi-278

otic evolution, this limits our understanding about how complex molecular structures can279

emerge from the prebiotic scenario. Here we have shown that replicating units subjected280

to similarity-essential recombination are able to safely transmit information at higher mu-281

tations through the emergence of a stable distribution of closely related haplotypes. These282

haplotypes naturally arise from the dynamics without defining a priori the set with large283

fitness. Because the error threshold is large and independent of the genome size for strong284

assortativity there is no restriction on the amount of information that can be stored in the285

system. The framework developed here provides exact results on the mutation thresholds286

for any values of genome size and assortativeness that could be applied to these populations.287

Taken in a broader sense, the quasispecies framework may describe the evolution of any288

population of reproducing organisms [40]. In this case, similarity-based recombination is289

equivalent to assortative mating. This form of non-random mating plays an important290

role in the reproductive behavior of many populations. In mathematical models it can be291

introduced by prohibiting mating between individuals whose phenotypes are too dissimilar.292
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Depending on how genotypes are related to phenotypes, mate choice may be translated into293

a rule to be applied directly to genotypes. For haploid individuals with B biallelic loci where294

each locus represents a trait, assortative mating can be implemented by preventing mating295

between individuals whose haplotypes differ in more than G loci [4, 17, 18, 20–22]. These296

models assume that there are many characteristics controlling mating preference. In birds,297

for example, important traits are the color of plumage, patterns on plumage, song length,298

song complexity, beak size, body size, etc. Modeling each trait by a binary label results299

in 2B different phenotypes, where B is the genome size. For example, color is blue or red,300

beak is small or large, song is short or long, etc. Similar associations between haplotype and301

phenotype have also been used to study the branching of languages [52].302

Our results also have implications for neutral models of speciation where reproductive303

isolation results from incompatibilities between individuals at the boundary between species304

[21, 22]. Individuals from each species have high fitness when amongst their own kind, but305

lower fitness at the boundary with other species, where the fraction of compatible mates306

drops. This feature keeps the populations isolated and prevents mixing in the absence of307

environmental selection.308

309
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FIGURE CAPTIONS436

437

Figure 1: (Online version in color.) Equilibrium haplotype frequencies for B = 3 and G = 0,438

G = 1 and G = 2 as a function of the mutation rate. Lines correspond, from top to bottom,439

to: 000 (black); 100, 010 and 001 (blue); 110, 101 and 011 (red); 111 (green). The initial440

condition is p000 = 1 and the other frequencies zero.441

442

Figure 2: (Online version in color.) Critical mutation as a function of G/B. The uniform443

distribution of haplotype frequencies becomes stable for µ > µc. The area below the curves444

correspond to a stable distribution of closely related haplotypes.445

446

447
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