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Abstract

We study a binary dynamical process that is a representation of the voter model with two

candidates and opinion makers. The voters are represented by nodes of a network of social contacts

with internal states labeled 0 or 1 and nodes that are connected can influence each other. The

network is also perturbed by opinion makers, a set of external nodes whose states are frozen in 0

or 1 and that can influence all nodes of the network. The quantity of interest is the probability of

finding m nodes in state 1 at time t. Here we study this process on star networks, which are simple

representations of hubs found in complex systems, and compare the results with those obtained for

networks that are fully connected. In both cases a transition from disordered to ordered equilibrium

states is observed as the number of external nodes becomes small. For fully connected networks the

probability distribution becomes uniform at the critical point. For star networks, on the other hand,

we show that the equilibrium distribution splits in two peaks, reflecting the two possible states of

the central node. We obtain approximate analytical solutions for the equilibrium distribution that

clarify the role of the central node in the process. We show that the network topology also affects

the time scale of oscillations in single realizations of the dynamics, which are much faster for the

star network. Finally, extending the analysis to two stars we compare our results with simulations

in simple scale-free networks.
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I. INTRODUCTION

Network science has provided a large body of theoretical tools to investigate complex

systems, from physics to social sciences and biology [1–6]. Much work has been devoted

to the study of networks topological properties [1, 3, 4, 7–10] and dynamical processes

on networks have been shown to depend sensitively on the network structure [11–20]. More

recently, the response of networks to external perturbations has also been investigated [7, 21–

25].

Most of the networks found in nature are scale-free, characterized by a power-law degree

distribution and by the presence of nodes whose degree greatly exceeds the average [1]. These

special nodes, referred to as network hubs, are crucial for the structural integrity of many

real-world systems [26], allowing for a fault tolerance behavior against random failures [8].

Nevertheless, if the hubs are removed from the network by an intentional attack, the network

might fragment into a set of isolated graphs. Thus, the presence of hubs represents at the

same time the robustness and the ‘Achilles heel’ of scale-free networks. This property has

been extensively studied by means of percolation theory [10, 27, 28]. In addition, network

hubs can be detected and studied using numerous different graph measures, most of which

express aspects of node centrality [29].

In this paper we study the two-states Voter Model subjected to external perturbations

in star networks and compare the results with those obtained for fully connected systems.

The star and fully connected topologies model two extreme scenarios, corresponding to the

presence of a single network hub and the total absence of preferentially connected nodes,

respectively. The perturbations represent opinion makers, who have already decided who to

vote for and whose influence extents over the entire population. They are modeled by a set

of external nodes whose states are fixed and that connect to all nodes of the network. The

system exhibits a phase transition from disordered to ordered states as the external pertur-

bation is decreased and can be characterized by the equilibrium probability distribution of

finding m nodes in a given state. We show that the shape of this distribution is very similar

for star and fully connected networks away from the phase transition, but it shows a finger-

print of the network topology close to the critical point. For fully connected networks the

probability distribution is uniform at the critical point, whereas for star networks it splits

in two peaks, reflecting the two possible states of the central node. For single realizations
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of the dynamics and weak perturbations the state of the network oscillates according to the

equilibrium distribution. We show that the time scale of these oscillations is sensitive to the

network topology, being much faster for the star network. We derive approximate analytical

solutions for the star network and extend the results for multiple stars, which can be used

as a simplified model for a scale-free network.

In the next two sections we describe the Voter Model with opinion makers and the

implementation of the dynamics in a general network. Exact results for the fully connected

network are reviewed in section IV and in section V we obtain the master equations for star

networks and show results from numerical simulations. We also generalize our calculations

to star networks whose center contains a group of fully connected nodes, and construct an

approximate solution for the joint effect of two network hubs, which is further compared

with the outcome of a scale-free network. Our conclusions are presented in section VI.

II. THE VOTER MODEL

The voter model consists of a set of individuals trying to decide in which of two candidates

to vote for [30, 31]. Their opinion can be influenced by their friends, represented by a network

of social contacts, and by opinion makers, such as journalists or politicians, whose power

of persuasion toward one of the candidates extents over the entire population. The opinion

makers are modeled by external ’frozen’ nodes whose states never change and that reach all

voters equally, acting as perturbations to the network dynamics (Fig. 1).

The intention of a voter is quantified by its state being 0 or 1 and the number of opinion

makers for candidates 0 and 1 are N0 and N1 respectively. At each time step a voter is

selected at random and its state is updated: the voter can retain its opinion or adopt the

opinion of one of its connected neighbors, which can be a friend or an opinion maker. In the

absence of opinion makers the population eventually reaches a consensus and the network

stabilizes with all nodes 0 or all nodes 1, which are the only absorbing configurations. As

long as opinion makers are present for both candidates the network never stabilizes, but

it does reach a statistical equilibrium where the probability that candidate 1 has a given

number of votes becomes independent of the time.

This dynamical process can model other interesting systems besides as an election with

two candidates [32, 33], such as a population of sexually reproducing (haploid) organisms
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[34, 35] and herding behavior in social systems [24, 36]. It is also similar to the Glauber

dynamics of the Ising model [25, 37] where N0 + N1 is analogous to the temperature and

N0 −N1 to an external magnetic field.

If the number of opinion makers is zero the average time to reach consensus can be

analytically calculated in terms of the moments of the network degree distribution [38, 39].

However, the presence of external perturbations complicates the dynamics and solutions

have been obtained only for simple networks and specific distribution of frozen nodes. In

particular, the voter model without opinion makers was studied in regular lattices where one

individual in the population has fixed opinion (a zealot) [40]. Analytic solutions were also

obtained for the equilibrium distribution in fully connected networks with arbitrary number

of opinion makers in the limit where the number of voters goes to infinity [36, 41]. The full

dynamical problem with finite number of voters was finally solved in [25] where it was shown

that the solution was also a good approximation for networks of different topologies, as long

as the number of opinion makers N0 and N1 were rescaled according to the average degree

of the network (see also [42]). The numbers N0 and N1 were also analytically extended to

real numbers smaller than 1, representing weak coupling between the voters and the opinion

makers. It was shown (see also [36, 41]) that a phase transition exists between ordered states,

where most voters have the same opinion, to a disordered state, where approximately half

the votes go to each candidate, as N0 and N1 go from very small to very large numbers. The

transition occurs exactly at N0 = N1 = 1 for fully connected networks of any size. Here we

study this phase transition in the star network.

III. NETWORK DYNAMICS

Consider a network with N nodes specified by the adjacency matrix A, defined by Aij = 1

if nodes i and j are connected and Aij = 0 otherwise. For our purpose, Aii = 0 (nodes do

not connect to themselves), and for any pair of nodes it is possible to construct a path

connecting them. Each node has an internal state which can take only the values 0 or 1.

The nodes are also connected to N0 external nodes whose states are fixed at 0 and to N1

nodes whose states are fixed at 1, as illustrated in Fig.1. In order to distinguish between

the two kinds of nodes, we call the N0 + N1 external nodes fixed and the N nodes of the

network, whose states are variable, free. Following [25] we shall treat N0 and N1 as real
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FIG. 1. (color online) Representation of the voter model on a network. The different colors indicate

the internal states of the voters, which can be undecided (circles), and opinion makers (squares).

Opinion makers can affect all voters of the network but undecided voters can only influence their

connected neighbors.

numbers, representing weighted coupling between the opinion makers and the voters.

The free nodes can change their internal state according to the following dynamical rule:

at each time step a free node is selected at random and, with probability p its state remains

the same; with probability 1− p the node copies the state of one of its connected neighbors,

free or fixed, also chosen at random.

Let

x = {x1, x2, . . . , xk−1, xk, xk+1, . . . , xN} (1)

denote a microscopic state of the network with xi = 0 or xi = 1 representing the state of

node i. There is a total of 2N possible microscopic states and we call Pt(x) the probability

of finding the network in the state x at time t. Since a single free node can change state per

time step, it is useful to define the auxiliary state xk which is identical to x at every node
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except at node k, whose state is the opposite of xk, i.e., xkk = 1− xk. Explicitly,

xk = {x1, x2, . . . , xk−1, 1− xk, xk+1, . . . , xN}. (2)

With these definitions, the evolution equation for the probabilities can be written as

Pt+1(x) = pPt(x) +(1− p) 1
N
Pt(x)

∑N
i=1 T (xi → xi)

+(1− p)
∑N

i=1
1
N
Pt(x

i)T (xii → xi).
(3)

The first two terms take into account the probability that the network is already in state

x and the selected node (i) does not change its state or (ii) copies the state of a neighbor

which is identical to its own state. The last term is the probability that the network is in

a state differing from x by a single node, which is selected and copies the state of neighbor

opposite to its own.

According to the dynamical rules, the transition probabilities can be written as

T (xi → xi) =
1

ki +N0 +N1

[
N∑
j=1

Aij|1− xi − xj|+ xiN1 + (1− xi)N0

]
(4)

and

T (xii → xi) =
1

ki +N0 +N1

[
N∑
j=1

Aij|xii − xj|+ (1− xii)N1 + xiiN0

]
(5)

where ki is the degree of the node i. Using the fact that xii = 1 − xi we find that the two

transition probabilities are identical and obtain

Pt+1(x) = pPt(x)+

(1− p)
N

N∑
i=1

[Pt(x) + Pt(x
i)]

ki +N0 +N1

[
N∑
j=1

Aij|1− xi − xj|+ xiN1 + (1− xi)N0

]
.

(6)

IV. FULLY CONNECTED NETWORKS

For networks that are fully connected the nodes are indistinguishable and the state of the

network is fully specified by the number m of nodes with internal state 1 [18, 25]. Each of

these macroscopic states corresponds to a set of N !/[(N −m)!m!] degenerated microscopic

network states. Because there are only N + 1 macroscopic states equations (6) are greatly

simplified. The equilibrium probability ρFC(m) of finding the network with m nodes in state

1 is given by the Beta-Binomial distribution [25]

ρFC(m) = A(N,N0, N1)
Γ(N1 +m) Γ(N +N0 −m)

Γ(N −m+ 1) Γ(m+ 1)
, (7)
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where

A(N,N0, N1) =
Γ(N + 1) Γ(N0 +N1)

Γ(N +N0 +N1) Γ(N1) Γ(N0)
. (8)

This expression can also be written in term of xm = m/N . In the limit N →∞, xm becomes

a continuous variable 0 ≤ x ≤ 1 and ρFC converges to the Beta distribution [36]

ρFC(x) =
Γ(N0 +N1)

Γ(N0)Γ(N1)
xN0−1(1− x)N1−1. (9)

The interesting feature of the solution expressed by Eq.(7) is that for N0 = N1 = 1 it gives

ρFC(m) = 1/(N + 1), meaning that all states are equally likely, as illustrated in Fig.2.

For networks of different topologies the effect of the fixed nodes is amplified. The probabil-

ity that a free node copies a fixed node is Pi = (N0+N1)/(N0+N1+ki), where ki is the degree

of the node. For fully connected networks ki = N−1 and PFC ≡ (N0+N1)/(N0+N1+N−1).

For general networks an average value Pav can be calculated by replacing ki by the average

degree. Effective numbers of fixed nodes N0ef and N1ef can be then defined as the values of

N0 and N1 in PFC for which Pav ≡ PFC . This leads to

N0ef = fN0, N1ef = fN1, (10)

where f = (N − 1)/kav. In [25] it was shown that Eq.(7) with the above rescaling of fixed

nodes fits very well the probability distribution for a variety of topologies. The formula was

tested for relatively small networks of the types random, 2-D regular lattice, Barabasi-Albert

scale-free and small world. Similar results were obtained in the context of herding behavior

of economic agents [24, 42].

V. STAR NETWORKS

A. Master equation

For a star network it is convenient to set the total number of nodes to N + 1. Node 1

is the central node and it is connected to all peripheral N nodes. The peripheral nodes,

on the other hand, are only connected to the central node. The peripheral nodes are in-

distinguishable from each other and, similar to the fully connected network, there are only

2(N + 1) macroscopic states, characterized by having m peripheral nodes in state 1 (N + 1

possibilities) and the central node in state 1 or 0.
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The evolution equation for the macroscopic states can be obtained from equations (6) if

we define r1(m, t) and r0(m, t) as the probabilities of having m peripheral nodes in state 1

at time t with the central node in state 1 and 0 respectively. We obtain

r1(m, t+ 1) = r1(m, t)

{
p+

(1− p)
(N + 1)

[
m(N1 + 1) + (N −m)N0

(1 +N1 +N0)
+

(m+N1)

(N +N0 +N1)

]}
+ r1(m+ 1, t) (1− p) (m+ 1)N0

(N + 1)(1 +N0 +N1)

+ r1(m− 1, t) (1− p) (N −m+ 1)(N1 + 1)

(N + 1)(1 +N0 +N1)

+ r0(m, t) (1− p) (m+N1)

(N + 1)(N +N0 +N1)
,

(11)

and

r0(m, t+ 1) = r0(m, t)

{
p+

(1− p)
(N + 1)

[
mN1 + (N −m)(N0 + 1)

(1 +N1 +N0)
+

(N −m+N0)

(N +N0 +N1)

]}
+ r0(m+ 1, t) (1− p) (m+ 1)(N0 + 1)

(N + 1)(1 +N0 +N1)

+ r0(m− 1, t) (1− p) (N −m+ 1)N1

(N + 1)(1 +N0 +N1)

+ r1(m, t) (1− p) (N −m+N0)

(N + 1)(N +N0 +N1)
.

(12)

The first two terms in these equations take into account the probability that the network

is in the state x at time t, and to select a node that (i) does not change its state or (ii) copies

the state of a neighbor in its own state. The last three terms represent the probability that

the network is in a state differing from x by a single node at time t, to select this node, and

to copy the state of a neighbor in the opposite state.

The probability of having m nodes in state 1 in the star network is, therefore,

ρS(m, t) = r1(m− 1, t) + r0(m, t). (13)

The results provided by equations (11) and (12) agree perfectly well with numerical simula-

tions. A comparison with the fully connected network is shown in Fig.2. The main feature

of these results is the different way in which the transition between ordered and disordered

states occurs: instead of the meltdown of the Gaussian distribution observed for fully con-

nected networks, the Gaussian state splits in two peaks that move toward the boundaries

m = 0 and m = N as N0 and N1 are decreased.

8



0 2 0 4 0 6 0 8 0 1 0 00 . 0 0
0 . 0 1
0 . 0 2
0 . 0 3
0 . 0 4
0 . 0 5 ( a )

ρ FC
(m

)

m
0 2 0 4 0 6 0 8 0 1 0 00 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8
( b )

ρ S(m
)

m

FIG. 2. (color online) Equilibrium probability distribution for networks with N = 100 nodes and

different values of Np = N0 = N1: Np = 10 (green dashed), Np = 1 (thick red), Np = 0.5 (black

dotted), Np = 0.05 (blue). (a) fully connected network; (b) star network.

B. Approximate solutions

The main difficulty in solving equations (11) and (12) is that they are coupled through the

central node. Although we have not found exact solutions, a simple enough approximation

can be readily obtained if the central node is momentarily considered to be fixed. If the

central node is fixed in state 1, any peripheral node sees N0 fixed nodes in state 0 and

N1 + 1 nodes fixed in state 1. The problem reduces to that of N independent nodes. The

asymptotic probability that a peripheral node is in state 1 is

ν1 =
1 +N1

1 +N0 +N1

. (14)

Therefore, the probability that m nodes are in state 1 (the central node plus m−1 peripheral

nodes) becomes

p1(m) =

(
N

m− 1

)
νm−11 (1− ν1)N−m+1. (15)

Similarly, fixing the central node in the state 0, the asymptotic probability that a peripheral

node is in state 1 is

ν0 =
N1

1 +N0 +N1

, (16)

and the probability that m nodes are in state 1 is

p0(m) =

(
N

m

)
νm0 (1− ν0)N−m. (17)
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FIG. 3. (color online) Comparison between numerical simulations (thick lines) and the approximate

equilibrium distribution Eq.(18) (thin lines). Panel (a), for Np = 10 also shows the result for a

fully connected network with the rescaling Eq.(10) corresponding to f = 99/2 (red dashed curve).

The dashed blue lines in panels (b) (Np = 1) and (c) (Np = 0.1) correspond to the approximation

described in appendix A. The parameters are T = 2× 104, p = 0.5, N = 100. For the simulations

105 realizations were performed. Panel (d) shows the distribution for different network sizes (from

left to right N = 100, 250, 500, 750 and 1000) for Np =
√
N/4, where the peak splits in two.

Adding these results we obtain the approximate expression

ρS(m) ≈ N1

N0 +N1

p1(m) +
N0

N0 +N1

p0(m), (18)

where we have introduced the weights N1/(N0 +N1) and N0/(N0 +N1) of the central node

to be in the state 1 or 0, respectively.

In this paper we will restrict our simulations to symmetric perturbations and define, for
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simplicity,

Np ≡ N0 = N1. (19)

Fig.3 shows a comparison between simulations and the approximate formula (18). The

two peaks are clearly related to the two states of the central node and are reasonably well

described by the approximation. The region between the peaks is not well represented, since

it has important contributions from flips of the central node that have been discarded. The

dashed blue line shows the result of a better, although ad hoc, approximation described in

the appendix that fits the entire curve with very good precision. Fig.3(a) also shows the

approximation (10) obtained via rescaling of the expression for fully connected networks,

which works well for Np >> 1.

The approximate solutions can also be used to estimate the point where the Gaussian-like

distribution breaks in two peaks. For large N the contributions p0 and p1 for ρS become

Gaussians centered at Nν0 and Nν1 with variance σ2 = NNp(1 + Np)/(1 + 2Np)
2. The

two-peak structure appears when the distance between the two centers is of the order of the

standard deviation. This gives Np ∼
√
N and numerical calculations indicate that Nc ≈

√
N/4. Fig.3(d) shows the equilibrium distribution for several values of N and Np =

√
N/4.

The transition from unimodal to bimodal distribution marks the regime where the influence

of the central node competes with the external perturbation, modifying the equilibrium

distribution substantially with respect to the fully connected dynamics. The two peaks

move apart slowly as the external perturbation is decreased and are clearly separated only

when Np ∼ 1, independently of the network size N .

Although the equilibrium distribution of states of the star network changes smoothly

as the perturbation is decreased, the transition in behavior is rather different from what

is observed in the fully connected network: for Np >>
√
N the state is disordered, with

approximately half the nodes in state 1 and half the nodes in state 0. The standard deviation

is σ =
√
N/2 so that σ/N = 1/2

√
N . ForNp =

√
N/4, when the two peak structure appears,

the standard deviation increases by a factor of 4 to σ/N = 2/
√
N . As Np decreases below

1 and the two peaks get significantly apart, the network is most likely to be found with

either a fraction ν1 = (1 + Np)/(1 + 2Np) or ν0 = Np/(1 + 2Np) in state 1, executing fast

collective transitions between the two states (see next subsection). This is in contrast with

the behavior exhibited by the fully connected network, which have either most nodes 1 or

most nodes 0 staying in each of these states for long periods of time before moving to the
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FIG. 4. (color online) Magnetization for a single simulation for Np = 10 (green), Np = 1 (red)

and Np = 0.05 (blue). (a) fully connected network with N = 2× 104 nodes; (b) star network with

N = 2× 104 peripheral nodes. Time is measured in units of network size.

other.

C. Dynamics and Magnetization

In analogy with the Ising model we define the average magnetization per node as

M =
2n1

N
− 1 (20)

where n1 is the number of nodes in state 1, so that −1 ≤ M ≤ +1. In order to study the

dynamics of M we run a single simulation for each network and plot M as a function of the

time.

Fig. 4 shows the results for Np = 10, 1 and 0.05 (see also Fig. 2). In these plots one

unit of time τ is a Monte Carlo step, corresponding to N steps t of the dynamics, so that

all nodes are updated, on average, at each unit of τ . For the fully connected network with

N = 20000, Fig.4(a), M fluctuates around zero for Np = 10 (green line). The fluctuations

increase as the critical value is approached and for Np = 1 (red line) they take the entire

range of M . For Np = 0.05 (blue line) the system stays a substantial amount of time

magnetized at M = +1 or M = −1, alternating from one extreme to the other. The lower

the values of Np the longer the times the system stays in each state for a fixed value of N ,

and similarly for increasing N for fixed Np.
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FIG. 5. (color online) Equilibrium probability distribution ρS(m) for a star network with Nc = 2

center nodes, N = 200 peripheral nodes and N0 = N1 = Np for Np = 1 (black) and Np = 0.3 (red).

Thick curves show the result of simulations and thin curves the approximation given by Eq.(21).

The dashed blue lines correspond to the approximation described in appendix A.

For the star network, Fig.4(b), the results show two distinct features. First, the amplitude

of the oscillations increases smoothly as Np decreases, reflecting the position of the two

peaks of the equilibrium distribution. For Np = 1, for instance, M oscillates in the interval

around ±0.3. Second, the oscillations are much faster, on the scale of tens of time steps

for Np = 0.05, as compared to the thousands of time steps of the fully connected network.

These oscillations are clearly driven by flips of the central node, which pulls the majority of

the peripheral nodes with it.

The large difference in the time scales displayed in Fig. 4 can be understood from the

network topologies. For fully connected networks the time scale measured in number of time

steps t is well known, given by t = N(N + 2Np − 1)/2Np (see [25], for instance). For small

Np we find τ ≡ t/N ' N/2Np. For the star network, on the other hand, the state of the

peripheral nodes is controlled by the central node. If the central node is in state 0, most of

the peripheral nodes will be in state 0 as well if Np is small. The probability that the central
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node flips from 0 to 1 can be estimated as the probability that it copies a frozen node in

state 1: Np/(N − 1 + 2Np) ' Np/N . The average time for this to happen is t = N/Np or

τ = t/N = 1/Np. The two time scales differ by a factor N/2, which is consistent with the

results shown by Fig. 4.

D. Generalizations

Star networks where the center is composed not by a single node, but by a group of

totally connected nodes can also be studied within this approximation. If the center has Nc

nodes a stationary solution can be constructed by freezing the state of the center into m

ones and Nc−m zeros and assigning a weight to this state according to the fully connected

distribution ρFC(m), given by Eq.(7). Equation (18) readily generalizes to

ρ(m) ≈
Nc∑
k=0

ρFC(k)

(
N

m− k

)
νm−kk (1− νk)N−m+k, (21)

where

νk =
N1 + k

Nc +N0 +N1

(22)

and ρ(k)FC is given by equation (7) with N replaced by Nc. Fig. 5 shows an example

with Nc = 2 where a three peak structure is clearly visible close to the phase transition

N0 = N1 = 1. The approximation (21) captures well the position of the peaks, but overshoots

their height to compensate for the lost interference between the peaks.

As a second application we consider the joint effect of two hubs in a complex network.

If we approximate the hubs as independent star networks with a single central node, the

probability of finding m nodes in the state 1 is simply given by

ρ(m) =
m∑
j=0

ρS,N1(j)ρS,N2(m− j), (23)

where we have indicated explicitly the number of nodes of each star in the distribution. For

small values of Np, the separate distributions will have two peaks, centered at, say, m1 and

N1−m1; m2 and N2−m2 respectively. The joint distribution given by Eq.(23) will display

four peaks at m1 +m2, N1−m1 +m2, N2−m2 +m1 and N1 +N2−m1−m2. If the hubs are

not independent, but coupled by only a few links, we expect this peak structure to persist.

Figure 6(a) shows the stationary distribution for two independent star networks of sizes

N1 = 101 and N2 = 11. The splitting of the Gaussian-like peak in two occurs at N0 = N1 ≈
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FIG. 6. (color online) (a) Equilibrium distribution for a pair of independent star networks with

N1 = 101 and N2 = 11 nodes for Np = 10 (green dashed), Np = 1 (thick red), Np = 0.5 (black

dotted) and Np = 0.05 (blue). (b) Distribution for a scale-free network with 100 nodes and

Np = 0.01. The two largest hubs (shown in red in the inset) have 16 and 13 peripheral nodes and

are connected by their centers.

2.6 and N0 = N1 ≈ 0.8, respectively. However, because the separation between the two peaks

of the smaller star is small, its effect is felt only at much smaller values of the perturbation,

when the two peaks of the large hub approach the borders and the distribution becomes thin.

Fig. 6(b) shows the equilibrium distribution for a more complex network with 100 nodes

constructed with preferential attachment. The network has two main hubs (shown in red in

the inset) with 16 and 13 peripheral nodes, respectively. The peaks in the distribution are

signatures of the hubs. For scale-free networks with more cycles (not shown) the presence of

the peaks is much less conspicuous and the distribution becomes again similar to the fully

connected case with rescaled perturbations.

VI. CONCLUSIONS

The voter model with opinion makers is one of the simplest dynamical systems that can

be represented on a network. It models an election between candidates where the voters are

influenced by their social contacts and by external factors such as journalists and politicians.

If the number of opinion makers is zero the population is certain to reach a consensus toward

one of the candidates independently of the structure of the network. The power of the
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opinion makers, however, depends strongly on the average degree of the network. For a

completely connected network the transition between nearly consensus (ordered state) and

a tie (disordered state) takes place exactly at N0 = N1 = 1, independently of the population

size N . For networks with average degree kav the effect of the fixed nodes is amplified by

a factor f = (N − 1)/kav, which can be very large for natural populations. Much above or

much below the transition from disordered to ordered states the influence of the network

structure is negligible and only shows up in the rescaling of the opinion makers influence,

that is large when the network is weakly connected. This is in contrast with processes

describing the spreading of epidemics or synchronization of oscillators, where the topology

plays a crucial role [11–20]. Close to the critical point, however, the network structure can

leave signatures in the probability distribution ρ(m).

For the particular case of star networks with a single central node, the Gaussian-like

distribution displayed by ρS(m) for large values of N0 and N1 splits into two peaks centered

at N(N1 + 1)/(N1 + N0 + 1) and NN1/(N1 + N0 + 1) reflecting the state of the central

node being 1 or 0. The central node controls the entire system and the distribution behaves

approximately as a single giant node with two collective states only. For N0 = N1 = 1

the peaks are centered at 2N/3 and N/3 respectively, which is rather different from the

distribution of fully connected networks where ρFC(m) = 1/(N + 1) is constant. In the

former case the election will be won by one of the candidates with approximately 67% of the

votes, whereas in the latter, the winner can have any number of votes with equal probability.

For small values of N0 and N1 both star and fully connected networks are likely to be found

in ordered states, where most nodes are in state 0 or in state 1. These states, however, are

not stable and network oscillates between the two possibilities. We found that the average

frequency of these oscillations are much higher for star networks than for fully connected

ones.

When a few weakly connected hubs are present, the effects of central nodes are still

visible, as shown by Fig.6(b). However, when the system is controlled by multiple hubs,

as in a general scale-free network, the collective behavior becomes again similar to that

predicted by the mean field approximation and the control by ‘local leaders’ becomes much

less relevant. In these cases Eqs.(7) and (10) provide good approximations for the equilibrium

probability.

As a final remark we note that fully connected and stars with arbitrary number of central
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nodes seem to be the only network topologies where a simple treatment via macroscopic

master equations similar to (11)-(12) is possible. Even the highly symmetric ring network

(1-D lattice with periodic boundary conditions) does not behave as if all nodes were iden-

tical, since different configuration having the same number of nodes at the state 1 give rise

to different macroscopic states.

M.A.M.A. and D.M.S. acknowledge financial support from CNPq and FAPESP. C.A.M.

was supported by CAPES.
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Appendix A: An ad hoc approximation for the equilibrium distribution

The approximation (18) completely discards the fact that the state of the central node

fluctuates and fails to describe the region between the two peaks. Here we derive a better

approximation using phenomenological ideas. We first define

ν(x) =
x+N1

1 +N0 +N1

. (A1)

as the equivalent of (14) and (16) for the case where the state of the central node is in the

average state x with 0 ≤ x ≤ 1. Accordingly, we define

p(x,m) =
Γ(N + 1)

Γ(N −m+ x+ 1)Γ(m− x+ 1)
ν(x)m−x(1− ν(x))N−m+x (A2)

as the probability of finding m nodes in state 1, including the central the peripheral nodes

(see eqs. (17) and (15)). If c(x) is the probability distribution that the central node is in

state x, then

ρ(m) =

∫ 1

0

dx c(x,N0, N1)p(x,m). (A3)

For

c(x,N0, N1) =
N0

N0 +N1

δ(x) +
N1

N0 +N1

δ(x− 1) (A4)

we recover the approximation (18).

In order to obtain better results we need to consider smoother distributions and the

natural functional dependence for c(x) is the continuous version of ρFC , the Beta distribution

eq.(9):

c(x,N0, N1) =
Γ(n0 + n1)

Γ(n0)Γ(n1)
xn0−1(1− x)n1−1. (A5)

Here n0(N0, N1) and n1(N0, N1) measure the joint effect of the external perturbations, N0

and N1, and of the N − 1 peripheral nodes on the central node. Because the approximation

with the delta functions (A4) already gives a good description of the exact distribution, n0

and n1 should be significant only close to the phase transition. The choice

n0(N0, N1) = N0e
−(N0+N1)/2 n1(N0, N1) = N1e

−(N0+N1)/2 (A6)

turns out to work well for all the cases tested.

For the case of two central nodes (see Fig.5) a similar procedure can be divised. We set

ν(x, y) =
x+ y +N1

2 +N0 +N1

(A7)
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with x and y representing the states of the two central nodes. The probability that m nodes

are in state 1 becomes

p(x, y,m) =
Γ(N + 1)

Γ(N −m+ x+ y + 1)Γ(m− x− y + 1)
ν(x, y)m−x−y(1− ν(x, y))N−m+x+y

(A8)

so that

ρ(m) =

∫ 1

0

dx

∫ 1

0

dy c(x, y,N0, N1)p(x, y,m). (A9)

The probability distribution that the two central nodes are in states x and y must reproduce

the coefficients ρFC(k) in Eq.(21). Using the analogy between Eqs. (18) and (A4) it can be

checked that the appropriate function is

c2(x, y,N0, N1) = c(x,N0, N1) c(y,N0 + 1− x,N1 + x). (A10)

Indeed, using the approximation (A4) for c(x,N0, N1) we see that

c2(x, y, n0, n1) ≈ 1
(N0+N1)(1+N0+N1)

× {N0(N0 + 1)δ(x)δ(y)

+N0N1[δ(x)δ(1− y) + δ(1− x)δ(y)] +N1(N1 + 1)δ(1− x)δ(1− y)}
(A11)

whose coefficients correspond to ρFC(k). We remark that the integrals (A3) and (A9) might

be difficult to evaluate numerically for very small values of N0 and N1, since the Beta

distribution becomes very large close to x = 0 and x = 1. In this limit, however, the

distribution is peaked close to m = 0 and m = N and the approximation provided by the

fully connected distribution should work well.
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