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� We model population structure
using networks of constant degree k.

� Evolution follows a Moran process
and is mapped into the voter model.

� If k is small, substantially smaller
mutation rates are enough to over-
come drift.

� The critical k for overcoming drift
increases as a power law with po-
pulation size.

� The stationary distribution becomes
tri-modal at this mutation threshold.
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In finite populations the action of neutral mutations is balanced by genetic drift, leading to a stationary
distribution of alleles that displays a transition between two different behaviors. For small mutation rates
most individuals will carry the same allele at equilibrium, whereas for high mutation rates of the alleles
will be randomly distributed with frequencies close to one half for a biallelic gene. For well-mixed
haploid populations the mutation threshold is μ = N1/2c , where N is the population size. In this paper we
study how spatial structure affects this mutation threshold. Specifically, we study the stationary allele
distribution for populations placed on regular networks where connected nodes represent potential
mating partners. We show that the mutation threshold is sensitive to spatial structure only if the number
of potential mates is very small. In this limit, the mutation threshold decreases substantially, increasing
the diversity of the population at considerably low mutation rates. Defining kc as the degree of the
network for which the mutation threshold drops to half of its value in well-mixed populations we show
that kc grows slowly as a function of the population size, following a power law. Our calculations and
simulations are based on the Moran model and on a mapping between the Moran model with mutations
and the voter model with opinion makers.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Despite the ongoing debate over the relative importance of
randomness and environmental selection in determining the
properties of organisms during evolution, stochastic processes are
certainly an inherent property of living populations. In particular,
random variation in the outcome of different life-history events
collectively result in what is often summarized in the concept of
“random genetic drift” (Lenormand et al., 2009). Although its in-
fluence in large populations may be weak when compared to se-
lection, its role can be decisive in the process of fixation of rare
alleles and cannot be neglected in small populations.

In population genetics, mutation and genetic drift are two in-
escapable sources of stochasticity with opposing effects regarding
the maintenance of variation in the population. In the case of a
single biallelic locus under reversible mutation, the dynamics of
allele frequencies can be calculated in the limit of large and well-
mixed (panmictic) populations. The equilibrium distribution con-
verges to a Beta distribution that resembles a Gaussian for high
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mutation rates and a U-shaped curve for small mutation rates
(Crow and Kimura, 1970; Gillespie, 2004). These two regimes re-
flect the relative importance of each evolutionary force in the
dynamics. For a haploid population of size N and mutation rate μ,
drift dominates whenever μ ⪡N2 1. In this regime, one of the alleles
becomes nearly fixed. For μ ⪢N2 1, on the other hand, mutation
dominates over drift and both alleles evolve to nearly equal fre-
quencies, maximizing genetic diversity. The transition occurs at a
well defined threshold, μ = N1/2c , where the equilibrium dis-
tribution of allelic frequencies becomes uniform. The dynamics
can also be computed with the help of hypergeometric functions.
The exact dynamics for populations of arbitrary size was only re-
cently computed (Chinellato et al., 2015). When several loci and
multiple alleles are taken into account the equilibrium condition
gives the expected genetic diversity under neutrality, which may
be taken as a null model for testing the effects of other evolu-
tionary forces (Crow and Kimura, 1970).

The consequences of random genetic drift were first worked
out by Wright and Fisher using a formulation currently known as
the Wright–Fisher process (Gillespie, 2004). From these early re-
sults, it became apparent how drift could generate genetic differ-
entiation between subdivided populations. Subsequently, the
study of genetic drift and population structure became entwined.
Contrary to early results that suggested that population structure
could have little effect on evolutionary dynamics (reviewed in
Ewens, 2004), it has been shown that the dynamics of allele fre-
quencies is sensitive to the spatial distribution of individuals in a
population. Specifically, the roles of mutation, selection and drift
can be affected by the geographical structure, and quantities like
fixation probability, time to fixation and allele distribution can
differ significantly from those derived for panmictic populations
(see for example Whitlock, 2003; Lieberman et al., 2005; Patwa
and Wahl, 2008; Constable and McKane, 2014; Allen, 2015).

Following Wright's (1931) classic island model, spatial struc-
ture has often been implemented by assuming that the population
is divided into islands of arbitrary sizes, or demes, which are
connected by migration. The connections can be seen as network
links, which can connect all demes between each other to form a
complete graph, or acquire more complex structures (see Con-
stable and McKane, 2014 for a recent overview on island models).
More recently, evolutionary graph theory has been introduced as a
framework that could provide a more general account of any ar-
bitrary population structure (Lieberman et al., 2005). In this case,
the individuals themselves are placed in the nodes of a network
and links represent interactions between pairs of individuals
(Lieberman et al., 2005; Dick and Whigham, 2005; Gordo and
Campos, 2006; Whigham and Dick, 2007; Tarnita et al., 2009;
Voorhees, 2013; Monk et al., 2014; Allen, 2015). The main focus of
these studies has been how population structure may affect the
drift-selection balance (Lieberman et al., 2005; Gordo and Campos,
2006; Whigham and Dick, 2007; Tarnita et al., 2009; Voorhees,
2013; Monk et al., 2014) and/or the fate of a single mutation
(Lieberman et al., 2005; Dick and Whigham, 2005; Whigham and
Dick, 2007; Voorhees, 2013; Monk et al., 2014; Allen, 2015). Not
much attention has been given to the balance between drift and
mutation and the properties of the stationary allele distribution
that arises in such process.

The aim of this paper is to quantify the effects of spatial
structure on the genetic variability and allele distribution under
the mutation-drift balance. We study a single biallelic gene in a
population of haploid individuals within the framework of a
Moran process on a network, for which exact results are known for
panmictic populations. In this model, an individual chosen at
random is substituted by a copy of another randomly chosen in-
dividual. Although the model has been proposed and studied in
the context of population genetics (Watterson, 1961; Cannings,
1974; Gladstien, 1978; Ewens, 2004), the process has found ap-
plications in other areas, such as the spreading of cancer (Durrett
and Moseley, 2015) and the evolution of altruism (Débarre et al.,
2014). We also use results from the voter model, a closely related
process developed in connection with the social sciences (Mobilia
et al., 2007; Harmon et al., 2015; Liggett, 2012; Yildiz et al., 2013;
Chinellato et al., 2015) with applications in physics (Mobilia, 2003;
Mobilia et al., 2007). In this case, individuals have to choose be-
tween two candidates in an election and their opinions are influ-
enced by other voters and external opinion makers. It has been
recognized that the Moran model bears a close resemblance to the
voter model. The connection was proven for well-mixed popula-
tions with mutations (de Aguiar and Bar-Yam, 2011) and for reg-
ular networks without mutations (Durrett and Moseley, 2015). In
particular, the phase transition from disordered to ordered states
exhibited by the voter model when the number of opinion makers
for each candidate is exactly one is mapped into the critical mu-
tation rate μ = N1/2c of the Moran model.

Our main interest is to understand how the threshold changes
for spatially structured populations. To that purpose, we place the
N individuals on a regular network, where each successive node is
connected to its k nearest neighbors, so that all nodes have the
same degree k. We study the configurations ranging from

= −k N 1 to k¼2, which correspond to the extremes of panmictic
to ring populations (in which individuals are in contact only with
their two nearest neighbors). In the first place, we provide a
connection between the Moran and voter models for networks of
arbitrary topologies. We show that a direct equivalence exists for
regular networks, where every node has the same degree k. Using
approximate solutions that are available for the voter model we
show that the equilibrium distributions of the Moran model
should not be sensitive to k, i.e. that the genetic distribution should
be independent of the population's spatial structure. However,
analytical results for a small network and numerical simulations
show that these approximations break down if k is small. For
sufficiently low values of k the critical mutation, above which
mutation dominates over drift, decreases substantially. As a con-
sequence, populations that display marked spatial structure can
have much higher diversity than expected for well-mixed ones.
We define a critical value kc as the degree for which the mutation
threshold drops to half of its panmictic value and show that kc
grows slowly as a function of N following a power law.
2. The voter model with opinion makers on networks

The voter model consists of a set of individuals who must
choose between two candidates (Liggett, 2012). Their opinion can
be influenced by their friends and by opinion makers, such as
journalists or politicians, whose power of persuasion toward one
of the candidates extends over the entire population. The opinion
makers are modeled by additional (external) nodes whose states
are fixed and that reach all voters equally, acting as a perturbation
to the intrinsic dynamics.

The population has N voters placed on the nodes of a network
and connected according to a specified adjacency matrix A, de-
fined by =A 1ij if the nodes i and j are connected and =A 0ij

otherwise. Each node has an internal state which can take the
values 0 or 1, indicating the intention of vote toward candidate
0 or candidate 1, respectively. The nodes are also connected to N0

nodes whose states are fixed at 0 and to N1 nodes whose states are
fixed at 1, representing the opinion makers. In what follows we
will refer as free nodes to those representing the set of voters and
as frozen nodes to those referring to opinion makers. The free
nodes can change their internal state by adopting the opinion of a
connected friend or that of an opinion maker as specified below.
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In order to study the dynamics of the system we introduce the
following notation: we designate as = ( … … )x x x x x, , , , ,i N1 2 to the
microscopic state of the network, in which the state of each node
is specified. In addition, we define the auxiliary microscopic state

= ( … − … )x x x x x, , , 1 , ,i
i N1 2 , corresponding to the state that differs

from x only at node i.
The network dynamics is as follows: at each time step a free

node is chosen at random. This node can maintain its state with
probability p, or copy the state of an other node with probability

− p1 . In the case it copies a state of another node, the latter is
randomly chosen between the neighbors (specified by the ad-
jacency matrix) and the frozen nodes. Because only one node is
updated at each time step, we can write the probability of finding
the network in state x at time +t 1 as follows:
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The first two terms in Eq. (1) take into account the probability
of having the network in the state x at time t, and correspond to
the cases in which (i) the selected node does not change its state
or (ii) the selected node copies the state of a neighbor whose state
is identical to its own state. The last term represents the prob-
ability of having the network in any of the states xi at time t, to
select node i to be updated and to choose a neighbor whose state
is precisely xi (so that the state x is recovered at time +t 1). De-
tailed calculations of the transition probabilities ( → )T x xi i and

( → )T x xi
i

i can be found in Appendix A. Introducing the explicit
expressions, Eq. (1) reads
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where = ∑k Ai j ij denotes the degree of the node i. In matrix form
this equation becomes =+P UPt t1 , where U is the evolution matrix,
whose transpose Ω contains the transition probabilities between
microstates (Ewens, 2004). In Section 6 we construct Ω explicitly
for a ring network with N¼4.
0 1 2 3 4
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m

Fig. 1. Top: Microscopic states in the 4 nodes ring and an example of possible
transitions. Bottom: Stationary distribution of macroscopic states for = ≡N N Np0 1 ;
blue squares: Np¼0.1; red circles: Np¼0.579; green triangles: Np¼2.5. The corre-
sponding mutation rates are 0.048, 0.112 and 0.278 respectively.
3. The Moran model with mutations in structured populations

The Moran model describes the evolution of a population of
haploid individuals bearing a single gene with alleles 0 and 1. In
the original model the dynamics consists in replacing an in-
dividual chosen at random by a copy of one of the other in-
dividuals, also picked at random. Here we introduce a slightly
different version of the dynamics in which an individual is chosen
at random and is replaced by its offspring. The offspring is ob-
tained by sexual reproduction between the expiring individual and
a mating partner which is also chosen at random among the re-
maining individuals. The offspring can keep the allele of the ex-
piring individual or that of the mating partner with 50% prob-
ability. In the case the offspring keeps the allele of the expiring
individual, the population remains unchanged. If it takes the allele
from the mating partner, the net effect is that the expiring in-
dividual is replaced by a copy of the latter. This alternative dy-
namics is identical to the Moran process except that it runs twice
as slow. The advantage is that we can now introduce mutations
during the birth process by allowing the allele received from either
parent to change with probability μþ from 1 to 0 and μ- from 0 to
1.

We employ the notation introduced in the previous section for
the microscopic state of the population, with x containing in-
formation about the haplotype of each individual and xi re-
presenting the state differing from x in the allele of the individual
i. Since at each time step only a single individual is replaced, the
equation for the probability of finding the population in state x at
time +t 1, ( )+P xt 1 , has a structure similar to Eq. (1):

∑ ∑( ) = ( ) ( → ) + ( ) ( → )
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+
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P x
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N
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Each of the two terms in Eq. (3) contains two contributions,
depending on whether the offspring takes the allele from the ex-
piring individual or from the mating partner. For zero mutation
rates the term corresponding to keeping the allele from the ex-
piring individual is analogous to the term ( )pP xt in Eq. (1) (by
taking =p 1/2). The explicit calculation and simplification of the
right-hand side of Eq. (3) is performed in Appendix B. The result
reads:
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where μ μ μ¯ = ( + )+ − /2.
4. Equivalence between the voter and the Moran models

The action of opinion makers in the voter model is not directly
equivalent to mutations in the Moran model. In the voter model
the copy of an opinion maker does not always correspond to a
change of state, since the state of the voter might already be
identical to the state of the opinion maker. In the Moran model, on
the other hand, a mutation always corresponds to a change of
state.

Despite this difference in the dynamical processes, the equa-
tions of the voter model can be mapped exactly into the equations
of the Moran model for regular networks. To establish this con-
nection we first replace ki by k in the factors ( + + )k N N1/ i 0 1 (in Eq.
(2)) and k1/ i (in Eq. (4)). Accordingly, the terms encompassed by
the summation symbols in Eqs. (2) and (4) become completely
equivalent by identifying
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In turn, the constant pre-factors are related by (see Appendix C)

μ= − ¯ ( )p . 6
1
2

The fact that not every action of an opinion maker corresponds
to changes in the state of the system is reflected in the fact that the
parameter p is mapped to a value that is less than 1/2. Whereas in
the Moran Model the offspring keeps the allele of each parent with
equal probability and is then subjected to mutation, in the
equivalent voter model the voter keeps its opinion with prob-
ability μ= − <p 1/2 1/2 and copies the opinion of a neighbor with
probability μ− = + >p1 1/2 1/2.

For symmetric processes where = ≡N N Np0 1 and μ μ μ= ≡+ − Eq.
(5) simplifies to
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For non-regular networks it is still possible to establish a map
between the two models. This can be accomplished by redefining
the intensity of the connection of the node i to the frozen nodes
according to its degree ki:
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In this case the perturbation caused by the frozen nodes can be
interpreted as acting on the links of the free nodes, so that the
more links a node has, the stronger the perturbation it experi-
ences. This modification does not alter the form of relation (6).
5. Phase transition in fully connected networks

Fully connected networks correspond to panmictic populations
in the Moran model. In this case the dynamics of the voter model
can be solved analytically (Chinellato et al., 2015). For = ≡N N Np0 1

the probability of finding the network with m nodes in state 1 is
given by the Beta-Binomial distribution

ρ ( ) = ( )
( + − )!( + − − )!

( − )! ! ( )
m N N

N m N N m
N m m

,
1 1

,
9FC p

p p

where ( )N N, p is a normalization factor. Defining =x m N/m and
taking the limit → ∞N , xm becomes a continuous variable

≤ ≤x0 1 and ρ converges to the Beta distribution (Kirman, 1993;
Gillespie, 2004)
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The system displays a phase transition at Np¼1. For >N 1p the
network is in a disordered state where, on the average, half the
nodes are in state 1 and half in state 0. The distribution is Gaussian
shaped and its variance narrows as Np increases. For <N 1p most
nodes are in state 0 or in state 1, describing an ordered scenario
with a U-shaped distribution (Crow and Kimura, 1970; Gillespie,
2004). At the phase transition ≡ =N N 1p c any number of nodes
can be found in state 1 (or 0) with equal probability.

According to Eq. (7) a transition occurs in the Moran model at
μ μ≡ = N1/2c (Gillespie, 2004). The ordered states of the network
represent near fixation of one of the alleles, whereas the dis-
ordered state corresponds to a random distribution of alleles in the
population. In the following sections we study the phase transition
for non-fully connected regular networks ( < − )k N 1 .
6. Example: a ring network with 4 nodes

For small regular networks the transition probabilities can be
calculated explicitly. Here we illustrate the calculation in the
context of the voter model for a ring network with four nodes.

According to Fig. 1, the transition matrix Ω can be written as

Ω =
( + + ) ( )N N

W
1

4 2
,

110 1

where W is given by

( )

=

( + )
+ + + ( + )

( + ) ( + + ) ( + )

( + ) ( + ) ( + )
( + ) + + +

+

W

a b
N N

N N N N N

a N N N N

b N N N N

N N N N N

N N

state 0 1 2 2 3 4
0 4 2 0 4 1 0 0 0 0

1 0 2 1 3 0 4 2 1 1 1 0 0

2 0 2 1 0 2 2 0 1 0 2 1 1 0

2 0 2 2 0 0 2 0 1 2 2 1 0

3 0 0 2 1 0 0 0 3 1 4 1 2

4 0 0 0 0 4 0 4 2 1

The evolution matrix U, corresponding to the transpose of Ω,
has one eigenvalue λ = 1. This eigenvector describes the stationary
state, and it has components



Fig. 3. Macroscopic probability distribution at equilibrium and critical point for
ring networks with N¼100 and degrees k¼30 (black squares), 20 (red circles), 10
(green triangles) and 2 (blue stars). The thick black line shows the flat distribution
obtained analytically for fully connected networks, = −k N 1. The distributions
correspond to 104 realizations of the dynamics.
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The stationary probability distribution of the macroscopic
states sm is computed as:
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Fig. 1 shows the stationary distribution of macroscopic states at

equilibrium for = =N N Np0 1 with Np¼0.1 (blue), Np¼0.579 (red)
and Np¼2.5 (green). Note that, contrary to the full connected case,
the transition between disordered states (green) and ordered
states (blue) does not go through the flat curve ρ ( ) = =+m 1/5

N
1

1
,

but displays a small amplitude oscillation around this value. For
our purpose, we define the critical point in this case to be the
value of Np for which ρ ρ( ) = ( )4 0 becomes equal to ρ ( )2 . The
corresponding value can be obtained analytically, and corresponds
to = ( − ) ≈N 2/5 6 1 0.579p .
7. Phase transitions in regular networks

In this section we show numerical simulations for regular
networks of size N where each node is connected to an even
number k of nearest neighbors (see Fig. 2). Specifically, we focus in
the transition between ordered and disordered states for

< −k N 1. We use the framework of the voter model, where ap-
proximate expressions are available for general networks, and
symmetric perturbations = ≡N N Np0 1 . We then translate the re-
sults to mutation rates using Eq. (7).

It was shown in de Aguiar et al. (2009) that for general net-
works the equilibrium distribution can be approximated by

ρ ρ( ) =
( − )
〈 〉 ( )

⎛
⎝⎜

⎞
⎠⎟m N m

N N
k

, ,
1

,
12

p FC
p

where we have indicated explicitly the value Np of the perturba-
tion and 〈 〉k is the average degree of the network. In this ap-
proximation the critical perturbation is given by ˜ = 〈 〉 ( − )N k N/ 1c .
Using Eq. (7) we find that μ = N1/2c , independent of 〈 〉k . Therefore,
in a first approximation, the genetic equilibrium distribution of a
Moran process is insensitive to the population spatial structure.
We show below that this approximation fails for small 〈 〉k .

Our results correspond to simulations for macroscopic states
Fig. 2. Regular networks wit
sm, defined as the configuration where ≤ ≤m N0 nodes are in the
state 1. We plot the probability ρ ( )m of finding the network in
state sm at equilibrium (Fig. 3). We find that the behavior obtained
analytically for N¼4 holds in the general case: for large Np the
distribution is Gaussian shaped and peaked at N/2. As Np decreases
the distribution becomes flat only if = −k N 1, given by
ρ ( ) = ( + )m N1/ 1 . For < −k N 1 the probabilities ρ ( )0 and ρ ( )N
increase faster than that of their neighbor macroscopic states and
become larger than ( + )N1/ 1 before the center of the distribution
flattens out. Therefore, the transition is smooth, and no true cri-
tical point exists. In order to compare the results of structured
populations with the panmictic case, we define, as in the previous
section, the transition point Nc as the value of Np where
ρ ρ( ) = ( )N0 becomes equal to ρ ( )N/2 .

Fig. 3 shows the distribution ρ ( )m at the transition point for a
regular network with N¼100 and several values of k. For large k,
ρ ( )m is close to the flat distribution displayed by fully connected
networks with Nc very close to ˜ = ( − )N k N/ 1c , as predicted in de
Aguiar et al. (2009), but for small k it differs significantly. The
transition from Gaussian like to U-shaped distribution goes
through a trimodal phase with peaks at m¼0, =m N/2 and m¼N.
The value of Nc is also consistently smaller than Ñc.

We have calculated Nc numerically for several values of k for
N¼20, 30, 50, 100, 200, 250, 300 and 350. For each value of N we
compared the result with the approximation Ñc computing the
ratio

( ) ≡
˜

( )
f N k

N
N

, .
13

c

c

Using these numerical values we obtained the power-law fit
h degrees k¼2, 4 and 6.
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Fig. 4. Ratio between ˜ = ( − )N k N/ 1c and numerically computed values of Nc (black
squares connected by lines) for N¼100. The red curve shows the numerical fit
using Eq. (14).
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Fig. 5. Critical degree kc as a function of N. The dots show the results calculated
directly from setting the numerically computed ( )f N k, to 2 and the line is Eq. (17).

Fig. 6. Mutation threshold μ ( )N k,c for N¼10000. For a given a connectivity and
mutation rate (blue star) the genetic diversity of the population can increase by
either increasing the mutation rate (vertical arrow) or decreasing the connectivity
(horizontal arrow).
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( ) = + ( − + ) ( )−f N k A N k k, 1 1 14k0

where = ±k 1.457 0.0070 . The amplitude = ( )A A N depends
weakly on N as ( ) = + +A N a a N a Na

0 1 2 3, with = − ±a 3.69 0.020 ,
= ±a 0.00012 0.000051 , = ±a 4.0 0.22 and = − ±a 0.016 0.0043 .

The fitted curve and the numerical results are illustrated in Fig. 4
for N¼100.

Substituting Eqs. (13) and (14) in (5) with = =N N Nc0 1 and
μ μ μ= =+ − c , we can calculate the analogous critical mutation rate
above which fixation of either allele is unlikely. The result is

μ ( ) =
[ + ( − ) ( )] ( )

N k
N f N k

,
1

2 1 1 ,
.

15c

The ratio between the panmictic critical mutation μ = N1/2cp and

the actual value μ ( )N k,c is

μ
μ ( )

= + ( − ) ( ) ≈ ( )
( )N k

N f N k
N

f N k
,

2 2 1 ,
2

,
16

cp

c

for large N.
In order to have a measure of how much spatial structure is

necessary to significantly affect the genetic distribution we define
kc as the degree where the critical mutation drops to half of its
panmictic value, which, according to Eq. (16), is equivalent to set

( ) =f N k, 2c . Using Eqs. (14)–(15) we obtain, in the limit of large N,

( ) = ( ) ( )⎡⎣ ⎤⎦k N NA N . 17c
k1/ 0

The accuracy of this formula is shown in Fig. 5.
Fig. 6 illustrates the behavior of μc as a function of k for a larger

population with N¼10,000 using Eqs. (15) and (14). The critical
mutation stays close to N1/2 for >k 2000. For = ≈k k 640c μc

decreases to half of its panmictic value and for ≈k 150 to a tenth
of it. For ≈k 20 μc drops to 1% of its panmictic value.

The connectivity needed for a substantially smaller value of the
critical mutation rate is small and grows slowly with the population
size, indicating that isolation by distance requires high degrees of
spatial structure, as suggested by numerical simulations using in-
dividual based models (de Aguiar et al., 2009; Martins et al., 2013).
As shown in Fig. 6, diversity can be increased either by increasing
the mutation rate at fixed k or by decreasing k at fixed mutation rate.
8. Discussion

The dynamics of allele frequencies in spatially structured po-
pulations is a key element for understanding evolution and has
been part of theoretical population genetics from its beginning
(Gillespie, 2004). In addition, incorporating spatial structure in
evolutionary models is part of the goal of making models more
realistic, allowing for a better description of natural populations
(Hey and Machado, 2003). Recently, evolutionary graph theory has
been suggested as a new approach to study the effect of popula-
tion structure on evolution (Nowak, 2006). However, it is still not
clear to what extent the results obtained within this framework
are comparable to other models that have been vastly explored in
the literature (e.g. island or stepping-stone models).

So far, models relying on evolutionary graph theory (Lieberman
et al., 2005; Whigham and Dick, 2005; Voorhees, 2013; Allen,
2015) have usually yielded qualitatively similar results when
compared to those known from other approaches (Nagylaki, 1980;
Whitlock and Barton, 1997; Whitlock, 2003) and reviewed in
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Ewens (2004) and Gillespie (2004). For beneficial or deleterious
alleles, spatial structure is known to affect evolutionary dynamics.
It can, for example, increase or decrease fixation probability de-
pending on spatial topology (Whitlock, 2003; Lieberman et al.,
2005; Voorhees, 2013). On the other hand, for neutral loci spatial
structure is thought to be less important. While it is known to
affect the time to fixation (Ewens, 2004; Whigham and Dick,
2005), fixation probabilities are expected to remain unchanged
(Ewens, 2004). Very low migration rates are required for the effect
of population subdivision to substantially affect the maintenance
of neutral variability (reviewed in Ewens, 2004), and its con-
sequences are often summarized by the calculation of an effective
population size in relation to some specific property of the pro-
blem in question (e.g. Wright's Fst; Ewens, 2004; Gillespie, 2004;
Charlesworth, 2009). Spatial variation in additional properties of
the model can increase the effect of spatial structure on the dy-
namics of neutral alleles. Using a Wright–Fisher type demic model,
Nagylaki (1980) has shown that spatially structured populations
displayed the same behavior as well-mixed ones if migration is
relatively strong, and only if it is symmetric and does not alter
deme size. However, drift can have increased importance in the
neutral dynamics of structured populations if there is spatial var-
iation in birth or death rate (Allen, 2015) or among deme variation
in immigration and emigration rates, extinction and colonization
(Whitlock and Barton, 1997).

In this work, we considered a single biallelic gene in a popu-
lation evolving under the Moran dynamics and distributed on a
regular network, where every node has the same k number of
neighbors. This arrangement is an idealized representation of a
population's spatial structure and models restrictions in gene flow
promoted by spatial distance. For = −k N 1 the network is fully
connected, representing a well-mixed population. The other ex-
treme, k¼2, corresponds to a ring and describes a sparsely con-
nected population, distributed, for example, along the shore of an
island. Networks with < < −k N2 1 interpolate between these
two cases and allow the study of the effects of gradually de-
creasing the amount of spatial structuring. Adopting the graph
theory approach allowed us to use an approximate solution known
for the closely related voter model. While previous models have
focused on the effect of population structure on fixation prob-
abilities or effective population size, we turned our attention to
the equilibrium distributions under the mutation–drift balance.
We show that spatial structure affects the shift in regimes ob-
served in the equilibrium distributions of allele frequencies, al-
lowing lower mutation rates to dominate over drift. In consonance
with classical results, extreme restriction in gene flow is required
for structuring to have an effect. In fact, the critical mutation rate
above which drift is overcome changes significantly only when the
degree of the network becomes very small, ≲k kc.

However, in contrast to other models in the literature, we
found that the transition between these regimes is qualitatively
different from that observed in well-mixed populations. The shape
of the allele distribution ρ ( )m at the transition μ μ= c has a curious
trimodal structure with a central broad peak at =m N/2 and two
narrow peaks at m¼0 and m¼N. In well-mixed populations, the
equilibrium allele distribution converges to a Beta distribution
which is equal to a standard uniform distribution at this transition
(both shape parameters equal to 1). To our knowledge, this is the
only case reported where the dynamics of structured populations
differs qualitatively from well-mixed populations.

If so, the role of mutation on diversity could be underestimated
and the interaction of new mutations occurring on the same site
and mutation reversion could be more important than we cur-
rently think. In well-mixed populations, mutation is expected to
dominate over drift when μ >N4 1 for diploid populations or
μ >N2 1 for haploid populations and much higher genetic diversity
is expected under neutrality. Estimates from nucleotide diversity
suggest that μNe is, typically, less than 0.024 for unicellular and
less than 0.008 for multicellular eukaryotes (Lynch and Conery,
2003) and Ne is expected to be several orders of magnitude smaller
than μ1/ . For all one knows, this is maybe the reason why this
transition in the mutation–drift balance has been less explored
when compared to other aspects of population genetics theory. In
our numerical simulations the degree of the network for which
the mutation threshold drops to half of its panmictic value was
found to depend on N k1/ 0, with k0 close to 1.5 (Eq. (17)). The
parameter k0 was estimated from simulations with ≤N 350. Si-
mulations for larger values of N would be required to better esti-
mate this parameter, however, the computational costs are pro-
hibitive at this point. Despite this limitation, it is already clear that
the sensitivity of the allele composition of the population to the
spatial structure requires an important reduction in the number of
potential mating partners of a given individual. However, at least
for vertebrate species, the number of potential partners accessed
by an individual may be surprisingly small. The number of males
surveyed by a female for 20 vertebrate species was found to be less
than 20 (mean¼4.5, median¼2.9) (Roff and Fairbairn, 2014). Al-
though these values are not directly comparable to the degree of
the network in our model, they can give some insight on how the
variables are expected to scale in real case scenarios. From our
results (Fig. 6), the critical mutation, μc, approaches zero as the
number of potential partners decreases. For example, if <k 20,
mutation dominates over drift when μ ≳N 0.005.

It is interesting to note that the effect of population structure in
enhancing the effective mutation rate would also apply to mi-
grations from an external source. If migrants with allele 0 or 1 ar-
rive with equal probability and replace residents at random loca-
tions, their effect would be similarly enhanced by the local spatial
structure.

For organisms with asexual reproduction, our models have an
alternative interpretation relating to random variation in the
number of descendants. Estimates of μNe are considerably higher
for prokaryotes. While it is well-recognized that the microbial
populations are spatially structured (Martiny et al., 2006), they are
not expected to be as structured as required for the effect seen in
our model to be relevant. In this context, however, it is worth
mentioning that transition between the two regimes in the mu-
tation–drift balance defines a critical mutation similar to the mu-
tation threshold leading to the error catastrophe due to the bal-
ance between mutation and frequency-independent (Eigen, 1971)
or frequency-dependent selection (de Aguiar et al., 2015) in the
Eigen model.
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Appendix A. Dynamics in the voter model

According to the dynamical rules the transition probabilities
can be written as:
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where ki is the degree of node i. This is the sum over all connected
neighbors identical in state with i divided by the total number of
neighbors. Similarly
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Using = −x x1i
i

i we find that the two transition probabilities are
identical. However, instead of putting them together we write

( )pP xt as ( ) − ( − ) ( )P x p P x1t t to obtain
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Appendix B. Dynamics in the Moran model

The contributions to ( )+P xt 1 in Eq. (3) can be divided into four
terms, so that

( ) = + + + ( )+P x P P P P . B1t 1 1 2 3 4

The first two are related to the transition ( → )T x xi i describing the
situations where
1: the previous state of the population is x and the offspring gets

the allele from the expiring individual;
2: the previous state is x and the offspring gets the allele from the

other parent.
The other terms refer to the transition ( → )T x xi

i
i when

3: the previous state is x i, i is chosen to be replaced and the off-
spring gets the allele from the expiring individual.

4: the previous state is xi, i is chosen to be replaced and the off-
spring gets the allele from the other parent.

Calculation of P1: Here we need to consider the probability of
picking individual i ( )N1/ times the probability that the offspring
takes its allele (1/2) and sum over all individuals. If xi¼1 it should
not mutate to 0 and if xi¼0 it should not mutate to 1. We obtain
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Calculation of P2: Here the offspring gets the allele of a con-
nected individual, which can have the same allele as the focal
individual or the opposite allele.
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From the first to second line we used that
| − | = − | − − |x x x x1 1i j i j and re-arranged the terms. We have also
defined

μ μ μ¯ = ( + ) ( )+ − /2. B4

and used ∑ =A kj ij i.
Adding P1 and P2: The terms without the adjacency matrix in P2

add to those in P1. If we factor out μ( − ¯)1 2 we get
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In order to compare with the network model we change the last
term as follows:
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Substituting above we get
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Compare with the first and second lines of Eq. (2) and we can see
the similarity already.

Calculation of P3: Here the previous state of the population is xi

and it differs from x by individual i, which has the opposite allele.
For the state xi to change to x the offspring must inherit the allele
from i and mutate. The probability of picking that particular in-
dividual i is ( )N1/ and we must sum over all possible states xi. The
probability that the offspring takes its allele is 1/2 and, in that case,
it must mutate to change the allele.

( )∑ μ μ= ( ) [ + − ]
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+ −P P x
N

x x
1

2
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t

i
i
i

i
i

3

Calculation of P4: The situation is similar to P3, but the offspring
gets the allele of a connected individual with allele different from
xi
i:
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where we used that = −x x1i
i

i and that | − | = − | − − |x x x x1 1i j i j .
Adding P3 and P4 amounts to factors of 2 in the terms in the last
line. Factoring out μ− ¯1 2 , we get
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The final result is
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Appendix C. Rates of mutation in the Moran and voter models

The connection between the voter and Moran models in reg-
ular networks requires that the number of opinion makers and the
mutation rates have to be related by Eq. (5). In order for the master
equations to be completely equivalent we also need to identify

μ−
( + + )

≡ − ¯
( )

p
N k N N Nk

1 1 2
2 C10 1

or

μ( − ) = ( − ¯)( + + ) ( )k p k N N2 1 1 2 . C20 1

Using Eq. (5) we obtain

μ
μ

+ = ¯
− ¯

N N
k4

1 20 1

or

μ μ( − ¯)( + ) = ¯N N k1 2 4 .0 1

Substituting this expression in (C2) we obtain
μ μ( − ) = ( − ¯) + μ̄ = ( + ¯)k p k k k2 1 1 2 4 1 2 .

Canceling k on both sides and rearranging the terms we obtain
μ= − ¯p 1/2 .
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