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Abstract

We give exact statistical distributions for the dynamic response of influence networks subjected

to external perturbations. We consider networks whose nodes have two internal states labeled

0 and 1. We let N0 nodes be frozen in state 0, N1 in state 1, and the remaining nodes change

by adopting the state of a connected node with a fixed probability per time step. The frozen

nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically

extending N0 and N1 to be smaller than 1 enables modeling the case of weak coupling. We solve the

dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution,

transition probabilities between any two states and the characteristic time to equilibration. Our

exact results are excellent approximations for other topologies, including random, regular lattice,

scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account

of the effect of topology on coupling to the environment. This model can describe a variety of

complex systems, from magnetic spins to social networks to population genetics, and was recently

applied as a framework for early warning signals for real-world self-organized economic market

crises.

PACS numbers: 89.75.-k,05.50.+q,05.45.Xt
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I. INTRODUCTION

Networks have become a standard model for a wealth of complex systems, from physics to

social sciences to biology [1–6]. A large body of work has investigated topological properties

[1, 3, 4, 7] including changes due to node removal [8–10]. The raison d’être, though, of

complex network studies is to understand the relationship between structure and dynamics

[11] - from disease spreading and social influence [12–16] to search[17] and time dependent

networks [18, 19]. Yet, dynamic response of networks under external perturbations has been

less thoroughly investigated [7, 20, 21]. In this paper we consider a simple dynamical process

as a general framework for the dynamic response of a network to an external environment.

We are interested in the dynamics of propagation of perturbations and in the process of

equilibration of the network as promoted by the external environment. The environment

is initially treated as a small portion of the network itself and is later generalized as an

external system.

We take the voter model [22] as our basic dynamical system. It consists of voters, rep-

resented by nodes on a network, having only two possible opinions, 0 or 1. Whereas each

voter may change his mind by randomly adopting the opinion of a connected neighbor, the

existence of voters that will not change their minds (zealots) may be seen as external per-

turbations to the subnetwork of undecided voters. This problem has been studied with a

single zealot in regular lattices [23] and with arbitrary number of zealots in fully connected

networks where analytic solutions were obtained in the limit where the number of voters go

to infinity [24].

Here we obtain complete and exact results in terms of hypergeometric generating func-

tions for the simplest case of fully connected networks and arbitrary number of voters and

zealots. We find a nontrivial dynamic behavior that can be divided into two regimes for small

and large perturbations. For large perturbations the environmental influence extends into

the system with a characteristic magnitude and a distribution which, in the thermodynamic

limit, becomes a Gaussian. For small perturbations, on the other hand, the probability

distribution of internal states displays a power law behavior peaked on the unperturbed

solutions. The boundary between these two regimes is characterized by a uniform distribu-

tion where all states are equally likely. The time scale of equilibration is determined and is

small for large perturbations and diverges inversely with the strength of the perturbation for
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small perturbations. Remarkably, simulations show that the same results apply for diverse

network topologies, though the constants in the distributions become renormalized based

upon topological properties. This makes our analytical results useful for a wide variety of

networked systems, from magnetic spins and population genetics to social networks and

opinion dynamics [28], and was also applied as a framework for early warning signals of

real-world sef-organized economic and market crises [29]. We note that a partial account of

these results are available in [30].

II. MODEL

Consider a network with N +N0 +N1 nodes. Each node has an internal state which can

take only the values 0 or 1. We assume that N nodes are free to change their internal state

according to the rule described below, while N0 nodes are frozen in state 0 and N1 nodes in

state 1. At each time step a random free node is selected and its state is updated as follows:

with probability p the state remains the same; with probability 1 − p the node copies the

state of one of its connected neighbors, chosen at random.

This system can model a number of situations. An example is the Ising model, where our

dynamics are equivalent to Glauber dynamics [25] for small external magnetic fields (h) and

all temperatures (T ) including the phase transition regime, for uniform connectivity lattices

in the thermodynamic limit. The Ising model parameters are J/kT → 1/(z + N0 + N1)

and h/J → (N1 − N0), where z is the number of nearest neighbors and J the nearest-

neighbor interaction strength. Relevant network structures include crystalline 3-D lattices

and random networks for amorphous spin-glasses; fully connected networks correspond to

long range interactions or the mean field approximation. The system can also model an

election with two candidates [26, 27] where some of the voters have a fixed opinion while

the rest change their intention according to the opinion of others. Another application is to

epidemics that spread upon contact between infected nodes (e.g., individuals or computers),

a case for which we would set N0 = 0 to study spreading dynamics. Finally, the model

can represent an evolving population of sexually reproducing (haploid) organisms where the

internal state represents one of two alleles of a gene [31, 32]. Taking p = 1/2, the update of a

node mimics the mating of two individuals, with one parent being replaced by the offspring,

which can receive the allele of either the mother or the father with 50% probability. Since
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a free node can also copy the state of a frozen node, the ratios N0/(N + N0 + N1 − 1) and

N1/(N +N0 +N1 − 1) can be interpreted as mutation rates. If N0 6= N1, the dynamics can

represent selection towards one of the alleles or mutational bias.

III. FULLY CONNECTED NETWORKS

For the special case of a fully connected network the nodes are indistinguishable and the

state of the network is fully specified by the number of nodes with internal state 1 [33].

Therefore, there are only N + 1 global states, which we denote σk, k = 0, 1, ..., N . The state

σk has k free nodes in state 1 and N − k free nodes in state 0. If Pt(m) is the probability of

finding the network in the state σm at the time t, then Pt+1(m) can depend only on Pt(m),

Pt(m+ 1) and Pt(m− 1). The probabilities Pt(m) define a vector of N + 1 components Pt.

The dynamics is described by the equation

Pt+1(m) = Pt(m)

{
p+

(1− p)
N(N +N0 +N1 − 1)

[m(m+N1 − 1) + (N −m)(N +N0 −m− 1)]

}
+

Pt(m− 1)
(1− p)

N(N +N0 +N1 − 1)
(m+N1 − 1)(N −m+ 1) +

Pt(m+ 1)
(1− p)

N(N +N0 +N1 − 1)
(m+ 1)(N +N0 −m− 1) .

The term inside the first brackets gives the probability that the state σm does not change

in that time step and is divided into two contributions: the probability p that the node does

not change plus the probability 1− p that the node does change but copies another node in

the same state. In the latter case, the state of the node is 1 with probability m/N , and it

may copy a different node in the same state with probability (m−1+N1)/(N+N0+N1−1).

Also, if the state of the selected node is 0, which has probability (N −m)/N , it may copy

another node in state 0 with probability (N −m− 1 +N0)/(N +N0 +N1 − 1). The other

terms are obtained similarly.

In terms of Pt this equation assumes the compact form

Pt+1 = UPt ≡
(
1− (1− p)

N(N +N0 +N1 − 1)
A

)
Pt

where the evolution matrix U, and also the auxiliary matrix A, is tri-diagonal. The non-zero
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elements of A are independent of p and are given by

Am,m = 2m(N −m) +N1(N −m) +N0m

Am,m+1 = −(m+ 1)(N +N0 −m− 1)

Am,m−1 = −(N −m+ 1)(N1 +m− 1).

The transition probability from state σM to σL after a time t can be written as

P (L, t;M, 0) =
N∑
r=0

brMarLλ
t
r . (1)

where arL and brM are the components of the right and left r-th eigenvectors of the evolution

matrix, ar and br, with br · ar =
∑N

m=0 armbrm = 1. Thus, the dynamical problem has been

reduced to finding the right and left eigenvectors and the eigenvalues of A.

It is easy to check by inspection of small matrices that the eigenvalues µr of A are given

by

µr = r(r − 1 +N0 +N1)

so that the eigenvalues of U are

λr = 1− (1− p)
N(N +N0 +N1 − 1)

µr.

This implies that 0 ≤ p ≤ λr ≤ 1. Because of Eq.(1), the unit eigenvalues completely

determine the asymptotic behavior of the system.

The eigensystem Aar = µrar leads to the following recursion relation for the coefficients

arm
m+1∑
j=m−1

Amj arj = µr arm (2)

with ar,N+1 = ar,−1 ≡ 0. To solve this equation we multiply the whole expression by xm,

sum over m and define the generating function pr(x) =
∑N

m=0 armx
m. Using relations such

as
∑N

m=0marmx
m = xp′r and

∑N
m=0mar,m+1x

m = p′r−pr/x+a0/x, where the prime signifies

differentiation with respect to x, we transform the recursion relation into the following

differential equation for pr:

x(1− x)p′′r + [(1−N −N0)− (1 +N1 −N)x]p′r+

[NN1 − µr/(1− x)]pr = 0.
(3)

To understand the asymptotic behavior of the system (µr = 0) we have to consider two

cases:
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(a) If N0 = N1 = 0 then µr = 0 leads to r = 0 or r = 1 [33]. In this case the differential

equation simplifies to xp′′r + (1−N)p′r = 0, whose two independent solutions are p0(x) = 1

and p1(x) = xN , corresponding to the all–nodes–0 or all–nodes–1 states respectively.

(b) If N0, N1 6= 0 then µr = 0 implies r = 0. In this case equation (3) is that of

a hypergeometric function F and we find p0(x) = F (−N,N1, 1 − N − N0, x), which is a

finite polynomial with known coefficients a0m. Normalizing this eigenvector, we obtain the

probability of finding the network in state σm at large times:

ρ(m) = A(N,N0, N1)
(N1 +m− 1)! (N +N0 −m− 1)!

(N −m)! m!
(4)

where

A(N,N0, N1) =
N ! (N0 +N1 − 1)!

(N +N0 +N1 − 1)! (N1 − 1)! (N0 − 1)!
.

Because of the frozen nodes, the dynamics will never stabilize in any state, but will always

move from one state to another, with mean occupation number m̄ = NN1/(N0 +N1). The

surprising feature of this solution is that for N0 = N1 = 1 we obtain ρ(m) = 1/(N + 1), for

all values of N . Thus all states are equally likely and the system executes a random walk

through the state space.

The dynamics at long times is dominated by the second largest eigenvector with eigenvalue

λ1. For large networks λt1 ≈ e−t/τ where

τ =
N(N +N0 +N1 − 1)

(1− p)(N0 +N1)
(5)

is the relaxation time. Equations (4) and (5) are important results of this paper.

We obtain a complete description of the dynamics by deriving all eigenvectors with µr 6= 0.

The differential equation for pr(x) can still be solved in terms of hypergeometric functions:

pr(x) =
F (1− r −N0, 1− r −N −N0 −N1, 1−N −N0, x)

(1− x)r−1+N0+N1
. (6)

Expanding the numerator and denominator in Taylor series gives the coefficients arm. Al-

though they can easily be written down explicitly, we will omit their expressions, since they

are not particularly illuminating.

The calculation of the left eigenvectors proceeds similarly. Defining the generating func-

tion qr(x) =
∑N+N0+N1

m=1−N1
brmx

m we obtain a differential equation for qr whose solution is

qr(x) =
x1−N1 F (1− r −N1, 1− r −N −N0 −N1, 1−N −N1, x)

(1− x)r+1
. (7)
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If N0 = N1 = 0 this solution is not valid for r = 0 or r = 1, since the matrix AT becomes

singular. In this case the two (unnormalized) left eigenvectors are given by b0,m = 1 and

b1,m = N − 2m. For all other cases the solution is obtained from the expansion of qr(x)

in power series. Once again we shall not write down the expansion coefficients explicitly.

Equations (6) and (7) complete the dynamical solution of the problem.

In the thermodynamic limit N → ∞ we can define continuous variables x = m/N ,

n0 = N0/N and n1 = N1/N and approximate the asymptotic distribution by a Gaussian

ρ(x) = ρ0 exp [−(x− x0)2/2δ2] with x0 = n1/(n0 + n1), ρ0 = 1/
√

2πδ2 and

δ =

[
n0n1(1 + n0 + n1)

N(n0 + n1)3

]1/2
. (8)

In the limit where n0, n1 >> 1 the width depends only on the ratio α = n0/n1 and is given

by
√
α/N/(1 + α). In particular, for n0 = n1 >> 1, the width tends to 1/(2

√
N).

The problem we just solved can be generalized to treat an external reservoir weakly

coupled to the network of N nodes. We note that the differential equations for the generating

functions pr(x) and qr(x) remain perfectly well defined if N0 and N1 are real numbers.

The solutions for the generating functions also remain the same, with the difference that

factorials must be replaced by gamma functions. Since the numbers N0/(N +N0 +N1 − 1)

and N1/(N + N0 + N1 − 1) represent the probabilities that a free node copies one of the

frozen nodes, small values of N0 and N1 can be interpreted as representing a weak connection

between the free nodes and an external system containing the frozen nodes. The external

system can be thought of as a reservoir that affects the network but is not affected by it.

Alternatively, we can suppose that there is a single node fixed at 0 that is on for only a

fraction N0 of the time and off for the fraction 1−N0, and similarly for a single node fixed

at 1.

Figure 1 shows examples of the distribution ρ(m) for a network with N = 100 and various

values of N0 and N1. Numerical simulations displaying similar results have been described

in [34]. For N0 = N1 a phase transition between disordered and ordered states occurs in the

limit N → ∞ at N0 = N1 = 1: for N0 = N1 >> 1 about half the nodes are in state 0 and

half in state 1, similarly to a magnetic material at high temperatures. For N0 = N1 << 1, on

the other hand, the distribution peaks at all nodes 0 or all nodes 1, similar to a magnetized

state at low temperatures.

Figure 2 shows an example of the time evolution of the probability density for a fully
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FIG. 1. Asymptotic probability distribution for a network with N = 100 nodes and several values

of N0 and N1.

connected network compared to numerical simulations. The evolution from the initial to the

asymptotic time-independent distribution is the analog of an equilibration process promoted

by the external system.

For small values of N0 and N1 (<< 1/ lnN), we can obtain a simplified expression for

ρ(m):

ρ(m) ≈ N1N0

N0 +N1

[
1−N1 lnN

m1−N1
+

1−N0 lnN

(N −m)1−N0

]
. (9)

Thus ρ(m) displays a power law behavior on both ends of the curve: 1/m for m close to 0

and 1/(N −m) for m close to N (see, for instance, the curve with N0 = N1 = 0.5 in Fig.

1). Since the relaxation time τ is proportional to 1/(N0 + N1), the equilibration process

becomes very slow in this limit.

IV. OTHER TOPOLOGIES

Fully connected networks are rarely found in nature. On the contrary, most networks

representing social, biological or physical systems have complex topologies where the dis-

tribution of links is highly inhomogeneous. For these networks, which are not fully con-

nected, the effect of the frozen nodes is amplified and can be quantified as follows: the
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FIG. 2. Time evolution of the probability distribution Pt for a network with N = 100 and N0 =

N1 = 5. The histograms show the average over 50,000 actual realizations of the dynamics and the

solid line shows the analytical result.

probability that a free node copies a frozen node is Pi = (N0 + N1)/(N0 + N1 + ki) where

ki is the degree of the node. For fully connected networks ki = N − 1 and we obtain

PFC ≡ (N0 +N1)/(N0 +N1 +N − 1). For general networks an average value Pav can be cal-

culated by replacing ki by the average degree kav = 1/N
∑

i ki. We can then define effective

numbers of frozen nodes, N0ef and N1ef , as being the values of N0 and N1 in PFC for which

Pav ≡ PFC . This leads to

N0ef = fN0, N1ef = fN1 (10)

where f = (N−1)/kav. For well behaved distributions, corrections involving higher moments

can be obtained by integrating Pi times the degree distribution and expanding around kav.

Figure 3 shows examples of the equilibrium distribution attained by networks with dif-

ferent topologies. Panel (a) shows a random network with connection probability between

nodes of pc = 0.3 (nodes have 30 connections each on the average). The theoretical result

is given by Eq. (4) but for N0ef = N1ef = 17 ≈ N0/pc. The larger effective values of N0
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FIG. 3. Asymptotic probability distribution for networks with different topologies. In all cases

N = 100, N0 = N1 = 5, t = 10, 000, and the number of realizations is 50, 000. The theoretical

curve is drawn with effective numbers of frozen nodes N0ef and N1ef : (a) random network N0ef =

N1ef = 17; (b) regular 2-D lattice N0ef = N1ef = 150; (c) scale-free N0ef = N1ef = 80; (d) small

world network N0ef = N1ef = 143.

and N1 in this case are easy to understand: the weaker propagation of the perturbations

resulting from the smaller connectivity is compensated by an increase in the effective size

of the perturbation. Panel (b) shows the probability distribution for a 2-D regular lattice

with 10× 10 nodes. This time the theoretical result fits the curve only if Nef0 = Nef1 = 150

which, once again is of the order of 99N0/4, where 99 is the number of neighbors in the

fully connected case and 4 the number of neighbors in the regular lattice. For a scale-free

network (panel (c)) grown from an initial cluster of 6 nodes adding nodes with 3 connections

each following the preferential attachment rule [1], the effective values of N0 and N1 are 80.

Since the average number of connections per node in this network is close to 3, the linear

rule applied for the random and regular networks would result in Nef0 = Nef1 = 165. Thus

the scale-free topology plays an important role in propagating the perturbations more effec-
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tively than in regular networks. Finally, panel (d) shows a small world version of the regular

lattice [35], where 30 connections were randomly re-connected, creating shortcuts between

otherwise distant nodes. The average number of connections per node is the same as in the

regular lattice, but the effective size of the perturbations decreases to Nef0 = Nef1 = 143,

since the shortcuts promote faster propagation.

The fit of equilibrium distributions by effective values presented in Fig.3 holds for unequal

values of N0 and N1. These effective values can also be used to describe the dynamics quite

accurately, as long as the initial state σi is constructed by randomly assigning i nodes with

state 1 and N−i with state 0. However, if the initial state is specially prepared, for instance,

assigning the value 1 to the most connected nodes of a scale-free network, the short time

dynamics can be quite different from the theoretical prediction.

V. CONCLUSION

In this paper we considered a simple dynamical process on networks where binary states

are assigned to nodes. The state of the nodes may change stochastically depending on the

state of their neighbors and on external perturbations represented by the frozen nodes. We

have solved the problem for fully connected networks and provided approximate formulas

for other topologies by rescaling the perturbation.

The expression (4) gives the probability distribution of nodes in state 1 as a function of

the three parameters N , N0 and N1. It can also be written in terms of the total perturba-

tion N1 + N0 and the bias towards one of the states, N1 − N0, similar to temperature and

magnetic field in the Ising model. Applications of this expression in population genetics [32]

and financial markets [29] have been pointed out recently.
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