PHYSICAL REVIEW A

VOLUME 47, NUMBER 3

MARCH 1993

Quantum signature of a period-doubling bifurcation and scars of periodic orbits
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The density of states is numerically calculated for a nonintegrable Hamiltonian whose shortest-
periodic-orbit family undergoes a period-doubling bifurcation in the energy interval considered.
Smoothing the density using a suitable width 8E, oscillations are observed due to only the family of
shortest periods or also its period doubling. The period-doubling resonance results in a higher average
amplitude of the corresponding spectral oscillations than for the primitive orbit. The main periodic fam-
ilies produce strong scars in the wave intensities. Projections of the Husimi distributions also exhibit

scars that are, however, not so clear.

PACS number(s): 03.65.Sq, 05.45.+b

I. INTRODUCTION

In the past two decades a great amount of work has
been done to understand the implications of the Gutzwill-
er trace formula [1] in a number of situations. The main
difficulty resides in the intrinsic structure of the trace for-
mula, which connects the semiclassical density of states
to a sum over all the periodic orbits of the associated
classical problem. If the exact spectrum is usually
difficult to obtain, so is the totality of the classical period-
ic orbits. Te influence of the periodic orbits in the eigen-
states seems to be even more complex. Scars were first
reported by Heller [2] in the individual eigenstates of the
Bunimovich billiard, and a theory was proposed in terms
of the averaged local density of states [3]. More accurate
results were then obtained by Bogomolny (4] for the
probability density in the coordinate representation. Fi-
nally, Berry [5] lifted the results of Bogomolny to the
phase space via the Wigner function. All of these
theories, however, rely strongly on energy averages, and
do not apply to individual states. It is therefore impor-
tant to provide numerical examples of the scarring effect
to guide the development of theories.

We consider here a smooth, nonintegrable, Hamiltoni-
an (“soft chaos”) in contrast to the existing studies that
refer to billiards and/or systems exhibiting a symbolic
code for their periodic orbits. In the extreme case of a se-
parable Hamiltonian, the Gutzwiller formula can be
shown to agree with the Einstein-Brillouin-Keller torus
quantization conditions [6], which greatly simplifies the
calculations. However, in the general nonintegrable case,
where chaos and tori are intermixed, the only known way
to overcome the classical complexity is by smoothing [7]
the density of states. This procedure, although poorer in
resolution, opens the possibility of cutting off the contri-
bution of long periodic orbits, leading to a more treatable
trace formula.

In this paper we investigate, numerically, the smoothed
density of states for the smooth, nonintegrable, Hamil-
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tonian

H=(pl+p})/2+V(x,y), (1)
with

Vix,p)=(y —x2/2)*+0.05x2 . 2)

The simplest periodic orbits of this system have been
extensively studied by Baranger and Davies [8]. This po-
tential (named NELSON) has a minimum at zero energy,
and due to the reflexion symmetry in both x and p,, the
plane x =0, p, =0 is an invariant plane in the phase
space. Since the potential is harmonic along this plane, it
is foliated by a family of “vertical” (y direction) oscilla-
tions of constant period 7=27/V2. According to the
numerical study of Baranger and Davies [8], this is the
family of orbits with the shortest period in the energy in-
terval (0.0,0.300). In this interval, the vertical family un-
dergoes three main bifurcations: a period-quadrupling at
E ~0.019, a period-tripling at E ~0.077, remaining ellip-
tic in both cases, and finally, a period-doubling at
E ~0.136, then becoming weakly hyperbolic. (We shall
call these bifurcated families V4, V3, and V2, respective-
ly.) These families have the shortest periods in the
above-mentioned energy interval. Another important
family of this system is the “horizontal” family, so called
because it starts out as a harmonic oscillation in the x
direction. Its period is always greater than the period of
V4, and in that energy interval it undergoes two consecu-
tive isochronous bifurcations [8,9], one of the generated
families being elliptic.

Our purpose in this paper is to identify the signature of
some of these families in the quantum spectrum and
eigenfunctions, including the classical phenomenon of bi-
furcation. This will be done by controlling the smoothing
of the spectral density, as in the previous work of Malta
and Ozorio de Almeida [10]. We also present the Husimi
distributions projected on both (x,p, ) and (y,p,) planes.
These projections may provide information about the
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scarred states but, in order to obtain fine details, a long
computation time is required. The wave intensities, on
the other hand, can be calculated with very good pre-
cision and much less effort.

This paper is organized as follows. In Sec. II we
present the smoothed density of states and show the sig-
nature of the classical orbits and bifurcations in its
(discrete) Fourier transform, using Gaussian windows
[11]. In Sec. III we show scars of periodic orbits in the
averaged wave intensities and in the Husimi distributions.
The conclusion is given in Sec. IV.

II. THE SMOOTHED DENSITY OF STATES

The eigenvalue problem of the NELSON quantum sys-
tem,

H;(x,y)=E ¥, (x,y),

was solved using the expansion

M N
Gixy)= 3 3 CPY T, (by_, ) @)

N=0n=0

where ¢,(x) and ¢,,(y) are the eigenfunctions of the
one-dimensional harmonic-oscillator Hamiltonians H,
and H,,

H,=p?/2+0.05x*, H,=pl2/2+y?. )

The prime in the summation meaning that only even n
(even parity) or only odd » (odd parity) are included.

The truncation value N =M, in the expansion (3), is
chosen according to the energy interval to be investigat-
ed, for a given 7. Semiclassical results are obtained by us-
ing a small %, and for a given energy interval, the smaller
#i is, the larger M has to be. We used M =118 and diago-
nalized a matrix 3600X3600. The calculation has been
done for #=6.0X 1073 and 9.0X 103, for which the lev-
el spacing of the vertical harmonic oscillator, fiw,, is ap-
proximately 8.5X 1073 and 12.7X1073, respectively.
For the truncation value used, the eigenvalues contained
in the energy interval (0,0.200) are good. The corre-
sponding eigenfunctions are fairly good for the larger
value of 7 used, but are not so good for the smaller value
(of course, the lower the eigenvalue, the better the corre-
sponding eigenfunction).

The density of states (histograms), as a function of the
energy E, has been calculated in the above energy inter-
nal, with various degrees of smoothing. These densities
have been Gaussian smoothed, with half width 8E, in or-
der to eliminate spurious fluctuations that arise when the
number of states contained in 8§ E is small.

According to the periodic orbit theory, the density of
states may be separated in two terms [12],

d(E)=d,(E)+d,(E) , 5)

where d, (E) is the average density of states (the so-
called Weyl term) corresponding to zero period orbits,
and d . (E) is the oscillatory term which incorporates the
contribution of the periodic orbits of period greater than
zero. The contribution to d . (E) of the lowest period or-
bits may be analyzed numerically by appropriately choos-
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ing the value of 8E used in the calculation. As the verti-
cal family has the lowest period, d . (E) will exhibit no
oscillations, as #—0, if 8E># (o, =v"2) (for small
values of #, there will be no oscillations only if 8E is fairly
larger than 7w,). In order to observe the contribution of
the periodic family V2, resulting from a period-doubling
bifurcation of the vertical family, 8E must be smaller
than #iw, /2. For 8E slightly smaller than 7w, /4, in the
energy interval under consideration, d . (E) will have
contributions of the vertical family and of all the periodic
families resulting from a period-n (period-2 denotes dou-
bling, period-3 denotes tripling, etc.) bifurcation, n =4, of
this vertical family, i.e., families V2, V3, and V4.

The smoothed level densities d (E), for #=6.0X1073
and 9.0X1073, were calculated using, respectively,
8E=1.0X10"2 and 2.0X 1072, It should be mentioned
that these densities were obtained numerically, at energy
points separated by e=1.0X 10™% and, in all the figures
below, a line was drawn joining consecutive points.

The term d_(E) is obtained by subtracting the Weyl
term d,,(E) from the level density d (E). The Weyl term
has been obtained numerically, using 8E =40.0X 1073
(see Fig. 1). It should be mentioned that, for the
NELSON potential, the Weyl term may be calculated
analytically and it is a linear function of E [in fact, this
linear behavior of d,,(E) is used to verify the appropri-
ateness of the truncation value N =M for the energy in-
terval under investigation], but we have preferred to use
the numerical result for numerical consistency reason.
The ratio of the angular coefficients of the d,,(E) terms
displayed in Fig. 1 is equal to the ratio of the correspond-
ing %72, in agreement with the analytical result.

In Figs. 2(a) and 2(b) we display the term d . (E), ob-
tained by subtracting the corresponding Weyl term in
Fig. 1, from the corresponding d (E). In the semiclassical
periodic orbit theory, the oscillations exhibited by d . (E)
in Figs. 2(a) and 2(b), should be due to the contributions
of the periodic orbits with periodic up to 27#/8E. The
8E value used, for both values of #, is smaller than
fiw, /4, therefore, the vertical orbit and the orbits of V2,
V3, and V4 (plus all their mth repetitions for which
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FIG. 1. The Weyl term d,,(E) for A=6.0X 10" (steeper
curve) and for #=9.0X 1073 (the oscillations are due to the
Gaussian smoothing).
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m7=27#/8E) should be contributing to those oscilla-
tions. In the energy region after the period-doubling bi-
furcation has occurred, the main contribution should
come from V2, as the vertical orbit becomes hyperbolic
after this. Nevertheless, the contribution of the vertical
orbit remains significant even after its period-doubling bi-
furcation, because its instability sets in very slowly. The
contributions of V3 and V4 are not so significant since, as
already mentioned, the vertical orbit remains stable at
those bifurcations.

In order to verify all those facts mentioned above, we
made a Fourier analysis of d . (E) in Figs. 2(a) and 2(b),
using Gaussian windows [11]. Considering the whole en-
ergy interval (a single window), the Fourier analysis

N—1

F(vp)= 3 Wi(n)d,(ne)exp(—2mivine) ,
n=0

vi,=k/(Ne), k=0,...,N—1

with the Gaussian window [11]

W (n)=exp[ —18.0(n /N)?] ,
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FIG. 2. (a) d.(E) for #=6.0X 1073, using SE=1.0X 1073,
(b) dy(E) for #=9.0X1073, using 8E=2.0X10"3. One
should note that 7,,=2##%/8E is smaller here than in (a) result-
ing in the smaller frequency and amplitude of the fluctuations.

shows that, in both cases, the main frequency contribut-
ing is 2(%w, )~1, but the frequency (), )~ ! still contrib-
utes significantly. This is displayed in Figs. 3(a) and 3(b),
where we plot |F(v)|?Xwv. As for the frequencies
3(fiw, )~ ! and 4(tiw, )~ 1, their contributions are small, as
expected [it should be mentioned that the single window
Fourier analysis does not exhibit peaks at these frequen-
cies if (#iw, /3) <8E <(#w, /2)]. The contribution of the
horizontal family (v€[535,555] for #=6.0X1073,
v€E€[357,370] for #=9.0X 1073) is also very small.

It is easy to calculate the amplitude of the oscillations
for each of the periodic orbits viewed through the Gauss-
ian window employed in analyzing the spectrum. Figure
4 shows the Gutzwiller amplitude

r
{sin[H(E)/2]}17/?

for V, 2V, and V2, where J3(E) is the stability angle of the
orbit. The amplitude of the second repetition of the V or-
bit exhibits a singular peak at the period-doubling bifur-
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FIG. 3. (a) Single Gaussian window Fourier analysis of
d,.(E) in Fig. 2(a). The arrows indicate the frequencies
k(#w,)”", k=1,2,3. (b) Single Gaussian window Fourier
analysis of d . (E) in Fig. 2(b). The arrows indicate the frequen-
cies k(ﬁcoy)",k=l,2,3.
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FIG. 4. The Gutzwiller amplitudes. The continuous line is
the second repetition of V (2V), long dash is V, short dash is V2,
and dot-dash is the sum of V2 and 2V.

cation point (E =~0.136). The theory of Ozorio de Al-
meida and Hannay [13] substitutes this singularity by a
finite peak, but the general picture is the same. It is,
therefore, satisfying that Figs. 2(a) and 2(b) indeed
confirm the prediction that the period-doubled orbit has
a larger average amplitude than the primitive one, thus
indicating the importance of the bifurcated orbit V2. It
should be noted that the spectrum was not resolved to the
point of distinguishing the stable period-doubled orbit
from the second repetition of the unstable vertical orbit.
Of course, it would be worthwhile to determine the
Fourier amplitudes of the spectrum, for narrow energy
windows, as a function of the center of the window.
However, though we can discern the broadened peaks for
V and V2 (Fig. 5) the amplitudes were found to fluctuate
erratically. A consistent picture of the energy evolution
of the oscillations requires that the spectrum be obtained
for considerably smaller value of Planck’s constant, so
that the density of states within each oscillation exhibits
less fluctuation. We hope to be able to reveal the detailed
behavior of the orbit amplitude as a function of the ener-
gy in future calculations.
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FIG. 5. Fourier amplitude, as a function of E, using Gauss-
ian windows of width AE =0.05. The continuous line is the
amplitude of V2 and the dashed line is the amplitude of V.
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III. AVERAGED WAVE INTENSITIES
AND HUSIMI DISTRIBUTIONS

The classical structure, underlying the wave functions
in the semiclassical limit, may be observed through the
wave intensities |¥;(x,y)|? and also through the Husimi
[14] distributions, h;(x,y,p,,p,) (a Gaussian smoothed
version of the Wigner distribution).

We are interested in detecting the existence of scars
due to the vertical family, and its period-n bifurcations.
Therefore we have calculated the state density distribu-
tion averaged over y, given by

pix)= [ 1;(x,9)?dy

i o N N N'—N+n,N
~ 3 3 SepNey NN
N=0N'=0n=0 ! '

X¢n(x)¢N'——N+n(x) . (6)

Only even-parity states may exhibit a scar due to the
vertical family as the odd-parity states are zero at the ori-
gin. Both the periodic-doubled and the period-
quadrupled orbits are symmetric librations, while the
period-tripled orbits are symmetric rotations (there is
also a pair of period-tripled asymmetric librations which
are hyperbolic).

The averaged wave intensity p,;(x) for the eigenstates
corresponding to the eigenvalues 0.1234, 0.0401, and
0.1195 are shown in Figs. 6, 7, and 8, respectively
(=9.0X1073). The scar seen in Fig. 6 is immediately
identified as due to the vertical family. The set of states
exhibiting this scar are separated in energy by #iw,. The
scar seen in Fig. 7 can also be identified easily as due to
the horizontal family since it belongs to a set of states
that acquire a pair of oscillations as the energy is in-
creased, the energy difference of the first two states being
approximately 2#iw,. The scar seen in Fig. 8 is exhibited
by a set of states separated in energy by #iw,. To each
member of this set there corresponds a member of the set
exhibiting the vertical orbit scar (Fig. 6). It should be
noted that, although p;(x) is not specially suited to indi-
cate the presence of periodic families other than the verti-
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FIG. 6. p;(x) for the with E =0.1234,

eigenstate
#=9.0X 1073, The dotted curve is the Weyl (ergodic) averaged
wave intensity.
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10

FIG. 7. p;,x) for the

eigenstate
#=9.0X107>. Thedotted curve is the Weyl (ergodic) averaged
wave intensity.

with E =0.0401,

cal one, the plots of p;(x) in Figs. 7 and 8 are important
in order to compare the features of their corresponding
families against the vertical family and the Weyl density.
In order to confirm the above analysis we also calculat-
ed the projected Husimi distribution for the eigenstates,
as the Husimi distribution, being a function of four vari-
ables is very difficult to visualize (and to compute). The
projections of h;(x,y,p,,p,) on a canonically conjugate
pair (x,p,) or (y,p,) are obtained by integrating over the

other pair. Let |z, ) and |z,) be the usual coherent states

for the oscillators of Eq. (4), with
2, =(VO0.1x +ip, /V0.1)/V2 ,

— — (7)
z,=(V2y+ip,/V2)/V2 .
Then, the Husimi distribution A; can be written as
hy=1{¢;lz,z,)|?
M N 2
~| 3 3CPN ™ nlz (N —nlz,) | , (8)
N=0n=0
where
(nlz)=(z/%)"exp(—zz*/2#)/V'n! . 9)
0.35 T T 1 1 1 71 T T T T 1 1 T
0.30- -1
0.25[ ]
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0.05} . =
0001 /) L1
-16 -12 -8 12 16
FIG. 8. p;(x) for the eigenstate with E =0.1195,

#=9.0X10">. The dotted curve is the Weyl (ergodic) averaged
wave intensity.
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The projection of 4; on the plane (x,p, ) is given by
2

M p—
hi(z)=3 | 3 'CP¥nlz,) (10)
N=0 | n=0

The projection of the plane (y,p, ) is given by a similar ex-
pression.

The projections 4 (z,) and h(z,) were calculated for a
large number of eigenstates. For the eigenstates exhibit-
ing the scar shown in Fig. 6, the Husimi projection & (z, )
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FIG. 9. The Husimi projections k,(z,) and h;(z,) for the
state in Fig. 6.
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(Fig. 9) has a single, narrow, peak at the origin. For the
eigenstates exhibiting the scar shown in Fig. 8, the
Husimi projection A (z, ) also has a single (broader) peak
at the origin (Fig. 10). Now, for the former type of eigen-
states, the Husimi projection A (z,) exhibits peaks along
the y axis only (see Fig. 9), while for the latter type of
eigenstates, it also exhibits peaks away from the y axis
(see Fig. 10), indicating that this set of states has some
quanta (an even number, due to the x«>—x symmetry) in
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FIG. 10. The Husimi projections #,(z,) and h,(z,) for the
state in Fig. 8.
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the horizontal direction (remember that classically the
orbit is a horizontal oscillation only at very low energies).
In Fig. 11 we display the projected Husimi distributions
for the eigenstate whose wave intensity is shown in Fig. 7
(horizontal family).

Following Mahoney [15], we associate with each pair
of eigenstates n,n’ a period and a mean energy, defined as

Ton=k2wh/|E,—E,| , e, ,=(E,+E,)/2, (11)
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FIG. 11. The Husimi projections h;(z,) and h;(z,) for the
state in Fig. 7.
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FIG. 12. E-7 plots (see description in the text).

respectively. We may then construct E-7 plots as in the
classical case [8,16]. In Fig. 12 we display the
E, , +1-Tnn+1 Dlot (k =1) for the set of states exhibiting
the scar of the V family (Fig. 6). These points lie on the
vertical line 7’=(27Tcoy)—1, which is the (classical) E-T
plot of the V family. Notice that, although the Gutzwill-
er trace formula predicts an energy level whenever a
stable periodic orbit ‘“‘quantizes,” the family of eigen-
states associated with the V family remains unaffected
into the unstable regions. In Fig. 12 we also display the
E, -7, plot (k =2) associated with the energy separa-
tion between the states in the set above and the corre-
sponding state in the set characterized by the scar shown
in Fig. 8 (points on the other curve). The continuous
curve that would fit these points has approximately the
same slope of the E-r plot of the (classical) horizontal
family [8], but would lie above it. The E, , .{-7,, ,, +; plot
for the set of states exhibiting the scar of the horizontal
family (Fig. 7) lies closer to the classical horizontal family
plot, but does not coincide with it. It should be men-
tioned that this plot tends to the classical one as # gets
smaller.

IV. FINAL DISCUSSION

In the previous work of Malta and Ozorio de Almeida
[10], all attention was directed at the effect, on the spec-
trum, of the first iteration of the shortest periodic orbit.
The above results extend our view to higher iterations
and their bifurcation resonances. The computational
difficulty that arises is that the number of levels within
these higher frequency oscillations of the spectrum is
smaller, so that even Gaussian smoothing may become
unreliable. This difficulty prevents, in particular, the
comparative analysis of the contribution of each periodic
family to d . (E) as a function of the energy, as shown in
Fig. 5. Fortunately, the peak at 2/(#,), shown in the
single window analysis [Figs. 3(a) and 3(b)], is sufficiently
pronounced to strongly indicate the importance of the
contribution of the bifurcated orbit V2.

It is not only in the analysis of the spectrum that it is

0.4

0.3

FIG. 13. p(x) for an eigenstate in the chaotic region
(E =0.1861), well above the period-doubling bifurcation
(#=9.0X1073).

important to understand the features due to the classical
bifurcations, which are avoided in the common use of
homogeneous Hamiltonians. In the scarred states, the
important qualitative features may be traced to different
origins within the regular region at low energies. Thus
we find that the sequence of states corresponding to the
vertical orbit (Fig. 6), with only zero-point horizontal os-
cillation, survive neatly into the unstable region with no
qualitative change in shape (confirming a previous private
communication of Leboeuf and Saraceno). This is not
the case of the next symmetric sequence of states (two
horizontal quanta, scar of the type shown in Fig. 8).
Though there is still a regular sequence in the chaotic re-
gion, with the wave intensity more spread out than in the
proper scars (Fig. 8), the peak at the periodic orbit grows
at the expense of the other maxima, while becoming
thinner (Fig. 13). We can thus understand, at times
bewildering, the number of “scarred states” as originat-
ing in torus states, as some bifurcation parameter is
varied. The concentration of the states at the periodic or-
bit, while maintaining a spread around it, is compatible
with the hypothesis of homoclinic quantization proposed
by Ozorio de Almeida [17]. For #=6.0X 1073, the pic-
ture is the same and, besides, because # is smaller, the
scars are more neat and there are other symmetric se-
quences corresponding to four and six horizontal quanta.
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