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Floating bubbles in one-parameter Hamiltonian systems
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In one-parameter families of Hamiltonians with two degrees of freedom, some periodic orbits
may form isolated families, also called “floating bubbles.” In this paper we study, numerically, two
examples of floating bubbles and show that the lack of symmetry in a plot of the trace of its mono-
dromy matrix versus the energy implies the connection of these families to other families of periodic

orbits through period-n-tupling bifurcations.

It is well known that in nonintegrable Hamiltonian sys-
tems with two degrees of freedom the periodic solutions
constitute one-parameter families. The basic rules for the
occurrence of bifurcations (period-n-tupling) in these
families of periodic orbits are well established (see, for ex-
ample, Refs. 1 and 2). The presence of symmetries in the
Hamiltonian (time reversal, reflexion symmetries) en-
riches the bifurcation portrait;3’4 nevertheless, we know
where bifurcations occur and the kind of bifurcations
that may occur if we follow any family of periodic orbits.

In the work by Aguiar et al.’ a large number of fami-
lies of periodic orbits were numerically obtained for the
nonintegrable Hamiltonian
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in the case when a=1. Extensive numerical calculations
of periodic orbits were also done for other nonintegrable
Hamiltonians.” The numerical data were displayed in en-
ergy versus period (e7) plots, where a family of periodic
orbits is represented by a continuous curve. The Hamil-
tonians studied were all harmonic at very low energies.
We found that the central families of periodic orbits (the
families tending to harmonic oscillations as their ampli-
tudes go to zero) are interconnected through period-n-
tupling bifurcations. When a single family is self-
connected by a bifurcating orbit, we say that a bubble has
been formed, due to the topology of these curves on the
et plot. This terminology was first invented by Conto-
poulos® although he used a different representation for
plotting the periodic-orbit families.

Besides these central families that are interconnected,
we found families of periodic orbits for which the corre-
sponding €7 plots form isolated closed cycles that do not
connect to any family. These families correspond to the
Sloating bubbles in the notation used by Contopoulos.® In
that work a possible mechanism for the formation of
these floating bubbles was presented: varying a [a pa-
rameter in the Hamiltonian, usually the strength of the
nonintegrable perturbation term in Eq. (1)], they may ap-
pear by detaching from another family when the points
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that join that family coalesce. An example was given
there in the case of a rotating Hamiltonian (used to mod-
el a rotating barred galaxy).

Another possibility for the appearance of floating bub-
bles was also given by Contopoulos® and Contopoulos
and Papayannopoulos:’ as a is varied, they simply pop
up at some critical value already isolated from other fam-
ilies (see Figs. 1 and 2).

In this paper we give other numerical examples of
floating bubbles found in the Hamiltonian (1) and we
focus our attention on the global topological properties of
these families in the €7 plot and on their stability proper-
ties.

In order to study the formation of isolated families, we
made a numerical study of the evolution, as a is de-
creased, of two isolated families labeled E and F in
Aguiar et al.> Both of them are families of time-reversal
and reflexion symmetric periodic trajectories. We found
that, as a is decreased, for both E and F families, the cor-
responding closed cycles representing them in the €7 plot
simply shrink (Figs. 1 and 2) and are finally reduced to a
single point. This happens at different values of a for
each family: 0.7621 <a <0.7622 for the E family while
0.7357 <a <0.7358 for the F family. These two families
are generated, therefore, according to the second mecha-
nism described above.

Notice that these values of a are not miscalculations of
the critical value a.=1/V'2 at which the two saddle
points of the potential function are generated. Actually,
they have to be greater than a,, for both E and F go back
and forth along the corresponding valley as they are ob-
served to do.

The two families of orbits studied here present some
properties that seem quite general of floating bubbles.
One of these properties is the shape of a figure eight in
the et plot (see Aguiar et al. for details). Another in-
teresting feature is the presence of two stable regions at
the bottom and top of the figure eight. These two regions
can be shown to always exist by standard bifurcation
theory. As we go through these stable regions, an infinite
number of birurcations occur and then two possibilities
arise: Either the bifurcated families of orbits are “born™
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FIG. 1. e7 plot of family E for a=1.000, 0.800, and 0.763. As a decreases the figure-eight-shaped loop shrinks to a point.
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FIG. 2. e plot of family F for a=1.000, 0.855, and 0.737. Like family E, the cycle is not connected to any other family for any
value of a.
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FIG. 3. trMe for the F family for «=0.7370 and 0.7361 (smaller loop). For two-dimensional systems the periodic orbits will be
stable (except for a set of zero measure) if 0 <trM <4 and unstable otherwise. The dotted line is trM =4.

at the bottom and “die” at the top (and in this case the
bubble would be indeed isolated) or some of them may
connect to other families of periodic orbits. Since it is
virtually impossible to follow all these bifurcations to see
what happens, we made a plot of the trace of the mono-
dromy matrix M versus the energy ¢ for one of the fami-
lies studied, as shown in Fig. 3. We observe that as the
parameter a decreases, the two stable regions (where
0 <trM <4) get together in a very symmetric way, show-
ing that bifurcations with the same rotation number,
from the two regions, coalesce at a certain critical value.
If the plot was not symmetric, orbits bifurcated from
the top stability region and from the bottom stability re-
gion would disappear at different values of a and, there-
fore, the bubble would certainly be connected to another
family of periodic orbits which would be linked to the
other end of the bifurcated orbit which has disappeared.
The symmetry of the plot trMe, however, does not
guarantee that the bubble is isolated, since a pair of bifur-
cated orbits from the top and from the bottom regions of
the figure eight, with the same rotation number, may ei-

ther belong to the same family that disappears at the crit-
ical value of a, or constitute different families connected
to other ones that get together and detach from the bub-
ble at the critical value of a, realizing Contopoulos’ first
mechanism of floating-bubble generation.

To summarize, although it is very difficult to show
whether a floating bubble is connected to other families
by its period-n-tupling bifurcated orbits, the symmetry
properties of its monodromy matrix as a function of the
energy may decide the question if trMe is asymmetric.
Therefore symmetry of the trMe plot is a necessary but
not sufficient condition for the isolation of floating bub-
bles.
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