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I. INTRODUCTION

The space-time propagator contains all the information
about a quantum system. Although in several specific
problems one is interested only in the spectrum and
eigenfunctions, and these are more easily obtained by a
direct solution of the time-independent Schrodinger equa-
tion, a number of very important questions have been
raised recently in which the propagator enters in a cru-
cial way. One of these questions concerns the problem of
dissipation in quantum tunneling. The pioneering work
of Caldeira and Leggett [1] introduced a formalism in
which a subsystem in a metastable state is coupled to a
bath of oscillators and the equilibrium density operator is
calculated as a path integral [2]. Taking the trace over
the bath variables results in a reduced density for the sub-
system from which the tunneling rate can be extracted in
the semiclassical limit. A second approach, particularly
suited to treat Brownian motion in the classically accessi-
ble region, was also discussed by the abovementioned au-
thors [3]. In that case, the time-dependent propagator
for the ‘““universe” (subsystem plus oscillators) is written
in terms of the uncoupled propagators using the
Feynman-Vernon theory [4]. As emphasized in Ref. [3],
this method cannot be applied directly to the study of
tunneling through a barrier. The main reason for this re-
striction is that the time-dependent propagator for
scattering (unbounded) problems is very hard to obtain.
If this difficulty could be overcome the effects of dissipa-
tion in quantum tunneling could be studied in a very de-
tailed fashion. The two simplest problems where these
effects could be observed are the one-dimensional step
and square-barrier potentials. However, although these
are very simple systems, only very recently [5] the space-
time propagator for the first case was derived in terms of
integrals of simpler propagators. Besides, as far as the
author knows, the space-time propagator for the square
barrier has not yet been computed.

The space-time propagator K(x,x’,z) is related to
the space-energy propagator, or Green’s function,
G(x,x',E) by a Fourier transform. In this paper we
show that, although the space-time representation of the
Green’s function for the step and space-barrier potentials
may be very complicated, its space-energy representation
can be calculated in closed (and very simple) form. In a

1050-2947/93/48(4)/2567(7)/$06.00 48

recent paper [6] G(x,x’,E) was partially computed for
the square barrier and some semiclassical results concern-
ing group velocity and tunneling time were derived. In
this paper we present a complete and exact calculation of
the space-energy Green’s function for both the step and
square-barrier potentials. We also generalize some of
these results for general symmetric potentials of finite
range. The expressions for G(x,x’, E) turn out to be very
simple and allow for interpretations in terms of classical
paths.

Therefore, the basic motivation for the present calcula-
tion is the possibility of coupling the square-barrier po-
tential to other degrees of freedom, such as free particles,
and eventually to study the limit of many such freedoms.
This study, now under current investigation, has become
possible due to the very simple structure of the Green’s
function. As a final remark we should point out that the
use of square-barrier and square-well potentials as simple
models for more realistic physical problems has also a
long history in the theory of heterostructures in solid-
state physics [7] and the development of techniques to
perform time propagation of wave packets has become of
great importance [8]. We discuss the advantages of using
the Green’s function as an intermediate step for the time
propagation in the Conclusion.

The calculations presented here are based on the spec-
tral decomposition of G(x,x’,E). They are lengthy and
sometimes tedious. Therefore, this paper is organized in
such a way that the results and discussions come before
the calculations. In Sec. II we review the basic
definitions of time and energy representations of the
Green’s function and their connections. In Sec. IIT we
compute the energy Green’s function for the step poten-
tial. The results of this computation are given by Egs.
(3.3)-(3.6). In Sec. IV we do the same calculations for
the square barrier, with results given by Egs. (4.3)—(4.6).
In Sec. V we generalize some results of Sec. IV for sym-
metric potentials of finite range and Sec. VI is devoted to
some concluding remarks.

II. ENERGY AND TIME REPRESENTATIONS

Let us consider a one-dimensional system described by
the time-dependent Schrodinger equation
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ih%'f—=H¢ , (2.1)

where the Hamiltonian operator H has a continuum spec-
trum in the interval 0<E < w. The Green’s function
K (1) associated with (2.1) satisfies the equation

dK

zh—a——HK o(t) (2.2)
and has two formal solutions given by [9]
K*e)=1" Le iH/A fort>0), (2.32)
0, fort<oO,
and
0, fort>0,
K ()= %e—th/ﬁ . for t <0 . (2.3b)

From now on we shall refer to the time-dependent
Green’s functions as propagators, reserving the name
Green’s function for the energy-dependent operator G (E)
to be defined below. The operators K+ and K~ are
called the retarded and advanced propagators, respective-
ly.

The coordinate representation of K ¥(¢) is

KE(x,x",t)=(x|K*(t)|x")
—_— l o ’ —1
=¥ fo Y (x Wg(x)e F/AE (2.4)

where it is implicit that the above expression is valid for
K*t(x,x',t) only if >0 and for K ™ (x,x’,¢) only if ¢ <O.
The functions 1;(x) are normalized eigenfunctions of H
with eigenvalue E satisfying

[ v Wplx)dx =8(E—E") . 2.5)

The (energy-dependent) Green’s functions associated
with the propagators K *(¢) and K ~(t) are defined by
their Fourier transform:

GHE)= [ TTK*(1)e dr . (2.6)

As usual, a convergence factor e Fet/% has to be inserted
in the integral. When this is done, a formal solution can

be obtained with the help of Eq. (2.3):

GHE)= 5= =P | 5= | FimdE—H)
2.7)
4
£ [k g (ke
. ik#
G=Z_(x,x",E)=
+ m

ik #?

where 7 stands for the Cauchy principal values.
The coordinate representation of G *(E) is, therefore,
given by

w P (x W (x)
G*x,x', E)=(x|GHE)x") = [ YEC (X))

E—E'tie
—?fw-l/—}E—Ex—w;,—dE’¢ir¢;‘;(x’)¢E(x)
(2.8)
Defining [10]
DG(x,x",E)=G¥(x,x",E)—G (x,x",E)
= —27iYE(x"We(x) , (2.9)

we may write the inverse of (2.6) as

K*(x,x’ t)————f G*(x,x',E)e ‘F/iJE

— *® ’ —iEt/%
_iZﬂ-ﬁ J. DG, x ", E)e =P ME

(2.10)

where the time domains for K*(z) are again implicit.
The last equality, which is the spectral decomposition of
the propagator [see Eq. (2.4)], follows from the fact that
the integral over G~ (G ) vanishes for positive (nega-
tive) times.

III. GREEN’S FUNCTION FOR THE STEP POTENTIAL
A. Summary of results and discussion
The step potential V(x) is defined by

, Ve, ifx>0,
)= ifx<o. (3.1)

We divide the Green’s function G(x,x’, E) in four parts
and introduce the following notation:
G__(x,x",E) if x'<0 and x <0,

—4(x,x",E) if x’<0 and x>0,
G, (x,x",E) ifx'>0and x <0,
G, (x,x",E) if x>0 and x>0 .

G(x,x',E)= (3.2)

A discussion of the main steps involved in the calcula-
tion of each part is presented in the next section. Here
we only list and discuss the results:

1ik(x+x')] if k <k0 ,

[etiklx—x’l_’_r(k)e?ik(x—x’)] ifk>k0 ,
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- b(tk)e TR if k <k,
ik#? 0
GE . (x,x",E)=
+ .k”;izt(k)eifwﬁkX” if k> kg
1

Gi_(x,x,E)=G%  (x',x,E),

_m
v
m

G, (x,x,E)=
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(3.4)

(3.5)

Sle Xl —g(tk)e TV T] if k <k, ,

(3.6)

+ 5 [eiiulx—x’\_r(k)eiiu(x+x’)] if k >k0 ,

iut

where the coefficients a(k), b (k), r(k), and t(k) are given
by Egs. (3.7c¢) and (3.8b) and are related to the reflexion
and transmission coefficients.

It is interesting to observe that all the above expres-
sions have a very simple semiclassical interpretation.
G _ _, for instance, consists of the contribution of a direct
path connecting x to x’, the first term, plus the contribu-
tion of a path from x’ to the barrier at 0 and then back to
x, weighed by the reflexion amplitude »(k) or a(k). No-
tice, however, that the second path (of length |x +x’|)

J

() G__(0,x",E)=G__(0,x",E)
(2) G++(X,O,E):G_+(X,O,E)

+ m
(3) lim G$¥(x,x',E)-——-*_-—2
0> ® ikt

which is the result for a infinite wall at x =0

m —iklx—x"
+ zlxx],

. + ’ —
(4) lim GE_(x,x",E)= Kh2®

ko—0

which is the result for the free particle.

For k,/k <<1 the formulas for G(x,x’,E) can be ex-
panded in a Taylor series, giving corrections for the free-
particle limit. These expansions may be useful to obtain
approximate expressions for the time-dependent propaga-
tor.

B. The calculation of the Green’s function

The Schrodinger equation for the step potential

_ _
2 k2 +V(x)Yy=Ey¢

with V(x) given by Eq. (3.1), has, for E >V, two nor-
malized degenerate solutions ¥ (x ) and ¥2(x) given by

etk* e~k for x <0,

) . (3.7a)
e +e X for x>0,

Yi(x)=4

and

[

corresponds to a classical path only if k <k,. The ex-
pression for G, has a structure very similar to that of
G _ _, as it should be, with the roles of k and u inter-
changed.

Even the tunneling terms G _ , and G, _ can be inter-
preted classically: only the direct path from x’ to x, with
total action f *.p dx =#i(ux —kx'), contributes to G_
with weight #(k ).

It can be checked by direct computation that

[eEiklx—x'| _ptiklx+x'l] | for k <k, ,

for k >k ,

ex—e k% for x <0,
B — . .
YE)=B 1K Liux_y—inx) for x>0, (3.7b)
u
where
1 m
A= —
4] 2t | k+p |’
|B|2= 1 _my ,
2r#? | k(k+p)
k=V2mE /# , (3.7¢)

w=V2m(E—V,)/#,
_k—p 2k

= = _2p
k+p’

U:k-i—,u'

i’ t—k+,u ?

For E <V, the normalized function



2570
eikx+ae—ikx
YE(x)=C be s (3.8a)
with
lc)P=—"
20k #t
a=k—iv
ktiv (3.8b)
_ 2k
k+iv '’

v=1"2m(V,—E)/#
J

Vo 05X (xS (x)
E—E'
=G¢_+GA_+GB_ .

G__(xx,E)= [

Changing variables from E to k =V 2mE /#* we observe
that the integrals above contain terms of the form
e*8 /(k*—k'?), with poles at k’==k: The best way to
compute these integrals is, therefore, by the method of
residues. With the poles shifted to k'=x(k+ig) or
k'==+(k—ie) we obtain G¥_ or GZ_, respectively.
However, the way it stands, the integrals in (3.14) run
from O to kOE\/2m Vo/# or from kg to . Therefore,
the main usage of the calculation consists of manipulat-
ing these limits in order to write (3.14) as an integral in
the complex k' plane running from — o to + . This
can be achieved after some algebra using simple proper-
tiessuch asa*a=1and a(—k)=a(k™).

Notice also that the presence of u(k)=1"k>—k} in
the wave functions introduces branch cuts in the complex
plane [11]. The account of the correct signs of u(k)
above and below the branch lines are of fundamental im-
portance in the calculation. The explicit calculation of
the integrals in (3.10) is quite tedious and will not be car-
ried out here. Also, the calculation of G_, and G,
follows about the same scheme and, from the definition,
G, (x,x",E)=G_,(x",x,E).

IV. GREEN’S FUNCTION FOR THE
SQUARE-BARRIER POTENTIAL

The calculation of the Green’s function for the square-

barrier potential,
|
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satisfies

k

ST uE oug (x dx =8(E—E")+ ﬁ;aw . (3.9

The Kronecker 8 function in the above expression is an
interesting mark of the infinitely long classically forbid-
den region of the step potential, although it has no effect
when integrated over.

Once the normalized wave functions are known, the
calculation of the Green’s function is straightforward but
lengthy. Consider, for instance, G __; using the spectral
decomposition, Eq. (2.8), G__ reads as

*
, o P (x)PAx) L., o PB (x)P(x) ..,
dE +fV0 g dE +fVO s dE

(3.10)

0 ifx<—a,

Vix)=1{V, if —a<x<a, 4.1)

0 ifx>a,

goes through the same steps of previous section, namely,
finding normalized eigenfunctions and constructing, via
Eq. (2.8), integrals in the complex plane. These integrals
are then solved by the method of residues. Again the ex-
plicit computation of these integrals will not be carried
out here.

As in Sec. III we divide the Green’s function
G(x,x',E) into separate pieces according to the position
of x and x' relative to the barrier:

G__ ifxand x'<—a,
G_, ifx'<—a and —a<x<a,
G_,

Gy if —a<x, x'<a .

G(x,x',E)= 4.2)

if x'<—a and x>a ,

Other situations, such as G, _ or G, can be obtained
from the above functions by symmetry properties. The
results of the calculations are now summarized as fol-
lows:

GE_(x,x’,E)= .]:';2 [eiiklx*x’l_*_Ra(ik )ejrik(x+x'+2a)] , 4.3)
l
b
GfEJr(x,x’,E):i 'I:nhzeiik(x—x’—ZalTa(j:k) , (4.4)
1
b
i”:"ﬁze“O"[eii#xai(ikwe¢"#Xa¢(ik)] , if k<kg ,
GE, (x,x",E)= 4.5
0(x xLE) m Fikx'f , —vx vx : ( )
+ e [e™B_(xk)+eB (k)] , if k>ky,

T ik #
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+ m eil’ka 1+£ e?i,u(x’-i—a)_*_ 1__k__ eiiy(x'+a)
ik #* 7 ' u
a (ke +a (ke T _
— ) , if k>kgy,
Goo(x,x",E)= _ (4.6)
+ m eiika 11_’& ev(x’+a)+ 1+Lk_ e~v(x’+a)
ik #? v Y
B_(xk)e +B_(xk)e™™
X [ 5 , ifk<kg .

The indices a and b in Egs. (4.3) and (4.4) refer to
above (k > k) and below (k <k,) the barrier, respective-
ly. The coefficients T,R are the transmission and
reflexion amplitudes, given by Eq. (4.11) and a and B,
given by Eq. (4.10), are amplitudes of the plane waves
entering in the scattering solutions in the region
—a<x<a.

The result for G_ _ is essentially identical to G_ _ for
the step potential, Eq. (3.3), since x +x'+2a represents
the length of a classical path from x’ to —a and the back
to x.

The expression for G_ , is at the same time simple and
interesting. In words G _ . has the form of a free-particle
Green’s function weighted by the transmission amplitude
T, or T, depending on whether E > ¥, or E <V, which
is quite natural to expect. However, the length of the
“classical path” contributing to G_ is x —x'—2a, and
not just x —x’. Therefore, it works as if the particle had

lim G__(x,x"E):i m eiikix—x’}_{_ 1
a—0 ikﬁz lkﬁz
(2Vga=1) " —1
lim G_,(x,x,E)=% -mz 1 o Tik(x—x")
a—0 k#i | __m
(2Vga=1) lk‘ﬁz

which are well known in the literature [12].

The coefficients appearing in the above expressions are
related to the symmetrized wave functions 3, and ¥, and
to the “scattering” solutions ¥ and ¢~ [13]. For E >V,
the even solution, for instance, is given by

cos(kx +8;) ,

PYo=C 1 Aycos(ux) , 4.7)

cos(kx — &) .

The odd solution is identical with the cosines replaced by
sines and the index O by 1. For E < V|, we replace the tri-
gonometric functions by their hyperbolic counterparts
(cos—cosh, etc.) and the phase shifts §; by y;. In all
cases

e

f
tunneled through the barrier region instantaneous even if
E > V,. Of course this is just a ““classical” interpretation
of (4.4) and, in fact, the concept of instantaneity has no
real meaning in an energy representation.

The formulas for G_, and G, are more complicated
and do not have a direct interpretation in terms of classi-
cal paths, since they involve points inside the barrier.

It can be checked that the expressions (4.3)—(4.6) satis-
fy the continuity conditions at the boundary of their
respective domains, such as

G——(x” —a,E)zG_O(x', _a)E) >
G_o(—a,x,E)=Gyl(—a,x,E), etc.
It can also be checked whether in the limit of a § po-

tential, Vjy— o, a —0 with 2aV =1, the results for G_ _
and G_ , tend to

Fik(x+x")
’

12
2__ m
|CI?= Py (4.8)
The scattering solutions ¢ and ¢~ are given by
pr=doe tite” 4.9)

and ¢ for E > V,, for instance, is given explicitly by
taeikx ,
a e +a_e Hx

eik"+rae'ik" , ifx<—a.

if x>a ,

Y= if —a<x<a, (4.10)

For E <V, we substitute the subscripts a into b and «
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into B. The incoming solutions ¥~ are given by similar
expressions.

The “phase shifts” 8y, 6;, Yo, and ¥, and the ampli-
tudes Ay, 4,, By, and B, are obtained by direct imposi-
tion of continuity of ¥(x) and 9d¢/dx at x=—a and
x =a. The explicit relations between the coefficients of
the symmetrized wave functions (4.7) and those of the
scattering wave functions (4.10) can be found easily [13].
Finally, we have defined T and R as

.tiETieﬁzika , . 11)
riERie—Zika , @.

where i can be either a (for ‘“‘above barrier”) or b (for
“below barrier”).

V. GENERALIZATION FOR FINITE-RANGE
SYMMETRIC POTENTIALS

The results obtained for the square barrier can actually
be generalized for symmetric potentials with compact
support, i.e., potentials of the form

0, ifx<—a,
vix), if —a<x<a,
0, ifx>a,

Vix)=

where v(x) is any bounded even function of x. In this
case the Schrodinger equation admits solutions of the
form
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cos(kx +8,) for x>a ,
Po(x)=C{gi(x) for —a<x<a,

cos(kx —§,) for x <—a,

sin(kx +80) for x >a ,
P (x)=Clh(x) for —a<x<a,

sin(kx —8,) for x <—a ,

where g, (x) is even and h;(x) is odd. The transmission
and reflexion amplitudes are given again by

2i8 2i8
e O4e !

2 ’
2i8
O_e 1

t=
2i8, (5.3)
e

2 ’

where 8§, and §, follow from

=

grla)
kgy(a)

tan(ky+8y)=—

and
kh;(a)

tan(ka +6,)=—
hk(a)

, (5.4)

where the prime means d/9x.
It is interesting that the normalization constant C does
not depend on the function v and is given by Eq. (4.3):

172
m

27HE

|CI?= (5.5)

Therefore, expressions (4.3) and (4.4) for G__ and
G _, can be applied directly:

GE_(x,x"E)=+ i]:r;Z [et#x=x| L R (+k)e Fik(xtx'+2a)] (5.6)
GE+(x,x’,E)=iflin?eiik(x_x'_2“’T(ik) , (5.7)
i

where VI. CONCLUSIONS
T(k)= 1 | k—iggla)/gila)  khyla)/hy(a)—i ] In this paper we have computed the Green’s function
) ) k Vi in the space-energy representation for three physically
k+igila)/gla) hi(a)/hila)+i important one-dimensional situations, namely, the step
(5.8) potential, and the square-barrier and general symmetric
finite-range potentials. We have shown that the parts of
and G(x,x',E) that are relevant for tunneling, G_, (where
1 | k—igia)/gila)  khyla)/hi(a)—i x' is at the left of the barrier and x is at the right) and
R(k ):E — o ” - G __ (where both x’ and x are at the left) can be written
k+igi(a)/gi(a) K(a)/hi(a)+i in a very simple and general form [Egs. (5.6)—(5.9)] where
(5.9) the basic ingredients are the reflection and transmission

follow from (5.4) and (5.3).
The form of G_; and G, of course depends explicitly
on v(x).

amplitudes. The most interesting feature of G _ is that
it can be interpreted as a free-particle Green’s function
weighted by the transmission amplitude and whose action
corresponds to a path connecting x’ to x but with the
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barrier subtracted, i.e., with an action #ik(x —x'—2a).

The form of Egs. (5.6) and (5.7) for G_ _ and G_ , also
answer the following question: how does one extract the
reflection and transmission coefficients from a time-
dependent propagator? Certainly one should not attempt
to propagate wave packets, due to the uncertainty intro-
duced in the energy of the packet and also due to
broadening effects during the propagation. Therefore, as
suggested by (5.7), the formally correct procedure is to
take its Fourier transform:

m

lim f0°°1<<x,x',t)e"E‘/ﬁdt=T(E)

x'—— o

p > exk(x x'—2a) .
x—+ o

The limits x’— — 0 and x — + « are not necessary for
finite-range potentials but they might make the calcula-
tion easier. The reflection amplitude R (E) can be ex-
tracted in a similar way. It should be noticed, however,
that in a few cases, such as in the coupling of a square
well with a uniform laser field [14], exact solutions of the
time-dependent Schrodinger equation are known and the
scattering problem can be solved by appropriate match-
ing conditions.

Finally, we point out the advantages of using the
Green’s function as an intermediate step in the propaga-
tion of wave packets. Given a wave packet ¢(x) at =0,
its time evolution is given by

q)(x,t)=ith(x,x',t)¢7(x')dx' .
Fourier transforming both sides of this equation leads to
¢(x,E)=iﬁfG(x,x’,E)<p(x')dx' ,

where ¢(x,E) is the Fourier transform of ¢(x,t). For
Gaussian or square-shaped wave packets, the last integral
can be performed analytically, since the x and x' depen-
dence of G is trivial. Therefore, the discontinuities of the
potential are taken care of analytically and the numerical
calculation is reduced to an inverse Fourier transform.
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