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In this work we study numerically the breakdown of discrete symmetries in a Hamiltonian
system with two degrees of freedom. The initial Hamiltonian is invariant under time-reversal
(t— —t) and reflexion thraugh an axis {(x — —x). These symmetries are then broken by the
insertion of a magnetic field and a term of the form yx>. The effects of these perturbations are
studied in terms of Poincaré sections and periodic orbits. € 1994 Academic Press, Inc.

I. INTRODUCTION

Physical systems that remain invariant under certain transformations are
very common. These symmetries, however, are frequently broken by generic
perturbations produced by interactions with other systems or by external noises.
An important example is the class of systems invariant under time-reversal. In this
case, the introduction of magnetic fields breaks this symmetry if the system has
electric changes.

In this work we consider a non-integrable Hamiltonian system with two degrees
of freedom that has, initially, two discrete symmetries: time-reversal (r — —¢) and
reflexion through an axis (x > —x). The presence of such symmetries gives rise to
qualitatively different structures in the phase-space. One particularly important
feature is the change of the bifurcation patterns undergone by the periodic orbits
[1-3]. Adding new, properly chosen, terms in the original Hamiltonian breaks
these symmetries and forces the bifurcation patterns to unfold into the generic
classification of Meyer [4]. A previous study of the unfolding of the isochronous
bifurcation subjected to a single reflexion symmetry was presented by Ozorio de
Almeida and de Aguiar [5].

Other important work concerning the bifurcation of periodic orbits in the
presence of discrete symmetries has been developed by W. Schweizer [6], Mao and
Delos [71, and Meyer et al. [8] for the problem of an atom placed in a uniform
magnetic field. In that case the symmetries under consideration are different from
those treated by this paper, and the bifurcation patterns obtained are also distinct.

In Ref. [8] an analytical study of generic two-parameter bifurcations is presented
for the so-called “isochronous” (same period) and periodic doubling bifurcations.
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A nice and very complete review of experimental versus theoretical results for the
hydrogen atom near the ionization threshold in terms of periodic orbits and their
bifurcations is presented in Ref. [9].

In this paper we study numerically the breakdown of both (+— —r) and
{x — —x) symmetries in terms of Poincaré sections and periodic orbits, showing
the local unfolding of the bifurcation patterns and the global re-arranging of the
periodic families for two selected bifurcations. The Hamiltonian chosen for our
numerical studies describes a charged particle of unity mass moving on a two-
dimensional surface and subjected to a constant magnetic field B, perpendicular to
this surface,

Jf(x’ Ys P p$)= %(px + ﬁY)z + %(p»_ BX)Z + V(x’ )"), (la)

where fi=eB,/2¢, e is the electric charge, and ¢ is the velocity of light.
The potential V(x, y) was chosen as

xZ 2 XZ
V(x,y)=(y—?+vx3> +/,¢7; un=0.1 (1.b)
and reduces to the well studied Nelson potential [10] when y =0.

Therefore, with f=y=0, Eq.(l) represents a non-generic but well-known
system. Switching on f and y breaks the time-reversal and x-reflexion symmetries,
respectively. The aim of this paper is to study some aspects of this “non-generic to
generic” transition considering small values of f§ and 7.

The paper is organized as follows: in Section 2 we discuss the symmetries of the
Hamiltonian system (1) as a function of § and y. In Section 3 we study the effects
of y and § in the Poincaré sections, switching the parameters one at a time. In
Section 4 we concentrate on the periodic orbits and make a careful analysis of some
bifurcation patterns as a function of # and y. The symmetry breaking is also shown
in terms of Ex 1t (energy x period) plots where the split of degenerate families is
observed. Finally, in Section 5, we make some concluding remarks.

II. SYMMETRIES AND PERIODIC ORBITS

In what follows we shall introduce the notation #;, to describe the full
Hamiltonian (1). The symbol #,, for instance, represents the case where y =0 and
fi #0. Let us first consider the most symmetric case ), (where =y =0). Defining
the four-vector
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we note that, in this case, the Hamiltonian (1) is invariant under

10 0 0
01 0 0
Ri=lo o -1 o )
00 0 —1
and
10 00
01 0 0 ,
B=l g0 —1 0 3)
00 01

(corresponding to time-reversal and x-reflexion, respectively) in the sense that
H (R z)=H(R,z)=#(2).

Although R, and R, look very much alike, they have different natures, as can be
seen in terms of the Hamiltonian’s equations of motion,

F=JV.H#,

where J is the usual symplectic matrix

0 01 0
0 0 0 1
I= —1 0 00
0O —1 0 O
and
8/0x
d/ay
V,:
© o\ d/dp.
0/dp,

Applying R; to both sides yields
(R;Z)=R,JV, H(z).
Defining w = R,z and using
JR,=—R,J
JR;=R,J,
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we obtain, for R,,
w=—JR,V_HR; 'w)=~JV, H(w), (4.2)
and, for R,,
w=JR,V.H(R; 'w)=JV, H(w). (4.b)

Therefore, we see that the symmetry is fulfilled for R, only if we make r— —1.
Symmetries satisfying this condition are called “reversing involutions™ [10] and
play a very important role in the theory dynamical systems [12]. There also exists,
however, a third matrix that leaves J# invariant, namely,

R,=R,R,. (5)

It is very easy to check that R, is also a reversing involution but, of course, it is
not an independent symmetry.

The periodic orbits of #, can be classified according to their symmetries as
follows:

symmetric librations (SL)  invariant under R, and R, non-degenerate

symmetric rotations (SR) invariant under R, twofold degenerate

asymmetric librations (AL) invariant under R, twolold degenerate

asymmetric rotations (AR) no symmetry fourfold degenerate
100.0 P ZZ
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FiG. 1. Ext plot for #,. Thick(thin) lines indicate stable(unstable) families (from Ref. [6], with
permission).
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It is important to understand the degeneracies in the periodic orbit families. If
z(t) s a symmetric rotation of #,, for instance, then R,z(¢) is another symmetric
rotation that corresponds to the former orbit traversed in the opposite direction
(since R,z(r)=z(r) it does not represent a new orbit). This fact accounts for the
twofold degeneracy in the table above. A similar reasoning applies to the other cases.

The periodic orbits of #,, on the other hand, may be only asymmetric rotations
or librations and those of #;, may be symmetric or asymmetric rotations. The
periodic orbits of 3, are always asymmetric rotations.

Most of the simple periodic orbits of the #}, (the Nelson Hamiltonian) were
found and studied by Baranger and Davies [10] and are displayed in Fig. 1. Since
the potential is harmonic along the invariant plane defined by x =p, =0, this plane
is foliated by a family of “vertical” (y-direction) oscillations of constant period
T= 2n/\/§, named V in Fig. 1.

In the energy range (0.0, 0.300), the vertical family presents three main bifurcations:

1. period quadruplication (£ = 0.019), gencrating two new families: the stable
family 4 and the unstable family H, both symmetric librations.

2. period triplication (E£=x0.077) generating two new degenerate families,
the stable family C (symmetric rotation) and the unstable family P (asymmetric
libration).

3. period duplication at { £~ 0.136) generating the stable family B (symmetric
libration). At this point the vertical family goes unstable.

Another important family is the horizontal family H. In the energy range
(0, 0.300), the horizontal family H presents two isochronous bifurcations (bifurca-
tions without period change [1,2]) generating one stable family of symmetric
rotations and one unstable family of asymmetric librations. This bifurcation point
is indicated in Fig. 1 by a symbol 4° near 1~ 21.

In what follows we shall change the names of some periodic families to make the
identification of their genesis easier. The families originating at the quadruplication
of the vertical family, 4 and H will be called V45, and V'4U,, respectively, where
V stands for the “mother” orbit, 4 for quadruplication, S or U for stable or unstable
and the subscript “00” for y = f=0. Analogously, C and P will be renamed V'35,
and V3Uy and the orbit B (see Fig. 1) will become V'2,. The families originating
at the isochronous bifurcation of the horizontal family H,,, will be called Ry, and
Ly, where R and L denote rotations and librations, respectively. (Since these are
the only important bifurcations of H,,, we shali not use the notation H1S,, and
H1U,, in this case). Note that Hyy = V4U . If the subscripts are omitted, like in V385,
for example, we shall be reffering generically to the triplication of the vertical family.

II1. POINCARE SECTIONS

It can be checked easily that the energy surfaces of #;, are compact for all values
of y and . Therefore, most trajectories will be recurrent and the Poincaré sections
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Fic. 2. x—p, Poincaré sections at energy E=0.08 for: (a) Hg; (b) #, with y=0.1; (c) H#, with
y=0.1 and =003
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FiG. 3. y—p, Poincaré sections at energy E=0.05 for: (a) J,; (b) Hg, with y=0.1; (c) #, with
7=0.1 and §=0.03.
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can be used to extract qualitative information about the phase space structure. In
this section we shall present x —p, and y — p, Poincaré sections of the Hamiltonian
given by Eq. (1) for three different situations. Figure 2 shows the x — p, sections of
Hoo, Ho, with y=0.1 and H#;, with y=0.1 and f=0.03 at energy E=0.08. In all
cases the orbits V, V38, and V4S can be easily identified. The size of the chaotic
regions observed in these sections are about the same. The only qualitative change
appears to be shape of islands around V'3S.

The y—p, Poincare sections corresponding to the same situations of Fig. 2
are presented in Fig. 3 at £=0.05. It is now clear that the effect of the symmetry
breaking terms have introduced large instabilities in the phase space. This sort of
instabilities have also been reported by Guckenheimer and Mahalov [14] in a
different context.

We observe in Fig. (3a) the principal branches of the horizontal family H,, the
rotations R, and the librations L,,. We also observe the stable branch of family
I, renamed /I, (see Fig. 1). Its unstable branch gives rise to a chaotic region in the
center of the section. In Fig. (3b), where y=0.1 we observe a more chaotic
behaviour and some new bifurcations. In Fig. (3c), where y=0.1 and f=0.03 the
behaviour is more chaotic still.

1V. EFrrFecTs ON THE PERIODIC ORBITS

Periodic orbits play a very important role in the theory of dynamical systems.
Moreover, it has been shown by Gutzwiller [15], that the periodic orbits are the
fundamental ingredient in the semiclassical connection between classical and quan-
tum mechanics. As can be seen by comparing Figs. 1, 2a, and 3a (for ), the
knowledge of the E x 1 (energy versus period) plots for the families of periodic
orbits is complementary to the Poincaré sections. From the later we can readly
measure the size of the chaotic regions, but we could hardly locate the individual
orbits. From the E x t plots, on the other hand, it is impossible to predict the global
behaviour of a section. Besides, a Poincaré section gives information at constant
energy, while F x 1 plots shows the behaviour “across” the energy surface.

The periodic solutions of generic Hamiltonian systems form one-parameter
families (the parameter may be the energy E or the period 7). When this parameter
is changed, we move along the family and there exist values at which new families
are generated. The points where this happens are called bifurcation points. The
period of the bifurcated trajectories, 7,, will be integer multiples of the period of the
original trajectory, 7,, at the bifurcation point:

T,=nNT,. (6)

An extensive numerical analysis of the periodic solutions and bifurcations of
Hamiltonian systems with two-degrees of freedom can be found in Refs. [ 1, 107. A
complete classification of the bifurcations of periodic orbits in Hamiltonian systems
with time-reversal and x-reflexion symmetry can be found in Refs. [1, 2].
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The monodromy matrix M contains the information about the stability of a
periodic trajectory. It describes how a small perturbation away from the orbit
changes after one period. For two-degrees of freedom M is a 4 x4 matrix. Two of
its eigenvalues are always unity, and the other two have unity product. Therefore
they are either complex conjugates (e, e ™) or real inverses (et £e *). In the
first case, the trajectory is stable and the trace of M (tr M) is between zero and
four. In the second case, the trajectory is unstable and the tr M is either less than
zero or greater than four.

In isochronous ramifications, where the matrix M has four unity eigenvalues,
tr M=4. At a period doubling two ecigenvalues are (—1) and consequently
tr M =0. There also occurs period triplication where tr M = 1, period quadruplica-
tion where tr M =2, and so on. In summary, the value of tr M determines the
stability and bifurcation points of the periodic orbit family.

In this paper we shall concentrate in the study of only two selected bifurcations.
The first is the sequence of two very close isochronous bifurcations undergone by
the horizontal family Hgy,. The second situation is the periodic triplication of the
vertical family V. In both cases the bifurcations appearing in #, are non-generic
and must unfold into the generic cases as 7 and f§ are turned on.

Fixed points of P
€ x T
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o 7
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F1G. 4. Schematic £x 7 plot and Poincaré section for the possible isochronous bifurcations of .
The full(dashed) line indicates stable(unstable) orbits. Thick lines (full or dashed) indicate degenerate
families. The upper part indicates the generic bifurcation, whereas the lower part shows the pitchfork
and inverse-pitchfork non-generic possibilities.
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Figure 4 shows schematically the E x t plots and the Poincaré sections for the
possible kinds of isochronous bifurcations depending on the symmetries of the
Hamiltonian. The generic situation corresponds to a saddle-center bifurcation
where no new family is generated: the original family only switches from stable to
unstable. In the presence of one or two discrete symmetries it may happen that a
pair of (degenerate) families is created through a pitchfork bifurcation. It is impor-
tant to note that this sort of non-generic bifurcation always occurs at the expense
of a symmetry loss: the bifurcated pair has always one symmetry less than the
original family.

Figure 5 shows the possibilities for period tripling. In the symmetric case, J#,
two new families of orbits (each twofold degenerate) are created by losing a
different symmetry each: a pair of rotations and a pair of librations are generated.
If the system has only one or no symmetries at all, only the generic case occurs: a
single unstable new family exists both above and below the bifurcation point, where
it coalesces with the original family.

Let us first consider the isochronous bifurcation. Figures 6 and 7 display a
blowup of the E x t plot for the horizontal family of #,, near the bifurcation point.
Figure 8 shows the x — y projections of the orbits involved in this bifurcation at
three different energies to illustrated the evolution of these orbits along their
families.

e xt Fixed points of P3
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F1G. 5. Schematic E x t plot and Poincaré section for the possible period tripling bifurcations of #,.
See caption Fig. 4 for notation. The upper part indicates the generic bifurcation, whereas the lower part
shows the bifurcation when both symmetries are present.
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Fig. 7. Blow up of Fig. 6 showing the two consecutive isochronous bifurcations occurring of He.
See caption of Fig. 4 for notation.
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FiG. 8. Projections onto the x — y plane of the periodic orbits involved in the isochronous bifurca-
tions of Hy,: (a) shows the symmetric librations H,,; (b) shows the symmetric rotations Rey; (c) shows
the asymmetric librations Ly,. All orbits are shown at three different energies as indicated in the figures.
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Fi6. 10. Projections onto the x —y plane of the periodic orbits involved in the isochronous bifurca-
tions of Hy, for y=0.1: (a) shows the asymmetric librations H,,; (b) shows the asymmetric rotations R, ;
() the asymmetric librations L,,. All orbits are shown at three different energies as indicated in the figures.
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When the parameter y is turned on, the isochronous bifurcation where the
x-symmetry would be lost (generating the librations L,;) cannot occur, since that
symmetry does not exist. The net effect is shown in Fig. 9: the old family of libra-
tions detach from the horizontal family, producing a generic isochronous situation
while the horizontal family continues to be stable [5, 8]. Figure 10 shows the x — y
projections of the periodic orbits (compare with Fig. 8). The bifurcation of H,,
where the time-reversal symmetry was lost continues to exist non-generically
for H,,. This bifurcation unfolds when f is turned on exactly in the same way,
detaching one more branch from the horizontal family. Figure 11 shows
schematically this sequence of detachings, unfolding the non-generic pitchforks into
saddle-centers.

Now we study the unfolding of the period tripling bifurcation. Figure 12 shows
the £ x 1t plot of the non-generic bifurcation undergone by the Vy, family of 4,
which corresponds to the second type show in Fig. 5. Figure 13 shows the x—y
projections of the orbits involved. When y is turned on, two effects appear at same
time: first the bifurcation point P, which was at the point of minimum energy
reached by the bifurcated orbits V3§ and V3U (see Fig. 12), is shifted upwards as
shown in the detail of Fig. 14. This effect unfolds the period tripling. Second, the
lower branch of the tripled orbits very quickly becomes stable through a generic
isochronous bifurcation and then becomes unstable again via a non-generic
pitchfork-like isochronous branching. Figure 15 shows the x — y projections of the
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Fi16. 11. Schematic E x 1 plots and Poincaré sections showing the breakdown of symmetries at the
isochronous bifurcations of Horizontal family. The system is (a) #0; (b) #4; (c) H#4. See caption of
Fig. 4 for notation.
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F1G. 13. Projections onto the x — y plane of the periodic ortits involved in the period tripling of the verti-
cal family of #,: (a) shows the symmetric rotations ¥'3Sy,; (b) shows the asymmetric librations ¥'3Uy,.
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Fi1G. 16. Schematic Ex t plots and Poincaré sections showing the breakdown of symmetries at the
period tripling bifurcation of the vertical family. The system is (a) #; (b) H,; (c) H#,. See caption
of Fig. 4 for notation.

orbits (compare with Fig. 13). Again, when f is turned on this last non-generic
bifurcation unfolds in the way discussed before. Figure 16 shows schematically the
complete unfolding.

V. CONCLUDING REMARKS

We have studied the breakdown of two reflexion symmetries in a non-integrable
Hamiltonian system with two degrees of freedom. From the classical point of view
we have concentrated on the unfolding of only two selected bifurcations. As we
have seen, the reduction of symmetries forces the degenerate families of periodic
orbits to split into separate families, changing the topology of the Ex1t plot.
Although we have not checked the unfolding of all possible bifurcations, we believe
that similar effects would be observed in more complicated cases. We have also
observed an increase in the phase-space volume filled with chaotic trajectories as
the symmetries are broken.

It is important to point out that, while the unfolding of the pitchfork bifurcation
into a saddle center plus an independent orbit is generic [5, 8], no formal results
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concerning the unfolding of the periodic tripling (or any other bifurcation) is
known, and a complete theory is still lacking.

Quantum mechanical effects due to symmetry reduction can also be studied. The
ideal effect to be observed would be the split of the peaks in the Fourier transform
of the smoothed density of states according to the split of the corresponding
periodic orbit families [8, 9, 16-197. Such a split of the horizontal family, as shown
in Fig. 9, for instance, would require a resolution in the Fourier spectrum of
At = 0.1. Unfortunately, for this particular Hamiltonian, this gap does not change
appreciably with the parameter y. Therefore, a simple estimate shows that a
resolution of 4t~ 0.1 would be possible only for very small values of A (hx 107%)
which would imply the diagonalization of very large matrices. A few quantum
mechanical calculations have been performed with #=6x 10" but no striking
effects could be noted at this (poor) resolution. It should be noted, however, that
experimental measurements of atomic spectra show that the symmetry breaking
effects are indeed observable [9].
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