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We study the topological properties of the quantum phase space current in the

Husimi representation, focusing on the dynamical di�erences, induced by these prop-

erties, between the quantum and the classical �ows. We show that the zeros of the

Husimi function are stagnation points of the current and have a nonzero topologi-

cal charge. Due to overall charge conservation, new stagnation points with opposite

charge appear in pairs in the Husimi current and they have important roles in dy-

namical processes. As an example we show the topological e�ect of the zeros in the

transmission rate of particle through a potential barrier.
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I. INTRODUCTION

Motivation. Since the early days of the quantum theory physicists have looked for ways

to represent quantum states as probability distributions in the phase space, a procedure

in which information about coordinate and momentum representations is encoded in one

single function [1�5]. This type of representation, thoroughly employed in classical statis-

tical mechanics, is nowadays widely used to study quantum systems with applications in

experimental photonics, quantum information, numerical semiclassical methods and other

applied and theoretical �elds.

In general, functions Q representing probability densities in the phase space satisfy the

continuity equation
∂Q

∂t
+ divJ = σ, (1)

where the divergence is taken with respect to the coordinates x and momenta p. This

equation de�nes the probability current J and the generation rates σ for Q, which can be

either positive or negative. In classical mechanics σ = 0 due to probability conservation,

and the equations of motion for the coordinates determine the current [6]. For example, in

an one-dimensional system

J =

 Jx

Jp

 = Q

 ẋ

ṗ

 ,

where the dots indicate total derivative with respect to time. Classical solutions of the

equation (1) can be obtained from an initial function Q and are given in terms of the

trajectories governed by the equations of motion: Q (x, p; t) = Q (x0, p0; 0); where x0 and

p0 are the initial conditions of the trajectory ending at x and p in the time t. These

classical probability functions have two properties: their marginal distributions are the

physical coordinate and momentum distributions and they are positive semi-de�nite, Q ≥ 0.

The quantum mechanical analog of this formulation uses phase space functions to repre-

sent states but the general solutions have di�erent properties from that of the classical ones.

Firstly, it has long been known that any quantum function violates at least one of the two

classical properties stated before. For example, the Wigner function [5, 7] has as marginal

distributions the wavefunctions of the state in the coordinate and momentum representa-

tions but it is not positive, and the Husimi function [8, 9] is positive, but it does not have

the wavefunctions as its marginal distributions. Secondly, quantum solutions are not guided
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by trajectories because it is impossible to assess both coordinate and momentum for a given

test particle, even though the quantum functions satisfy the continuity equation and have

well a de�ned probability current [10, 11]. Since authentic quantum trajectories do not exist

as in the classical dynamics, in order to characterize both dynamical regimes in the phase

space on the same grounds we need to attain the analysis on the probability �ow itself.

Quantum phase space �ow. Continuity equations in quantum mechanics cannot be de-

rived from equations of motion. Instead they are built by casting the von Neumann equation

for the dynamics of the states in some representation, in which the density operator of the

state is mapped to the function Q in the phase space, where a suitable current J is obtained.

In recent years attention has been drawn to the topological structures the quantum current

generates and the relations to its classical counterpart. So far it has been shown that the

Wigner current has a strict topological order in the dynamics of its stagnation points [10],

and in a recent work the same kind of order was explored for the Husimi function [11].

The Husimi function is obtained by averaging the density operator in a basis of Gaussian

coherent states and it can be interpreted as the probability of measuring the position and

momentum of the quantum system within an uncertainty area centered in the basis state.

This function inherits the analiticity of the coherent states, which restricts the dynamics of

the stagnation points. In a previous work [11] we presented a detailed demonstration of the

construction of the Husimi current for one-dimensional systems, and we showed that the

current adds new topological structures to the dynamics when compared with its classical

counterpart. We also conjectured that these new structures emerge because every zero of

the Husimi function is also a saddle point of the �ow. In this paper we prove this conjecture

and we explore the e�ects of this topological structures in a toy model.

Speci�cally, we consider transmission through a gaussian barrier and show the connection

between the classical and quantum transmission coe�cients and the position of the zeros

relative to the peaks of Husimi function and the classical energy levels. It has already

been observed that the emergence of zeros in the phase space is a signature of quantum

interference [12, 13]; our work adds another layer of comprehension of this signature by

analysing a dynamical feature of the zeros.

Structure of the paper. In section 2 we present a summary of our previous work [11].

Section 3 contains the demonstration of the conjecture for the two-dimensional phase space.

In section 4 we use the Gaussian barrier as a toy model to analyse the dynamical e�ect of
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the topological structures. Section 5 contains the �nal remarks.

II. THE HUSIMI FLOW

The coherent states |z〉 of the harmonic oscillator of mass m and frequency ω are de�ned

as the eigenstates of the annihilation operator,

â|z〉 = z|z〉,

where z is a complex number that labels the eigenvalue. The normalized coherent states

can be written as

|z〉 = e−z̄z/2ezâ
†|0〉,

where z̄ is the complex conjugate of z and |0〉 is the ground state of the harmonic oscillator.

Throughout this paper we use a bar to denote the complex conjugate. The annihilation and

creation operators, â and â†, are given by

â =
x̂

σx
+ i

p̂

σp
, â† =

x̂

σx
− i p̂

σp
,

where σx =
√

~/2mω and σp =
√
~mω/2 are the coordinate and momentum widths of the

ground state, respectively [8, 9]. The coherent states are minimum uncertainty localized

Gaussian wavepackets centered at x = 〈z|x̂|z〉 = σxRe (z) and p = 〈z|p̂|z〉 = σpIm (z). In

terms of x and p we can rewrite z as

z =
x

σx
+ i

p

σp
, z̄ =

x

σx
− i p

σp
. (2)

The change of variables (x, p) 7→ (z, i~z̄) is a canonical transformation and due to the

scaling by σx and σp the dimensionless z coordinate have characteristic size of 1/
√
~, which

is important when expansions in powers of ~ are needed.

The identity operator in the coherent state representation is

1̂ =

∫
d2z|z〉〈z|,

where the d2z = dz̄dz/2πi = dxdp/2π~ is the displacement invariant volume of the phase

space. A quantum state represented by the density operator ρ̂ can be mapped to a phase

space function by means of its average over coherent states:

Q (z̄, z) = tr (ρ̂|z〉〈z|) . (3)
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This is the Husimi function of the quantum state, also called its Q-symbol. If the state is

pure the Husimi function is the squared modulus of the wavefunction and is non-negative. It

represents the minimal uncertainty probability of measuring the position and momentum of

the state. From the de�nition of |z〉, the wavefunction in the coherent state representation

can be written as

ψ (z̄, z) ≡ 〈z|ψ〉 = e−z̄z/2θ (z̄) , (4)

where θ (z̄) = 〈0|ez̄â|ψ〉 is an analytic function of z̄ [8, 9]. Similarly, ψ̄ (z, z̄) = 〈ψ|z〉 =

e−z̄z/2θ̄ (z). This factorization of the wave function will be important in the next section.

The dynamics of the density operator is governed by the von Neumann equation,

i~
∂ρ̂

∂t
=
[
Ĥ, ρ̂

]
, (5)

where Ĥ is the Hamiltonian operator and [·, ·] is the commutator. In order to represent the

dynamics in the phase space, we de�ne a Hamiltonian function for Ĥ,

H (z̄, z) = tr
(
Ĥ|z〉〈z|

)
, (6)

which is an average of the operator over the coherent states. If the Hamiltonian operator

can be written as a normal ordered power series in â and â†, namely Ĥ =
∑

m,n hmnâ
†mân,

then its averaged function is H =
∑

m,n hmnz̄
mzn. With this de�nition, equation (5) can be

rewritten as a di�erential equation in the phase space for the Husimi function:

i~
∂Q

∂t
=
∑
m,n

hmnz̄
m

(
∂

∂z̄
+ z

)n
Q− c.c.,

where c.c. stands for the complex conjugate of the expression immediately preceding it.

Taking the limit ~→ 0 the right hand side of this equation reduces to the Poisson bracket,

and the classical dynamics is obtained. In this limit the evolution of a phase space function

can be further written as a continuity equation:

∂Q

∂t
+
∂Jcl
∂z

+
∂J̄cl
∂z̄

= 0,

where Jcl (z̄, z) = 1
i~Q

∂H
∂z̄

is the classical probability current. This classical dynamics is based

on the existence of trajectories, guided by the equation of motion ż = 1
i~
∂H
∂z̄
, that carry the

Q function over the phase space. In a similar fashion we can transform the full quantum
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dynamical equation into a sourceless continuity equation if the Hamiltonian operator is

Hermitian:
∂Q

∂t
+
∂J

∂z
+
∂J̄

∂z̄
= 0; (7)

where J (z̄, z) is the quantum probability current and is given by

J =
1

i~

∞∑
m,n=0

min(m,n)∑
k=0

m−k∑
l=1

hmn (−1)km!n!

k!l! (m− k − l)! (n− k)!

∂l−1

∂zl−1

(
z̄m−k−lzn−kQ

)
. (8)

The lowest order ~ term on the right hand side of (8) is obtained with l = 1 and k = 0,

and this term retrieves the classical current Jcl. In this way, the quantum current can be

separated into the classical current plus higher order corrections in ~. If the Hamiltonian is

not Hermitian, hmn 6= h̄nm, a source term

σ =
Q

i~
e−

∂
∂z̄

∂
∂z

(
H − H̄

)
is added to the right hand side of (7). This term accounts for the absence of norm conser-

vation of the Husimi function. In this paper we will only consider Hermitian Hamiltonians.

Simpli�cation of J . The expression (8) can be further simpli�ed by changing the sum-

mation indexes in the following way:

∞∑
m=0

∞∑
n=0

min(m,n)∑
k=0

m−k∑
l=1

7→
∞∑
k=0

∞∑
l=1

∞∑
m=k+l+1

∞∑
n=k

.

Expanding the derivatives in z contained in (8) and gathering conveniently the terms we

obtain

J =
1

i~

∞∑
l=1

∂l−1Q

∂zl−1

∞∑
k=0

(−1)k

(k + l)!

∂2k+lH

∂z̄k+l∂zk
, (9)

which is a more compact and manageable expression than the original (8). Our interest

concerns the stagnation points of the �ow, those points of the phase space where J = 0.

III. STAGNATION POINTS OF THE FLOW

In [11] it was conjectured that the zeros of the Husimi function are also saddle points of

J . This means that whenever a zero of the function occurs, there are topological di�erences

between the classical and quantum probability �ows induced by these new stagnation points,

and the phase space dynamics of these regimes are di�erent. In this section we prove that
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this conjecture is true, and we analyse how the existence of the saddle points can change

the dynamical behaviour of a system.The quantum current (9), like the classical one, has

a gauge freedom under the transformation J 7→ J + i ∂
∂z̄

Φ, for any phase space valued real

function Φ. Apart from this gauge, in this work we regard (9) as the probability current

associated to the Husimi function due to its special factorization (12) shown below.

Let z0 be a stagnation point, J (z̄0, z0) = 0. The probability current can be expanded

around z0 as

J ≈ (z − z0)
∂J

∂z

∣∣∣∣
z̄0,z0

+ (z̄ − z̄0)
∂J

∂z̄

∣∣∣∣
z̄0,z0

,

J̄ ≈ (z − z0)
∂J̄

∂z

∣∣∣∣
z̄0,z0

+ (z̄ − z̄0)
∂J̄

∂z̄

∣∣∣∣
z̄0,z0

.

The topological behaviour of the current about this point is determined by the eigenvalues

λ of the matrix G of the linear coe�cients of the expansion. This matrix is also the vector

gradient of the current, and is given by

G
[
J̄ , J

]∣∣
z̄0,z0

=

 ∂J
∂z

∂J
∂z̄

∂J̄
∂z

∂J̄
∂z̄

∣∣∣∣∣∣
z̄0,z0

.

As an illustration consider the classical case, where the current is given by Jcl = 1
i~Q

∂H
∂z̄
,

with Q = |ψ (z̄, z)|2. There are two sets of stagnation points, given by Q = 0 and by ∂H
∂z̄

= 0.

The eigenvalues of G at these points areλcl = 0, if Q = 0,

λcl = ±Q
~

√
detK, if ∂H

∂z̄
= 0;

(10)

where K is the Hessian matrix of the Hamiltonian function evaluated at the stagnation point:

K =

 ∂2H
∂z2

∂2H
∂z̄∂z

∂2H
∂z̄∂z

∂2H
∂z̄2

∣∣∣∣∣∣
z̄0,z0

.

When Q = 0 the structure of the stagnation point cannot be inferred. When ∂H
∂z̄

= 0 the

eigenvalues are either real numbers with opposite sign if the Hessian determinant is positive,

or pure imaginary conjugate numbers if the determinant is negative. In the former case the

point is a saddle of the �ow, with an attractive and a repulsive direction; in the latter, it is

a vortex [6].
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For each stagnation point z0 the topological characterization of the probability current

can be done by the index I of the �ow, which counts the number of times the current rotates

completely while we move clockwise around the point. Taking a loop L around z0 containing

no other stagnation point, I is calculated as the clockwise integral of the angle φ between

the �ow and some �xed reference axis in L:

I (z0) =
1

2π

∮
L

dφ.

One counterclockwise rotation of J adds −1, whereas one clockwise rotation adds +1. In

general, for saddle points I = −1 and for vortices I = +1. In this way the index de�ne a

topological charge ±1 for each point [6, 14].

When we analyse the quantum �ow, the behaviour of stagnation points is di�erent from

the classical �ow. For pure states, the Husimi function can be factored as

Q (z̄, z) = e−z̄zθ (z̄) θ̄ (z) , (11)

where θ is given in (4). As the quantum current (9) depends only on the derivatives of Q

with respect to z, it can be written as

J = θ (z̄)
1

i~
∑

k≥0,l≥1

(−1)k

(k + l)!

∂2k+lH

∂z̄k+l∂zk
∂l−1

(
e−z̄z θ̄ (z)

)
∂zl−1

= θ (z̄) f (z̄, z) . (12)

Here there are two possibilities that produce J = 0: θ = 0 or f = 0. The points that satisfy

the condition θ = 0, which are the zeros of the Husimi function, will be named the trivial

stagnation points, while those that satisfy f = 0, given by an intricate relation between the

phase space functions Q and H, will be called the non-trivial stagnation points.

The eigenvalues of the vector gradient for both classes of stagnation points can be calcu-

lated using the factorization (12):

G ≡

 θ ∂f
∂z

∂(θf)
∂z̄

∂(θ̄f̄)
∂z

θ̄ ∂f̄
∂z̄

 ,

and are given by the roots of the secular equation

λ2 − λ
(
θ
∂f

∂z
+ θ̄

∂f̄

∂z̄

)
+ θθ̄

∂f

∂z

∂f̄

∂z̄
−
(
θ
∂f

∂z̄
+
∂θ

∂z̄
f

)(
θ̄
∂f̄

∂z
+
∂θ̄

∂z
f̄

)
= 0. (13)
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The solutions of (13) are di�erent for each case considered before and are given byλ
± = ±

∣∣∂θ
∂z̄
f
∣∣ , if θ = 0;

λ± = 1
2

(
trG ±

√
tr2G − 4 detG

)
, if f = 0.

(14)

Therefore, the trivial stagnation points are saddles of the �ow, and their indices are equal

to −1. This is the proof of the previous conjecture. There are two possibilities to the

eigenvalues of the non-trivial stagnation points. First, when the term under the square

root is positive, the eigenvalues are both negative (positive) numbers, and the stagnation

point is an attractive (repulsive) node. Second, when the term inside the root is negative,

the eigenvalues are a pair of complex conjugate numbers, and in this case the stagnation

point is an attractive (repulsive) spiral if their real parts are negative (positive). For both

possibilities, the real parts of the λ±'s add to −∂Q
∂t

and the index of the point is equal to +1.

During the time evolution of the quantum state, the movement of the Husimi function is

accompanied by the movement of its zeros. In view of the Poincaré-Hopf theorem the total

index of the �ow must be conserved during the dynamics, thus the emergency of a saddle

point must always be accompanied by the emergency of a non-trivial stagnation point; for

this reason stagnation points exist in pairs.

In [11] it has been observed that the stagnation points in the pair move closely to each

other in the phase space and form a structure similar to the one depicted in Figure 1. Since

this structure is similar to a dipole with opposite charges, in this work we name it topological

dipole. In the next section we analyse a toy model where the presence of the topological

dipoles works as a signature of di�erences between two regimes of transmission across a

potential barrier.

IV. TUNNELING IN THE GAUSSIAN BARRIER

We consider a particle of mass m scattering o� a one-dimensional Gaussian barrier with

amplitude V0 and width 1/
√

2k. We are interested in the comparison between the classical

and quantum transmission rates through the barrier, TC and TQ, respectively.

The classical Hamiltonian is

Hcl =
p2

2m
+ V0 exp

(
−kx2

)
, (15)
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FIG. 1. Sketch of one topological dipole, comprised by a saddle point (left, blue spot) and a spiral

(right, red spot). The total index around both points sums to zero. The vortex can also have an

attractive or repulsive character.

and the quantum Hamiltonian for the model is given by

Ĥ =
p̂2

2m
+ V0 exp

(
−kx̂2

)
, (16)

In general, the classical Hamiltonian is di�erent of the averaged Hamiltonian function de�ned

in (6), and the latter contains terms of higher order in ~. For the operator above, the averaged

Hamiltonian (6) is given by

H =
p2

2m
+

~ω
4

+ αV0 exp
(
−αkx2

)
, (17)

where x and p are given by expressions (2) and α = (1 + 2kσ2
x)
−1/2

is a smoothing factor.

The classical Hamiltonian is recovered from the averaged one when ~→ 0. The initial state

was chosen as a coherent state centered at x0 and p0 with position and momentum widths

σx and σp, respectively. The parameters were set to m = ω = 1 and ~ = 1/100, which

implies σx = σp = 1/
(
10
√

2
)
. We also �xed V0 = 2, k = 3 and x0 = −4. We also de�ne

pC =
√

2mV0 = 2, corresponding to a classical kinetic energy equal to the barrier top. For

further details on the numerical calculations we refer the reader to the Appendix.

In order to quantify the relative classical-to-quantum transmission T and re�ection R =
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FIG. 2. (a) Relative transmission and re�ection coe�cients for di�erent values of p0. (b) Husimi

function for selected times for p0 = 1.8. Along the arrow, time steps increase by 0.2 with initial

time 1.7. Amplitude scale relative to the highest value, chosen to be 1.

1− T rates we de�ne

DT =
TC − TQ
TC

,

DR =
RC −RQ

RC

;

If DT > 0 and DR < 0 (DT < 0 and DR > 0) the probability of the classical particle crossing

the barrier is higher (smaller) than the tunneling probability of the quantum particle. There

are two di�erent regimes of transmission according to the average initial momentum p0 of the

particle, as can be seen in Figure 2a. For p0 / pC the classical transmission is greater than

the quantum one, while if p0 ' pC the quantum transmission is greater. We investigated the

structure of the quantum �ow for both regimes for a state with initial momentum p0 = 1.8

and p0 = 2.1. The quantum movement of the Husimi function is shown for reference in

Figure 2b for p0 = 1.8.

Figure 3 shows the logarithmic plot of the Husimi function, highlighting the position of its

zeros, the so called stellar representation [12, 13, 15]. The panels show the Husimi function

at di�erent times when the particle is hitting the barrier. In all panels it is possible to see

a row of zeros in front of the maximum of the Husimi function (marked by an ellipse with

the letters RZ) in a region where classical trajectories cross the potential barrier (p > 0).
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The presence of the zeros causes the quantum �ow to be highly distorted with respect

to the classical �ow. This is seen in Figure 4, which shows the Husimi function superim-

posed with the quantum current. Three zeros, which are saddles of the current, and their

corresponding center companions, are clearly visible (marked by squares, triangles and cir-

cles). The �ow, that would classically go through the top of the barier to the other side,

gets partially blocked by the topological dipoles. This dynamical feature leads to a smaller

quantum probability of transmission compared to the classical one.

In a similar fashion the zeros of the Husimi function and the associated stagnation points

of the current help understand the dynamics of the transmission for p0 > pc, when the

quantum transmission is larger than the classical. Figure 4b shows a few classical trajectories

superimposed with the Husimi function for p0 = 2.1. Once again the row of zeros is visible,

but this time they are situated in a region near the classical separatrix. Below the separatrix,

where the Husimi function is large and the classical trajectories are re�ected back, the zeros

distort the �ow again, allowing portions of the Husimi function to cross it. Notice that

alongside with the last zero of the row, below the separatrix, is the vortex of the topological

pair, allowing the �ow to circulate around it and move to the other side of the separatrix.

This leads to a higher quantum than classical transmission.

In summary, the position of the zeros relative to the Husimi function's maximum and

to the classical �ow lines are a signature of the transmission regime. This particular model

exhibited two particular possibilities of relative position, other systems could o�er di�erent

situations to be explored.

V. FINAL REMARKS

In this work we studied the dynamics of the Husimi function and the role of its zeros

in producing stagnation points of the corresponding phase space �ow. We showed that the

zeros are stagnation saddle points of the quantum probability �ow, leading to new topological

structures in the current when compared to the classical dynamics. These new stagnation

points of the current are created in pairs due to topological restrictions, with indexes equal

to +1 and −1, so that each pair behaves as a topological dipole with total index equal to

zero.

As an example we studied the scattering of a wave packet through a Gaussian barrier,
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FIG. 3. Gray scale log-plot of the Husimi function for time instants T = 1.9, 2.1, 2.3 and 2.5 (see

Figure 2b), organized in the reading direction. Black represents the absolute maximum and white

represents zero. A row of zeros (RZ) is seen in front of the Husimi maximal values, which is framed

by the border zeros (BZ). The outer zeros (OZ) in the external region are numerical artifacts.

where two regimes of transmission can be identi�ed according to the initial average momen-

tum of the particle. For initial average kinetic energy below the barrier top the classical

transmission is greater than the quantum one, whereas the quantum transmission is larger

than the classical if the average kinetic energy is above the barrier top. In each case the rela-

tive position of the topological dipoles is di�erent, accounting for the dynamical mechanism

behind the di�erences between the classical and quantum �ow. When the classical trans-
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FIG. 4. (a) Zoom in the row of zeros for T = 2.1 and p0 = 1.8. The black continous lines are the

energy levels of the classical Hamiltonian, which coincides with the direction of the classical �ow.

Three topological dipoles are visible in the image, marked with square, triangle and circle. (b)

Husimi function for p0 = 2.1 and T = 2.2. The black continuous lines identify the classical energy

levels and the green curve is the separatrix. The row of zeros can be seen crossing the searatrix.

mission is greater than the quantum, the dipoles are located in regions of the phase space

where classical trajectories cross the barrier, partially blocking the transmission. When the

quantum transmission is greater than the classical, the dipoles are situated near the classical

separatrix and they o�er a path for probability transmission across it, a classically forbidden

mechanism.

The zeros of the Husimi function have already been pointed out as signatures of quantum

phenomena. Understanding how these zeros change the phase space probability �ow adds

new information about the dynamical mechanisms of quantum phenomena in the phase

space.
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APPENDIX

Quantum dynamics of the Husimi function Given an initial coherent quantum state |z0〉,

with mean position and momentum x0 and p0, respectively, its time evolution is obtained by

the split-time operator method (STOM) [16]. The output of this method is the wavefunction

ψ (x) in the coordinate representation, and the Husimi function (3) is obtained through a

convolution with the coherent state function φ∗ (z̄, z;x) = 〈z|x〉:

Q (z̄, z) =

∣∣∣∣∫ ψ (x)φ∗ (z̄, z;x) dx

∣∣∣∣2 .
The quantum current is then evaluated with (9):

J =
1

i~

∞∑
l=1

∂l−1Q

∂zl−1

∞∑
k=0

(−1)k

(k + l)!

∂2k+lH

∂z̄k+l∂zk
.

In our model the average Hamiltonian (17) is not a �nite polynomial and for computational

purpose we need to truncate the sums. If we consider an ~ expansion of the current, the

contribution of order ~N is obtained when l+ k = N + 1. For example, the classical current

has order ~0, and we would use only the l = 1 and k = 0 term; the �rst quantum correction,

of order ~1, would use l = 2, k = 0 and l = 1, k = 1, and so on. In our calculations we went

up to N = 10.

The STOM routine for the wavefunction was made in the range −10.0 ≤ x ≤ 10.0 with

resolution ∆x = 0.0025. The time step was ∆t = 0.01. In Figures 3 and 4 the grid of the

Husimi function has resolution of 500 × 500 points. In the sequence of images in Figure 3

the region where the Husimi function assumes the greatest values is surrounded by a border

of aligned zeros, with an outlying �sea of zeros�. These zeros were robust-tested and only

the border was observed to be accurately reproduced; the position of the zeros in the sea is

very sensitive to the range and the resolution of the STOM.

Classical dynamics of the Husimi function The classical evolution of the initial Husimi

function was made integrating the trajectories generated by the classical Hamiltonian (15).

For time instant t, the classical function is

Q (x (t) , p (t) ; t) = Q (x, p; 0) ,

where (x (t) , p (t)) is the trajectory with initial condition (x (0) , p (0)) = (x, p), driven by

Hamilton's equations of movement:

ẋ =
∂Hcl

∂p
, ṗ = −∂Hcl

∂x
.
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In the classical case we used as initial probability density the Husimi function for this state.
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