
Conditions for Neutral Speciation via Isolation by Distance

Elizabeth M. Baptestini1, Marcus A.M. de Aguiar1,2 ∗ and Yaneer Bar-Yam2

1 Instituto de F́ısica “Gleb Wataghin”,

Universidade Estadual de Campinas, Unicamp

13083-859, Campinas, SP, Brasil

2New England Complex Systems Institute,

Cambridge, Massachusetts 02142

Abstract

The branching of new species from an ancestral population requires the evolution of reproductive

isolation between groups of individuals. Geographic separation of sub-populations by natural

barriers, if sustained for sufficiently long times, may lead to the accumulation of independent

genetic changes in each group and to mating incompatibilities [1, 2]. A similar phenomenon may

occur in the absence of barriers via isolation by distance if the population is distributed over large

areas [3–5]. The first demonstration of this process was based on computer simulations employing

agent-based models. Recently, analytical results were derived combining network theory, to model

the spatial structure of the population, and an ansatz that accounts for the effect of forbidding

mating between individuals that are too different genetically [6]. The main result obtained with this

approach is an expression that indicates when speciation is possible as a function of the parameters

describing the population. The aim of this work is to test this analytical result by comparing it with

numerical simulations for a hermaphroditic population [3] and for a population whose individuals

are explicitly separated into males and females [7]. We show that the analytical formula is indeed

a very good overall description of the simulations and that the exponents describing dependence of

the critical threshold of speciation with the parameters are in good agreement with the simulations.
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I. INTRODUCTION

A central problem in genetics is to understand how allele frequencies change over time,

resulting in a diversity of organisms. The resulting population structure may lead to specia-

tion events, separating into multiple genetically incompatible groups. In real populations the

problem involves a large number of variables that cannot usually be monitored or controlled,

such as mutation rate, selection, number of genes involved, genetic incompatibilities, vari-

able population size and area where the population lives [7–9]. Here we compare simulations

and analytical results on speciation in spatially extended populations. Our results quantify

the increase of speciation with decreasing population density, increasing mutation rate and

genome size, more restrictive mating in space and genetic variation. All dependencies are

incorporated in a single scaling function analysis of the threshold conditions for speciation

through spontaneous segregation of interbreeding spatial populations.

One of the simplest theoretical formulations of the dynamics of population diversity was

proposed by Moran, who described the neutral evolution of a single gene with two alleles

in a population of haploid individuals subjected to mutations. An important feature of the

Moran model is the overlapping of generations, meaning that only one individual is replaced

at each time step, as opposed to the synchronous update of the entire population, as in

the model proposed by Wright and Fisher [10–12]. The Wright-Fisher model describes, for

instance, annual plants, whereas the Moran model is appropriate for perennial plants.

The dynamics of the Moran model is as follows: consider a gene with alleles A0 and A1

in a population with fixed number N of haploid individuals. At each step one individual,

k, is randomly selected to reproduce and die, being replaced by the resulting offspring. The

offspring is generated by the mating of k with another random individual k′ and it may

keep the allele of either parent, and be subsequently altered by mutation. The population

is said to be panmictic, or fully mixed, since any individual can mate with any other. The

probability Pt(m) that the population has m alleles A0 at time t satisfies a linear equation,

which can be solved for the case of zero [13, 14] and non-zero [6, 15, 16] mutations. Complete

results for non-zero mutations were derived only recently by mapping the Moran model into

a dynamical problem on fully connected networks where each node represents an individual

[6].

In equilibrium, the average genetic distance between two individuals in the population,
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the heterozigosity, is given approximately by

〈d 〉 =
2µN

1 + 4µN
(1)

where µ is the mutation rate per gene. In [6] the Moran dynamics were extended to include

multiple genes, spatially extended populations and a condition of genetic incompatibility

that allows the development of reproductive isolation. With these generalizations the model

can be used to describe the evolution of neutral speciation. For individuals with B indepen-

dent genes, Eq.(1) becomes

〈d 〉B = B〈d 〉 =
B

2

(
4µN

1 + 4µN

)
. (2)

Here the genetic distance between individuals is measured by the number of genes bearing

different alleles, the so-called Hamming distance.

The Moran model dynamics can be combined with network theory, where the network

topology describes the set of possible mating events, enabling an analysis of the genetic

dynamics of structured populations. Panmictic populations are mapped into fully connected

networks [17]. A particularly important case arises when the population is spread over a

square region of size L × L and mating is allowed only between individuals that are closer

than a critical spatial distance S < L. This corresponds to a locally connected homogeneous

spatial network with ρπS2 connections per node, where ρ = N/L2 is the average population

density. It can be shown [6] that the dynamics of such a population are closely equivalent

to the panmictic case, but with an effective mutation rate given approximately by

µef =
µf

1 + 2µf
(3)

where f = L2/πS2 is the ratio of the number of potential mates in the panmictic case to

the number of potential mates in the structured population.

The multi-gene spatial version of the Moran model can describe speciation if a condi-

tion for genetic incompatibility is introduced, namely, that mating is possible only between

individuals that are sufficiently similar genetically. This condition couples the genes and

Eq.(2) becomes no longer exact. It is still a good approximation if the individuals are not

too different genetically. When the genetic restriction is added, speciation via ‘isolation by

distance’, or topopatric speciation, becomes possible [3] and understanding the conditions

for its occurrence is of importance to evolutionary biology and biodiversity. Including the
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effects of restricting mating by genetic proximity in the Moran dynamics is, however, more

difficult and requires understanding the role of several variables in speciation.

In [3, 6, 7] it was shown that the occurrence of speciation is sensitive to variation in the

parameters describing the population, increasing with decreasing population density and

with increasing mutation rate and number of genes. Taking these effects into account, the

condition of genetic incompatibility can be included as an ansatz that can be understood as

follows.

For a panmictic population, restricting mating by genetic proximity decreases the genetic

diversity of the population by ‘forcing’ the individuals to be all genetically similar. If the

maximum allowed genetic distance for mating is G, then, in equilibrium, 〈d 〉B ≈ G. Ac-

cording to Eq.(2), and if 4µN >∼ 1, this can be interpreted as reducing the genome size B

to an effective size Bef = 2G. However, if mating is also constrained by the spatial distance

S, the effective mutation rate increases as S decreases. This, in turn, increases the average

genetic distance between individuals and, therefore, the size of the effective genome. The

conflict between these two effects, G contracting the genetic diversity and S increasing it

via mutations, is resolved by speciation. Indeed, when 〈d 〉B becomes larger than about 2G

the population becomes unstable and splits into smaller groups (species) where the average

genetic distance is restored to values close to G and whose size is compatible with S. Writing

Bef = 2G+ (B − 2G)P (4)

the question becomes to estimate the fraction P of genes added to the effective genome due

to the spatial restriction S for a given total genome size B, mutation rate µ and population

density ρ = N/L2. As discussed above, increasing B and µ or decreasing ρ facilitates

speciation. In [6] it was proposed that P could be written as

P = exp

{
−
[
π(S − Smin)2ρ

γ2Bµ

]2}
(5)

where γ is a fit parameter and

Smin =
√
P/πρ (6)

is the size of a neighborhood containing P individuals (see next section for comparison with

the numerical model). The functional Gaussian form was suggested by simulations.

The condition for speciation is that

〈d 〉B =
Bef

2

(
4µefN

1 + 4µefN

)
>∼ βG (7)
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where β represents the maximum average genetic distance between individuals that can be

supported by a cohesive species and was originally estimated as β = 2. If 4µefN >∼ 1, which

is the case in our simulations, Eq.(7) leads to

S ≤ Smin + SM ≡ Sc. (8)

where

SM = γ

√
Bµ

πρ

[
ln

(
B − βG
βG

)]1/4
(9)

is the maximum spatial distance for speciation measured from Smin.

This expression describes the conditions for speciation as a function of the parameters

of the problem, such as mutation rate, spatial and genetic restrictions, genome size and

population density [6]. In this paper we compare this theoretical result with an agent-based

model that simulates the neutral evolution of a population subjected to spatial and genetic

mating restrictions and whose individuals are either hermaphroditic [3] or separated into

males and females [7]. We describe these simulations in more detail in the next section

and show the comparisons in section III. In section IV we discuss our results and their

implications.

II. TOPOPATRIC SPECIATION

A population that is spatially extended can undergo speciation without the need for

geographic isolation or even selection. If mating occurs only between close neighbors that are

genetically similar, gene flow through the population is slow and the genomes of individuals

that are geographically far apart can become very different [3, 18–21]. This mechanism

of isolation by distance [22, 23] can, in turn, lead to speciation if the conditions are right

[24–28]. These results were demonstrated in [3] using agent-based simulations. Because the

numerical model has a large number of parameters, testing all the conditions that result in

speciation becomes very hard and theoretical predictions based on explicit formulas are of

fundamental importance.

In order to test the theory proposed in [6] we simulated the dynamics of a population

with N individuals homogeneously distributed in space and evolving according to the mating

rules proposed in [3]. Each individual is assigned a spatial position (x, y), 1 ≤ x, y ≤ L and

a haploid genome with B biallelic genes, which are labeled 0 or 1. The individuals, initially
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identical, accumulate differences over time due to mutation (at rate µ) and recombination.

Sexual reproduction is constrained by two critical mating distances [3]. In physical space,

an individual can mate only with others located in a certain neighborhood of its position,

determined by the spatial mating distance S. Space has periodic boundary conditions to

avoid the appearance of borders and corners. In genetic space, mating is allowed only

between individuals that are sufficiently similar, i.e., if the number of distinct genes is no

more than G, the maximum genetic mating distance [29–33]. We consider two versions of

the model, one in which the population consists of individuals that are hermaphroditic and

one in which it is separated into males and females. In the first case any two individuals

respecting the spatial and genetic constraints can mate. In the second case, that we refer to

as sex-separated, only individuals of opposite sex can do so. Depending on the values of the

model parameters, the population may spontaneous break up into reproductively isolated

groups [3, 7, 30].

The main result obtained in [6] is the critical line in the S versus G plane below which

speciation occurs. For hermaphroditic populations it is given by Eq. (8). The parameter

P (minimum number of potential mates) was introduced in [3] to avoid the situation where

the number of available mates is very small: given S and G, if the number of mates available

to the reproducing individual is smaller than P , the spatial constraint is relaxed by making

S → S + 1 until at least P mates are available. Other important properties can be derived,

such as the number of species that arise from speciation, the average number of individuals

in a species and the average radius of a species [3, 7].

Eq. (8) was derived for hermaphroditic populations. In this case each individual is

mapped into a node of the network and links are established between potential mates —

individuals that are genetically and spatially compatible. For sex-separated populations the

nature of the network changes considerably, since nodes representing females link only with

nodes representing males, and vice-versa. The structure is that of a bipartite network.

In the sex-separated case it is useful to define a female reduced network, where two

individuals are connected if they can mate with a common male, and a similar male network.

Each of these networks have approximately half the nodes of the hermaphroditic network,

so the average spatial density of individuals is ρ/2. Also, if the spatial mating restriction

between males and females is S, the maximum separation between connected individuals of

the same sex in the reduced network is 2S. Moreover, gene flow in the female network is
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at least a two-step process, since it takes the mating of a first female with a male and the

mating of the male offspring with a second female to combine the female’s genes. Therefore,

the time scale of crossover events slows down by a factor of two. Still, the analytic discussion

continues to apply to the female or male network so the form of the analytic expressions

should still be valid. We show below that Eq. 8 can indeed be applied to the sexual model

if we change ρ to ρ/2, Smin to
√

2Smin and S to 2S. In order to obtain good qualitative fits

we also need to change γ into γ̃. Therefore, Eq.(8) should also work for the sex-separated

case with the changes

Ssex ≤ Ssex
min + Ssex

M ≡ Ssex
c (10)

where

Ssex
M = γ̃

√
Bµ

πρ

[
ln

(
B − βG
βG

)]1/4
, (11)

Ssex
min =

√
2Smim and the factor 1/2 in ρ/2 is absorbed in γ̃.

Eqs. (8) and (10) identify the combination of parameters that make speciation possible.

For example, low mutation rates, which hinder speciation, can be compensated by a large

number of participant genes or by low population density.

III. COMPARING THEORY AND SIMULATIONS

Eqs. (8) and (10) give an estimate of the multidimensional parameter region where

speciation is possible. The results incorporate cutoffs at G = B/β and at S = Smin, which

are in agreement with numerical simulations [3]. Here we found that β = 1.5 gives a better

fit to the numerical results than the original estimate β = 2 and we used this value in all

cases shown in this section. Eqs. (8) and (10) also predict speciation at large values of S

if B is sufficiently large even if the ratio G/B is kept constant. This is in agreement with

previous results that have described speciation in well mixed populations with infinetely

large genomes [31, 32, 34].

We performed simulations varying one parameter at a time and plotted the results on

logarithmic scale, so that several exponents could be calculated and compared with the

theoretical expressions. In all plots the solid blue line is a linear fit through the data points
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Figure 1. (Color online) Comparison between analytical (red dashed lines) and numerical (points

with error bars) results for the hermaphroditic model. The solid blue lines show a linear fit of the

numerical results. a) LogSM × LogB with ρ = 0.122, µ = 0.001, γ = 7.5 and R2 = 0.999 (The

inset shows results for a larger spatial grid, with L = 256 and γ = 8.7); b) LogSM × Log(µ) with

ρ = 0.122, B = 200, γ = 7.5 and R2 = 0.953; c) LogSc × Logρ with B = 200, µ = 0.001, γ = 8.5

and R2 = 0.994. Fixed parameters: G/B = 0.25, t = 4, 000.
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Hermaphroditic Model

Value of Exponent

Plot Theoretical Simulation Fit R2

LogSM × LogB 0.5 0.38± 0.01 0.999

LogSM × Logµ 0.5 0.45± 0.04 0.953

LogSc × Logρ −0.5 −0.5± 0.02 0.994

Table I. Theoretical and simulated exponents for hermaphroditic model

Sex-separated Model

Value of Exponent

Plot Theoretical Simulation Fit R2

LogSsex
M × LogB 0.5 0.49± 0.01 0.991

LogSsex
M × Logµ 0.5 0.56± 0.01 0.998

LogSsex
c × Logρ −0.5 −0.44± 0.02 0.992

Table II. Summary of theoretical and simulated values of the exponents for sex-separated model

(black squares) and the dashed red line is the theoretical prediction. For each parameter

that was varied, the threshold value between speciation and non-speciation was numerically

computed 5 independent times and from these values the mean and standard deviation were

calculated. All simulations were ran for 4,000 generations on a 128 × 128 square lattice,

expect for the inset in Fig.1(a) where L = 256.

Fig. 1 displays the results for the hermaphroditic case. In panels (a) and (b) we show

SM as a function of genome size B and mutation rate µ. In panel (c) we show d Sc a

function of the population density ρ (notice that Smin also depends on ρ). The parameter

γ was adjusted to γ = 7.5 for Fig. 1(a)-(b) and to γ = 8.5 for Fig. 1(c). The inset in Fig.

1(a) shows the calculation on a larger spatial lattice with L = 256 and γ = 8.7. Table I

summarizes the expected and simulated exponents.

Results for the sex-separated model are displayed in Fig.2 for the same set of parameters

used in Fig.1, but are now compared with Eq. 10. In this case we show Ssex
M and we used

γ̃ = 4.0 for panel (a), γ̃ = 6.0 for (b)-(c). Table II shows the expected and simulated

exponents.
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Figure 2. (Color online) Comparison between analytical (red dashed lines) and numerical (points

with error bars) results for the sex-separated model. The solid blue lines show a linear fit of the

numerical results. a) LogSsex
M × LogB with ρ = 0.122, µ = 0.001, γ̃ = 4.0 and R2 = 0.991; b)

LogSsex
M × Logµ with ρ = 0.122, B = 200, γ̃ = 6.0 and R2 = 0.998; c) LogSsex

c × Logρ with

B = 200, µ = 0.001, γ̃ = 6.0 and R2 = 0.992. Fixed parameters: G/B = 0.25, t = 4, 000.
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IV. DISCUSSION

Spatially extended populations can break up spontaneously into species when subjected

to mutations and to spatial and genetic mating restrictions, even in the absence of natural

selection [3]. Numerical simulations have shown that this mechanism, termed topopatric

speciation, occurs for a restricted range of parameters, that include population density ρ,

mutation rate µ and the parameters S and G controlling the spatial and genetic mating re-

strictions. Because of this large number of independent parameters, exploring the system’s

phase space becomes computationally costly and theoretical predictions are essential. More-

over, having explicit formulas allow for a better understanding of the role of each specific

population characteristic in the speciation process.

In this paper we have shown that the analytical result obtained in [6] provides a good

description of neutral speciation for both the hermaphroditic case and the sex-separated

case. For the sex-separated model the equations have to be adapted to incorporate features

of the corresponding network that are not present in the hermaphroditic case.

The dependence of the critical spatial distance for speciation Sc on the genome size B

(with fixed ratioG/B), mutation rate µ and population density ρ follows closely the proposed

power law with exponents 0.5 for B and µ and −0.5 for ρ. The largest deviation was found

in the exponent of B for the hermaphroditic case, 0.38±0.01. For the sex separated case, on

the other hand, the numerical value 0.49± 0.01 was very close to the theoretical prediction.

The best fit numerical coefficients γ or γ̃ varied in Fig.1 between 7.5 in (a) and (b) and

8.5 in (c), and in Fig.2 from 4.0 in (a) to 6.0 in (b) and (c). Among the possible reasons

for these variations is the lattice granularity (128 × 128) and the small population (2,000

individuals for panels (a) and (b) of both figures). We tested this conjecture by running

simulations on a 256 × 256 lattice with N = 8, 000 individuals, as shown in the inset of

Fig.1(a). Not only did the hermaphroditic scaling exponent increase to 0.44 ± 0.06 but we

also obtained γ = 8.7, which is very close to the value γ = 8.5 in panels (b) and (c). This

provides increased confidence that even the deviations that were observed are due to finite

size effects in the simulated populations.

The overall agreement between the analytical formula and the simulations is quite strong.
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The precise results suggest that our ansatz about the role of spatial restriction in increasing

effective genetic variation as embodied in Eqs. (4) and (5) [6] provides a useful way to

characterize the dynamics of speciation in spatial populations.
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