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A semiclassical approximation to the time evolution of coherent states may be derived from a saddle point
approximation to the exact quantum propagator, and in general it involves complex classical dynamics. We
generalize previous one-dimensional results to d dimensions, and for the case d=2 we present several appli-
cations. We also consider other simple approximations that depend only on real classical trajectories, but are
not initial value representations. These approximations are able to reproduce interference and tunneling effects
and involve propagating a few classical initial conditions compatible with the quantum uncertainties.
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I. INTRODUCTION

Semiclassical propagators involving complex classical
trajectories in real time have appeared in the coherent states
representation around 25 years ago �1,2�. A stationary phase
approximation to the transition amplitude �z��e−iHT/��z�,
where �z� is a coherent state, leads to trajectories satisfying
the usual Hamilton equations subject to special boundary
conditions that can only be satisfied in a complexified phase
space. Numerical calculations in this representation have
been done both for chaotic systems �3,4� and for one-
dimensional systems �5–7� �see also �8�; reviews can be
found in �9,10��. Semiclassical calculations involving com-
plex trajectories in the mixed representation �x�e−iHT/��z�, on
the other hand, were introduced in �11� and recently redis-
covered �12� for the one-dimensional case �see �13� for a
different approach�. Since the mixed representation is the
most interesting for the propagation of wave packets, our
purpose here is to generalize this formalism to many dimen-
sions and to present some applications.

The calculation of complex trajectories involves two dif-
ficulties: first, the effective dimensionality of the phase space
is doubled, since both real and imaginary parts of position
and momenta have to be computed; second, the trajectories
must satisfy mixed boundary conditions, part at the initial
time and part at the final time, a problem known as “root
search.” Therefore we also consider the possibility of em-
ploying only real trajectories in the semiclassical approxima-
tion. This is done by approximating the complex trajectories
by real ones, satisfying modified and less restrictive bound-
ary conditions. Although such real trajectories approxima-
tions are always less accurate than the original complex one,
they are much simpler and sometimes have practically the
same accuracy �12�. Our approach, both with complex and
real trajectories, does not involve integrations over initial
conditions, a procedure that is common to initial value rep-
resentations �IVR� �recent reviews of this method can be
found in �14��. IVR methods are usually easy to apply and
reasonably accurate for long times. Nevertheless, for short
times the present method provides a much clearer physical
picture since only a few families of trajectories are required.

We start from a coherent state �z�, where

z =
1
�2

�B−1q + iC−1p� , �1�

and the d-dimensional vectors q and p are the average values
of position and momentum for this state. The diagonal ma-
trices B and C contain the position and momentum uncer-
tainties, respectively, and satisfy the condition B=�C−1. The
position representation of this coherent state is a Gaussian,

�x�z� = N exp	 i

�
pT�x − q� −

1

2
�x − q�TB−2�x − q�
 , �2�

where N= �B�−1/2�−d/4 �we use the symbol �·� for the determi-
nant�. After a time T, the propagated wave function is given
by

��x,T� = �x�K�T��z� , �3�

where K�T�=e−iHT/�.
In order to calculate the wave function semiclassically we

shall follow the procedure of �11,12�. We first insert in Eq.
�3� a resolution of unity to obtain

��x,T� =� dx��x�K�T��x���x��z� , �4�

and substitute the quantity �x�K�T��x�� by its semiclassical
Van-Vleck expression �15,16�. Then we make the integration
by the stationary exponent approximation. We shall see that
the stationary points are in general complex numbers, and
thus a deformation of the integration contour into the com-
plex plane is unavoidable, taking the classical trajectories
involved in the approximation to a complex phase space.

The Van-Vleck formula in d dimensions is

�x�K�T��x��VV = �2�i��−d/2��− Sxx��e
iS/�, �5�

where S�x ,x� ,T� is the action of the classical trajectory that
goes from x� to x in time T and Sxx� is the matrix of its
second derivatives �we have incorporated Morse phases in
S�. If more than one such trajectory exists, one should sum
their contributions. Before performing the integration, let us
express the determinant in Eq. �5� in terms of the elements of
the tangent matrix. As shown in the Appendix,
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�x�K�T��x��VV =
�2�i�−d/2

�B���Mxp�
eiS/�. �6�

Note that in the position representation nothing is said
about the momentum of the corresponding classical trajec-
tory, and therefore it is not necessary to introduce any com-
plexification. In the coherent states representation the bound-
ary conditions are too stringent as one tries to specify not
only the initial and final points �and the time� but also the
initial and final momenta �10�.

In the next section we shall calculate the integral �4� in
the saddle point approximation, valid in the semiclassical
limit. In Sec. III we develop further approximations that in-
volve only real classical trajectories. We show some illustra-
tive numerical applications in Sec. IV and present our con-
clusions in Sec. V.

II. COMPLEX TRAJECTORIES

In the semiclassical limit the wave function in Eq. �4� can
be written as

��x,T� =
N
�B�

�2�i�−d/2� dx�

exp	 i

�
��x,x�,T�


��Mxp�
, �7�

where

i

�
� =

i

�
�S + pT�x� − q�� −

1

2
�x� − q�TB−2�x� − q� . �8�

We evaluate this integral by the usual saddle point method,
which consists of expanding the exponent to second order
around its stationary point x0�, while the prefactor is simply
evaluated at this point. After performing the resulting
Gaussian integration, this leads to the semiclassical approxi-
mation

�sc�x,T� =
N
�B�

�2�i�−d/2

exp	 i

�
�0


��Mxp�
�−

�2��d

��x�x��
, �9�

where

�x�x� =
i

�
Sx�x� − B−2 �10�

and �0=��x ,x0� ,T�.
The stationary point x0�, determined imposing the condi-

tion �����x0�
=0, is given by

B−1�x0� − q� = iC−1�p − p0�� , �11�

where p0��x ,x0� ,T�= �−��S�x0�
. Both p0� and x0� are in general

complex numbers, and the whole classical trajectory there-
fore takes place in a complex phase space. It leaves x0� at
time 0 with the complex momentum p0� and arrives at the real
position x at time T. The classical action S and the tangent
matrix M will also be complex in general.

Using the relation �see the Appendix�

��x�x�� =
id

�B�2
�Mxx + iMxp�

�Mxp�
, �12�

the final result may be written in terms of the tangent matrix
as

�sc�x,T� =
N�− i�d−1

��Mxx + iMxp�
exp	 i

�
�0
 . �13�

This generalizes the one-dimensional formula presented in
�11,12�, to which it reduces for separable systems and that
has proven to be accurate in the evolution of wave packets in
many different systems. It is of course exact for the propa-
gation of a d-dimensional coherent state in free space and in
potentials up to quadratic �harmonic oscillator, charged par-
ticle in constant electromagnetic/grativational field�. Differ-
ently from the Van Vleck approximation, the prefactor in-
volves the square root of a complex number �remember that
�·� is a determinant, not a modulus�, and its phase must be
determined dynamically with the condition that for T=0 we
have Mxx=1 and Mxp=0.

The semiclassical approximation �13� depends on com-
plex trajectories �q�t� ,p�t�� satisfying the boundary condi-
tions

1
�2

�B−1q�0� + iC−1p�0�� = z, q�T� = x , �14�

where we have used the fact that Eq. �11� can be written
B−1x0�+ iC−1p0�=B−1q+ iC−1p. The final value of the momen-
tum is not restricted and will be complex in general. Follow-
ing Klauder and Adachi �1,3,9� we may write the initial con-
dition as

q�0� = q + �, p�0� = p + iCB−1� , �15�

where �=�+ i� is a complex vector to be determined. The
first condition is automatically satisfied for any �. For a
fixed time T the propagation of this complex initial condition
defines a complex map �→q�T�, the properties of which
have been studied in detail for the one-dimensional case in
�9�. Only for some values of � will it happen that
q�T��Rd, and we denote the set of all those points by �. It
is easy to see that �=0 belongs to �, in which case we have
the classical trajectory of the center of the wave packet.

However, the inverse of the map �→q�T� is in general
globally multivalued: there may be many trajectories that
end at the same q�T�. Therefore � will consist of a finite
collection of d-dimensional disjoint sets, called families. In
the vicinity of a critical point �i.e., one for which �q�T� /��
is zero� the map is two-to-one, provided the second deriva-
tive is not zero. Such a critical point is also called a phase
space caustic. At these points �Mxx+ iMxp�→0, thus prevent-
ing the validity of the semiclassical calculation. It is possible
to develop a semiclassical approximation based on the Airy
function that remains valid near caustics. For the one-
dimensional case this has been derived in �17�.

The family of trajectories that contains the point �=0 is
called the main family, and it provides the most important
contribution to the semiclassical approximation. As time in-
creases, other families may become relevant. The imaginary
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part of �0 is positive for all trajectories that belong to the
main family, but this may not be the case for other families.
When Im��0��0 one has a contribution that diverges when
�→0 and therefore must be discarded. These are called non-
contributing trajectories, and for some families it is neces-
sary to introduce a cutoff in order to avoid them.

Another delicate point is that of Stokes lines and expo-
nential dominance, which is intrinsic to many asymptotic
formulations. In the usual one-dimensional WKB, for ex-
ample, the semiclassical approximation for stationary states
becomes singular at classical turning points, and one must
connect different local solutions by an analytic continuation.
In so doing, one finds that there must be a change in the
number of contributions along certain lines called Stokes
lines �18–21�. In the vicinity of such a line one contribution
dominates exponentially over the other, and one is free to
place a cutoff �the error due to the cutoff is less than the error
due to the semiclassical approximation�. The same phenom-
enon appears in the present formalism. Even though the lo-
cation of these lines is hard to determine in principle, in
practice when crossing them there appears a false divergence
in the approximation, which can be easily detected �12�.

III. APPROXIMATIONS BASED ON REAL
TRAJECTORIES

One may wish to find approximations for the expression
�13� that involve only real trajectories. There are many such
possibilities. One possible choice is the trajectory that starts
at the real point q with initial momentum pi, different from
p, and after a time T arrives at x. Another possibility is a
trajectory that starts with momentum p but from a different
point qi and also arrives at x. We can also give up the final
point condition, for example, by choosing the unique trajec-
tory that starts at q with momentum p. All these possibilities
are similar to the ones already existent in the one-
dimensional case �12�, but in more dimensions one can in
principle come up with others. For example, in two dimen-
sions a trajectory may exist that starts at �qx ,qyi� with mo-
mentum �pxi , py� and ends at �x ,y�, but with qyi�qy and
pxi�px. All these real trajectories should be good approxi-
mations for the complex stationary trajectory if the latter is
not too deep into the complex plane.

An important method that is also based on real trajectories
is the “cellular dynamics,” developed by Heller �22,23�, in
which a grid of initial conditions is evolved and each contri-
bution to the propagator is obtained by a linearization of the
dynamics. This method was initially used to propagate wave
packets �22� and later to obtain coherent state correlation
functions �z��e−iHT/��z� in chaotic systems �24,25�. The calcu-
lations we present in this section are close in spirit to these
works, but instead of following the “cellular” approach we
start from the complex trajectory approximation �13�, and we
also consider a variety of boundary conditions that the real
trajectories may satisfy. Using different boundary conditions
we obtain the “central” trajectory approximation �23� and
also more general results similar to the “off-centered” one
presented in �25�.

This section regards only calculation of wave functions,
but a discussion of the quantity �z��e−iHT/��z� that proceeds
along the same lines may be found in �26�.

A. Approximation via central trajectory

The classical trajectory that starts at �q ,p� will end, after
a time T, in the point �qr ,pr�. Following �12� we write

x0� = q + �x�, �16�

p0� = p + �p� = p − Sx�x��x� − Sx�x�x , �17�

x = qr + �x , �18�

p = pr + �p = pr + Sxx��x� + Sxx�x . �19�

The stationary exponent condition can be written as
�p�= i�B−2�x�, and Eq. �17� can be solved to give �see the
Appendix�

�x� = B�Mxx + iMxp�−1B−1�x . �20�

Now we expand the exponent in Eq. �13� around this
trajectory to second order in �x. The expansion of the action
is

S � Sr + pr
T�x − pT�x� +

1

2
��x �x��Sxx Sxx�

Sx�x Sx�x�
� �x

�x�
� .

�21�

The remaining terms are simply pT�x�, which cancels out,
and �x�TB−2�x�. In the quadratic terms we introduce the
tangent matrix and use Eq. �20� to obtain

�qp�x,T� =
N�− i�d−1

��Mxx + iMxp�
exp	 i

�
�r
 , �22�

where the exponent is given by �see the Appendix�

i

�
�r =

i

�
�Sr + pr

T�x� −
1

2
�xB−1	B−1�x , �23�

where 	= �Mpp− iMpx��Mxx+ iMxp�−1. Note that this is al-
ways Gaussian in �x, with variable width. Therefore this
approximation can never account for interferences or tunnel-
ing effects. Notice that while the formula �13� involves an
infinite number of classical trajectories, at least one for each
value of x, the one we just derived requires only the trajec-
tory that starts in �q ,p�. For this reason this is called an
initial value representation �IVR�.

This formula was first derived by Heller �27� �see also
�23�� and is called the thawed Gaussian approximation
�TGA� �it was rederived with some detail in �10��. It be-
comes exact in the semiclassical limit �→0 �for a fixed
value of time� and has been used, for example, in the study
of decoherence �28� and of scars in quantum chaotic systems
�29�. In the applications presented here we are interested in
quantum effects that cannot be reproduced by the TGA, and
thus we do not consider it any further.
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B. Approximation via trajectory q\x

Let us fix the initial coordinate of the trajectory, q, and
demand that after a time T it arrives at x. We need to find the
initial momentum pi for such trajectories, and in fact there
may be more than one that satisfy the above conditions. We
write

x0� = q + �x�, �24�

p0� = pi + �p� = pi − Sx�x��x�. �25�

Note that the complete expansion of p0� to first order should
be pi−Sx�x��x�−Sx�x�x, but we are keeping x fixed.

Equation �11� gives

B−1�x� = iC−1��p − �p�� , �26�

where �p=p−pi. Using Eq. �25� we find

 i

�
Sx�x� − B−2��x� = �x�x��x� = −

i

�
�p , �27�

which we can invert to write

�x� = −
i

�
�x�x�

−1
�p . �28�

We now expand the exponent in Eq. �13� around this trajec-
tory to second order in �x�. Proceeding analogously to the
one-dimensional case �12� we obtain

i

�
�q =

i

�
Sq +

1

2�2�pT�x�x��p , �29�

which, with a few algebraic manipulations, may be ex-
pressed in terms of the tangent matrix �see the Appendix� as

i

�
�q =

i

�
Sq −

i

2
�pTC−1�Mxx + iMxp�−1MxpC−1�p .

�30�

The wave function becomes

�q�x,T� =
N�− i�d−1

��Mxx + iMxp�
exp	 i

�
�q
 . �31�

The exponent contains the real action Sq and a term which
is Gaussian in the difference between pi, the initial momen-
tum of the trajectory, and p, the average momentum of the
initial coherent state. It is important to note that pi usually
depends on x in a complicated manner, and thus the final
wave packet will not, in general, be Gaussian. Also, there
may exist more than one value of pi, and a sum over all
possible trajectories would be required, resulting in interfer-
ence terms. Since the trajectory involved in the calculation
depends on the initial q and final x points, this is not an IVR.

C. Approximation via trajectory p\x

We now fix the initial momentum of the trajectory and
allow it to start from a point qi that is different from the
center of the wave packet. We write

x0� = qi + �x�, �32�

p0� = p + �p� = p − Sx�x��x�, �33�

and use the stationary exponent condition �11� to find

 i

�
Sx�x� − B−2��x� = − B−2�q �34�

or �x�=−�x�x�
−1 B−2�q, with �q=q−qi. Once again, we ex-

pand the exponent in Eq. �13� to second order in �x�, but
this time we write it in terms of �q. The final result is

�p�x,T� =
N�− i�d−1

��Mxx + iMxp�
exp	 i

�
�p
 , �35�

where

i

�
�p =

i

�
�Sp − pT�q� −

1

2
�qTB−1�Mxx + iMxp�−1MxxB−1�q .

�36�

We have obtained a Gaussian again, this time in the dif-
ference between qi, the initial position of the trajectory, and
q, the average position of the initial coherent state. This is
again not an IVR, and after a time T it will not result in a
Gaussian in x. It may as well display interference between
different existent classical trajectories.

D. Approximation via a mixed trajectory

We now restrict ourselves to a two-dimensional system
and choose the real trajectory that starts at �qx ,qyi� with mo-
mentum �pxi , py� and ends at �x ,y�, but with qyi�qy and
pxi�px. This time we have mixed conditions, and we set

x0� = qx + �x�, �37�

y0� = qyi + �y�, �38�

px0� = pxi + �px� = pxi − Sx�x��x� − Sx�y��y�, �39�

py0� = py + �py� = py − Sy�x��x� − Sy�y��y�. �40�

Using these equations, the stationary conditions can be cast
in the form �x�=−�x�x�

−1
��, where

�� = i�px/�

�y/by
2 �, �x� = �x�

�y�
� . �41�

The expansion of the exponent to second order in
�x� is S�SM +��ST�x�+ 1

2�x�TSx�x��x� for the action,
pT�x0�−q�=−��ST�x�− py�y for the term involving
the wave packet momentum, and �x0�−q�TB−2�x0�−q�
=�x�TB−2�x�+by

−2�y��y−2�y�� for the quadratic term. The
linear terms in �x� cancel, and after we change from �x� to
�
 we have
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i

�
�M =

i

�
�SM − py�y� −

1

2
�
T�x�x�

−1
�
 −

�y2

2by
2 , �42�

where SM is the action for the mixed condition trajectories.
Once again this can be written in terms of the tangent matrix,
as we show in the Appendix. The wave function becomes

�M�x,y,T� =
− i

��bxby

exp	 i

�
�M


��Mxx + iMxp�
. �43�

E. Alternative derivation

Given the integral in Eq. �7� one may argue that, if the
position uncertainties are very small, only the region around
q will be relevant for the integration. Expanding the action to
second order around this point we have

i

�
� �

i

�
S�x,q� −

i

�
�pi − p�T�x� − q�

+
1

2
�x� − q�T�x�x��x� − q� , �44�

where pi= �−��S�x�=q is the initial momentum, generally dif-
ferent from p. Proceeding with the integration, we find the
same result as in Sec. V A, which is based on the trajectory
that starts at q with momentum pi and ends at x with any
momentum at time T.

Jalabert and Pastawski �30� have used a similar argument
in their treatment of the quantum fidelity

� �*�x,T��V�x,T�dx , �45�

�in this equation ��x ,T� and �V�x ,T� are obtained from an
initial wave function by evolving it with two different
Hamiltonians�, but they expanded the action to first order in
the difference x�−q �the same procedure was used in �31��.
After changing the integration variable in Eq. �45� from x to
pi, Vanicek and Heller �32� arrive at a semiclassical result
that is free of caustics. Even though expanding the action to
first order only is inaccurate for simple systems such as the
free particle and the harmonic oscillator, their final formula
seems to work well in practice. The expansion to second
order we just presented is in principle more accurate, but the
result it gives for the semiclassical fidelity is sensitive to
caustics and thus probably less stable in numerical calcula-
tions.

Finally we note that, if instead of inserting a position
representation of unity in Eq. �3�, we used a momentum
representation,

��x,T� =� dp��x�K�T��p���p��z� , �46�

then after a similar second order expansion of the action, this
time around p�=p, we would arrive at the expression �35�
for the wave function. This is justified when the momentum
uncertainties are small. The TGA approximation can also be

obtained this way: one must enforce a stationary phase con-
dition on the imaginary part of ��x ,x�� alone.

IV. APPLICATIONS

In this section we present a few numerical applications of
the approximations we have just derived. We compare the
complex-trajectories formula �13� with the ones based on
real trajectories, and also with exact quantum mechanical
calculations, which we have carried out using fast Fourier
transform methods. The purpose here is not to obtain ex-
tremely accurate numerical results, even though sometimes
this is the case, but rather to illustrate the usefulness of semi-
classical calculations in many different situations.

A. Attractive Gaussian potential

We start by investigating the semiclassical propagation in
a two-dimensional attractive Gaussian potential,

V�r� = − e−r2
, �47�

where r2=x2+y2. A one-dimensional version of this problem
was already considered in �12�, where the semiclassical ap-
proximation was shown to be very accurate. This potential is
also interesting because, unless the particle’s momentum is
very low �which is not the case we are interested in�, there is
only one classical trajectory that contributes to the real semi-
classical formulas presented in Secs. III A–III D. In the com-
plex case there may be more than one trajectory, but we will
confine ourselves to the main family only, since it already
gives a very good result.

We place the wave packet initially at q= �−10,1�, and
chose bx=by =1, so that the impact parameter is equal to the
wave packet width. After a time interval of T=4 the main
peak has followed a curved trajectory, arriving at a negative
value of y, and a smaller peak appears around y�2, as we
can see in Fig. 1�a�. This is accurately reproduced by the
semiclassical approximation �sc�x , t�, shown in Fig. 1�b�.
The secondary peak is recovered almost exactly, but the
height of the main peak is wrong by a factor of 2 �notice the
particular scale that has been used�. The phase of the wave
function is also recovered, and in fact the overlap

�����sc��2 �48�

is around 92%. It is important to notice that the discrepancy
comes from a small region around the peak, and that the
functions agree very well at all other points. We have also
calculated the real trajectory approximations �q�x , t�,
�p�x , t�, and �M�x , t�, but none of them can be distinguished
from the complex one at this scale.

The erroneous increase in the main peak is probably due
to the presence of a caustic in complex phase space. Even
though only one real trajectory exists, in the complex case
there may be more than one, leading to critical points in the
map described in Sec. II. In order to obtain a better approxi-
mation in the vicinity of the peak, either a uniform approxi-
mation or incorporation of this secondary family of trajecto-
ries would be necessary. Finding these trajectories in practice
is the notorious root-search problem, known to be very dif-
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ficult in more than one dimension. The accuracy of the sim-
pler formulas �31�, �35�, and �43� in this case shows that they
can be of practical use.

B. A bound system

We now study a bound system, an isotropic quartic oscil-
lator:

V�r� = Ar2 + Br4, �49�

where A=0.5 and B=0.1. The initial wave packet has param-
eters bx=by =1, q= �0,0� and p= �2,0�, which corresponds to
a classical initial condition that is periodic with period
��4.7. In Fig. 2�a� we show the probability density at
T=2.4, approximately half the classical period. It has a main
peak at the origin and a small shoulder around x�−1.5.

It is interesting that the approximation �q�x ,y ,T� be-
comes discontinuous in this case, as we see in Fig. 2�b�. This
happens because only a certain region of coordinate space
can be reached by real trajectories that start in the initial
point q with an initial momentum that is close to p. Points
outside of this region can eventually be reached, but the ini-
tial momentum must be so different from p that the actual
contribution to �q is negligible. In the border of this region

there is a caustic, where the wave function diverges, and in
the numerical simulations we must make this region a little
smaller in order to avoid this. All approximations based on
real trajectories suffer from this shortcoming, except for the
IVR �qp, which is always Gaussian.

The approximation �sc, on the other hand, is based on
complex trajectories and is well behaved in this case. It is
presented in Fig. 2�c�, where we can see that it reproduces
very well the main peak. In fact, its only defect occurs near

FIG. 1. �Color online� Exact �up� and semiclassical �down�
probability densities �times 102� at T=4, with q= �−10,1� and
p= �3,0�, in the case of an attractive Gaussian potential. Except for
the main peak �notice the change in scale�, the wave function is
accurately reproduced, and ��� ��sc��2�92%.

FIG. 2. �Color online� Probability density at T=2.4 for the quar-
tic oscillator, with q= �0,0� and p= �2,0�. The upper panel shows
the exact calculation, the middle one is ��q�x ,y��2, and the lower
one is ��sc�x ,y��2. Using only real trajectories the result is very
poor, but it becomes excellent when complex ones are used: the
overlap �48� in this case is around 95%.
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the shoulder. This is so because we have used only the main
family, and in that region a contribution from a secondary
family should be taken into account in order to give a good
approximation �a similar effect can be observed in a one-
dimensional quartic oscillator �12�, where finding the sec-
ondary family is much easier�. It is interesting that in this
case �sc is far superior to the simpler real trajectory approxi-
mations, in contrast with the previous example where no
caustics appeared, and the overlap �48� in this case is around
95%.

A better picture of the behavior of these wave functions is
given in Fig. 3, where we show a cut along the line y=0 of
the previous plots. The exact probability density is the solid
line, while ��sc�x ,y��2 is the dashed line and ��q�x ,y��2 the
dotted line. The first two agree well except around the region
where the exact calculation has a small shoulder. Inclusion of
other families would certainly improve this result. As already
noted, the approximation based on the real trajectory q→x
fails completely for positive x because of the presence of a
caustic line.

C. Circular billiard

As our third example, we consider the motion inside a
circular billiard with hard walls. If the particle is initially at
the center of the circle, the classical trajectories and also the
tangent matrix can be computed analytically, and we there-
fore consider this case only. An exact calculation for T=0.5
is presented in Fig. 4�a�, where we have used p= �4,0� and
the radius of the billiard is R=3 �once again we use
bx=by =1�. As the packet approaches the wall, it develops
interference fringes in the radial direction.

We consider only the real approximation �q, but in this
case for all final points x we should take into account the
contribution of the many trajectories that reflect at the
boundaries of the billiard. The actual number of such trajec-
tories is infinite, but we consider only the two shortest ones,
respectively, with zero and one reflection, which give the
main contributions. This gives origin to interference, as we
can appreciate from Fig. 4�b�. The agreement with the exact

result is excellent: the curvature is practically the same, as
well as the height and the position of the peaks. It is impor-
tant to note that there is a collision with a hard wall involved,
and thus an extra phase of � /2 must be introduced in the
contribution of the reflected trajectory. The overlap �48� in
this case is around 97%. Since this approximation is already
very good, we do not present the complex calculation. We
show again a cut along the line y=0 of the probability den-
sities in Fig. 5. The small discrepancy could be corrected if a
twice reflected trajectory was included.

D. Tunneling system

Finally we consider a system in which the tunnel effect
plays an important role. We take a potential of the type

V�r� = V0 exp	−
�r2 − r0

2�2

�2 
 , �50�

with r2=x2+y2, which describes a circular ridge of radius r0
in the plane, centered around the origin. When an incident
wave packet with energy less than V0 is scattered by this
potential, there is a probability that the particle will tunnel

FIG. 3. Cut of the probability densities in Fig. 2 along the line
y=0. The solid line is the exact result, the dashed line is ��sc�x ,y��2,
and the dotted line is ��q�x ,y��2. Notice that the latter must be cut
because of the presence of a caustic.

FIG. 4. �Color online� Probability density at T=0.5 in the case
of a circular billiard, with q= �0,0� and p= �4,0�. The upper panel
shows the exact calculation and the lower one is ��q�x ,y��2.
Using only real trajectories we have a very good result
���� ��q��2�97% �, including effects due to curvature and
interference.
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into the ridge. In Fig. 6�a� we see the exact calculation at
T=2.5, for a potential with V0=10, r0=5, �=10, and an ini-
tial wave packet with q= �−10,0� and p= �4,0�. The total
probability of being located inside the ridge is around 10% in
this case.

A semiclassical calculation for tunneling through a square
barrier involving complex trajectories was presented in �6�,
where only the coherent state representation �z��e−iHT/��z�
was considered. In the present case the classical motion must
be solved numerically and the presence of turning points
leads to the appearance of caustics. Nevertheless, provided
the probability amplitude is not large in the vicinity of the
caustics, the real trajectory approximation ��q�x ,y��2 is able
to give an accurate result, as we can see in Fig. 6�b� �the
overlap between the transmitted wave function in the exact
and semiclassical calculations is around 94%�. This is easy to
understand if we remember that for each value of the pair
�x ,y� we need a different initial momentum pi and, even
though a classical particle with the average momentum p
would be reflected by the potential, there will be values of pi
for which transmission is possible. The other real trajectory
approximation ��p�x ,y��2, on the other hand, works poorly in
this case because it involves variation only on the initial
position and this does not affect the energy of the trajecto-
ries.

The full complex semiclassical calculation would give
even better results than Fig. 6�b�, but this requires extending
the potential to the complex plane. This extension involves
trigonometric functions that make the numerical evolution
very demanding. It is clear that the simplicity of the trajec-
tories involved in the calculation of ��q�x ,y��2 is of great
practical advantage.

V. CONCLUSION

We have generalized the semiclassical approximation for
the propagation of wave packets based on complex trajecto-
ries derived in �11,12� to multidimensional systems. Several
further approximations based on real trajectories were also

derived from this basic formula, in particular Heller’s thawed
Gaussian approximation �TGA�. Apart from the TGA, all
other formulas are not initial value representations and are
able to accurately reproduce non-Gaussian wave functions
and also quantum interference when more than one family of
trajectories is present.

These theoretical results were tested in very distinct par-
ticular cases, starting with scattering by an attractive poten-
tial, where the classical trajectories must be computed nu-
merically. For positive energies this potential has no turning
points and thus no caustics. The complex and real approxi-
mations give indistinguishable results that are very close to
the exact calculation. The second case was a bound nonlinear
system, where a large number of contributing classical tra-
jectories exist. Using only the main family we obtained a
very good result with the complex approximation. In this
case the real trajectories approximations are not practical be-
cause of the many caustics involved. We also studied the
motion inside a circular billiard, taking into account two real
trajectories for �q�x ,T�, which displayed effects of curvature
and interference. Finally, we considered the tunnel effect and

FIG. 5. Cut of the probability densities in Fig. 4 along the line
y=0, displaying the exact �solid� and the semiclassical �dashed�
results. The latter is obtained from the interference of a direct and a
reflected trajectory.

FIG. 6. Probability density at T=2.5 for the ridge potential, with
q= �−10,0� and p= �4,0�. The upper panel shows the exact calcu-
lation and the lower one is ��q�x ,y��2 �times 102�. Using only real
trajectories it is possible to accurately reproduce tunneling effects
���� ��q��2�94% �.
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showed that again �q�x ,T� is able to accurately reproduce
the quantum result.

All cases studied in this paper are integrable and have
circular symmetry, which clearly introduces simplifications.
We have also considered relatively short propagation times.
For long times the number of trajectories in bound systems
increases and caustics proliferate, making a practical appli-
cation of the formulas more difficult. If it is possible to over-
come this problem, the study of chaotic systems would natu-
rally be the next step.
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APPENDIX

Consider a classical trajectory, satisfying Hamilton’s
equation

d

dt
x

p
� = J � H , �A1�

where J is the usual symplectic matrix and � is the
2d-dimensional gradient. A variation around this trajectory
satisfies

d

dt
x

p
� = JHxx Hxp

Hpx Hpp
�x

p
� , �A2�

where the second derivatives of H are computed at the ref-
erence trajectory. Multiplying both sides on the left by a
matrix containing the inverse quantum uncertainties, B and
C, and inserting an identity in the right-hand side we can
rewrite Eq. �A2� as

d

dt
x̃

p̃
� =  B−1HpxB B−1HppC

− C−1HxxB − C−1HxpC
�x̃

p̃
� , �A3�

where x̃=B−1x and p̃=C−1p.
Now consider a trajectory that starts from x� with mo-

mentum p� and arrives at x with momentum p �not related

with the initial coherent state label�, and suppose we make
small displacements in its initial and final coordinates. This
induces variations in the initial and final momenta according
to

 p

p�
� =  Sxx Sxx�

− Sx�x − Sx�x�
� x

x�
� . �A4�

On the other hand, the tangent matrix is defined to be the
linear application that relates the initial and final displace-
ments,

x̃

p̃
� = Mxx Mxp

Mpx Mpp
�x̃�

p̃�
� , �A5�

where we have included explicitly the quantum uncertainties
for convenience. Inverting Eq. �A4� it is possible to show
that

�− Sx�x
−1 � =

�B�
�C�

�Mxp� =
�B�2

�d �Mxp� , �A6�

which we have used in Eq. �6�. It is also possible to show
that Sx�x�=CMxp

−1MxxB−1 and therefore

�x�x� = B−1�iMxp
−1Mxx − 1�B−1, �A7�

where we have used C /�=B−1. This leads to

��x�x�� =
id

�B�2
�Mxx + iMxp�

�Mxp�
, �A8�

as stated in Eq. �12�. The inverse of �x�x�, used in Eq. �43�,
can also be expressed in terms of the tangent matrix:

�x�x�
−1 = − iB�Mxx + iMxp�−1MxpB . �A9�

If we now take the time derivative of Eq. �A5�, and com-
pare the result with Eq. �A3� we conclude that

dM

dt
=  B−1HpxB B−1HppC

− C−1HxxB − C−1HxpC
�M . �A10�

This is the dynamical equation for the tangent matrix, which
may be simplified for the large number of cases in which
Hxp=Hpx=0 and Hpp is the inverse of the mass. In practical
applications these may be solved together with the equations
of motion, making it possible to follow the phase of the
prefactor in Eq. �13�.
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