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Home range evolution and its implication
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We investigated the phenomenon of population outbreaks in a spatial predator–prey
model, and we found that pattern formation and outbreaks occur if the predators have a
limited neighbourhood of interaction with the preys. The outbreaks can display a scale-
invariant power-law tail, indicating self-organized criticality. We have also studied the
system from an evolutionary point of view, where the predator home range is a hereditary
trait subjected to mutations. We found that mutation drives the predator home range
area to an optimal value where pattern formation and outbreaks are still present, but
the latter are much less frequent. We developed analytical approximations using mean
field and pair correlation techniques that indicate that the predation strategy is crucial
for existence of this optimal home range area.

Keywords: predator–prey model; home range; outbreaks; self-organized criticality

1. Introduction

Reaction–diffusion processes have attracted increasing attention over the last
few decades, owing to their fundamental importance to physical, chemical
and biological phenomena (Marro & Dickman 1999). In the last decade, the
formalisms developed in the study of two-species reaction–diffusion processes
have found application in the quantitative modelling of social and ecological
systems (Marro & Dickman 1999; Cantrell & Cosner 2003). A common approach
to modelling these systems invokes a Markov process with a suitable set of local
transition rules. For specific dynamical rules, long-range order can emerge in
reaction–diffusion systems. At high dimensions larger than the upper critical
dimension, the behaviour of such systems is well described by mean field
*Author for correspondence (aguiar@ifi.unicamp.br).
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approximations (Araujo & de Aguiar 2007). This agreement with the mean field
description arises because the number of interaction paths between any pair of
particles becomes very large. So most particles interact (directly or indirectly)
with most other particles. Since the mean field dominates, fluctuations away
from the mean do not matter. Pattern formation, intermittency, avalanches and
cascades thus do not play a significant role. However, in low-dimensional systems,
the number of interaction paths between any pair of particles is reduced. No longer
does the mean field dominate the behaviour. For this reason, low-dimensional
systems have been studied using a variety of other approaches, e.g. Monte
Carlo methods, field theoretical methods and cellular automata (CA). Here, we
study pattern formation and self-organized criticality (SOC) in a low-dimensional
predator–prey system using a CA model.

In 1987 Bak and co-workers made a seminal contribution towards
understanding how complexity arises in CA models (Bak et al. 1987; Bak 1996).
The pioneering studies of CA by Ulam and co-workers had already made it clear
that complex behaviour could arise in low-dimensional CA with local interaction
rules (for historical details, see Wolfram (2002)). Bak and co-workers showed
that, for suitably chosen interaction rules, long-range correlations and scale-
free power-law behaviour could arise via a mechanism that they named SOC.
Standard critical behaviour in second-order phase transitions (e.g. in the two-
dimensional Ising model) arises when a tunable parameter (e.g. the temperature
in ferromagnets) equals the critical temperature. At this special critical point,
two characteristic scales in the system become equal in magnitude. Typically,
some important quantity that grows exponentially with distance is approximately
counter balanced by another quantity, which decays exponentially and with
a decay constant equal to the growth constant of the former quantity. This
cancellation of two exponentials leads to power-law behaviour, resulting in a
diverging correlation length (Stanley 1971). However, in SOC, the dynamical
rules in CA with SOC drive the system towards the critical state. A suitably
chosen dynamical rule thus plays the role of the tunable parameter (Bak 1996).

A poorly understood issue in the context of CA and SOC relates to the role of
the interaction distance. In ecological systems, predators and prey cannot have
an infinite area of interaction. Predators (preys) can only detect a prey (predator)
that comes within some well-defined radius of vision or smell (Viswanathan et al.
1999). Moreover, predators often have a home location and forage only in a finite
neighbourhood of that location, defining the range of interaction for the two
reacting species. This finite range is a key ingredient underlying the rich and
complex behaviour of low-dimensional systems, for the following reason. If the
interaction range were infinite, then all prey and all predators would interact
with each other, so we would recover the mean field behaviour. By contrast, the
finite range of interaction allows fluctuations away from the mean field to play an
important role in pattern formation, intermittency, etc. Here, the finite interaction
distance is introduced to the predator–prey model by imposing a home range area
where the predators can prey.

We focus on predator–prey systems in which movement is restricted, i.e.
confined. Random walkers can be confined via attractive potentials in Fokker–
Planck equations. The idea that many animals have their movement restricted to
a specific area was first introduced by Darwin (1859). Since then, many studies
have been carried out in order to understand the mechanisms and consequences
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of this limited movement (Charnov 1976; Giuggioli et al. 2006; Araujo & de
Aguiar 2007, 2008; Mitchell & Powell 2007; Borger et al. 2008; Goodnight et al.
2008; Zhang et al. 2009). Home range and territoriality are two different concepts
related to this behaviour. Burt (1943, p. 351) proposed the following definitions:
‘Home range then is the area, usually around a home site, over which the animal
normally travels in search of food. Territory is the protected part of the home
range, be it the entire home range or only the nest’. Here we consider predators
whose movement is restricted by a natural home range, but which are not
territorial, in the sense that home ranges of different predators may overlap.

In what follows we address two questions: (i) How does the interaction range
affect the behaviour of the predator–prey systems with home ranges? (ii) What
effect do mutations and natural selection (possibly at the group level; Wolfram
2002; Goodnight et al. 2008; Wade et al. 2010) have on the system? In §2, we
describe the CA model. Sections 3 and 4 present results for the system without
and with mutations, respectively. For fixed home range sizes, we observed that
population outbreaks can occur in the system and that their intensity is higher
for smaller home range areas. Moreover, the outbreaks are self-organized and
their distribution has a power-law decay. When the size of the home range is
treated as an evolutionary characteristic, the predator population evolves to a
preferential home range size that is of intermediate value. In §5, we develop
analytical approximations that allow us to understand this behaviour in terms of
the predator strategy. Finally, we present our concluding remarks in §6.

2. Model description

We describe the dynamics of spatially distributed predators and preys by a
cellular automaton, where space is modelled by a two-dimensional lattice with
N × N sites labelled by their location (i, j), with i, j = 1, . . . , N . Each site can be
empty or occupied by one or more individuals of the same type. The predators are
characterized by the size of their home range, which is a circular area of radius R
where the predator can look for preys. We call R the ‘predation radius’ and v the
number of sites in the home range, which is approximately pR2. In a first scenario,
all predators will be assigned the same R, which will be held fixed throughout the
simulation. Next, we will allow changes in R, similar to mutations, to study the
evolution of this characteristic and its effect on the population outbreaks. Home
range size will be treated as a social, or group, trait. Individuals born within a
group adopt the home range of the group. Changes in home range size will be
allowed only when a new group is founded, as explained below.

The state of site (i, j) at time n is indicated by sn
i,j = {0, Xm , Y R

m }, where 0
represents an empty site, Xm the presence of m preys, and Y R

m the presence
of m predators with predation radius R. Time is discrete and, given an initial
configuration, the system is updated by choosing a random site and changing it
according to the following rules:

(1) If the site is empty, each prey in the nearest neighbourhood of the site
has a probability hx of leaving one offspring in that site. If an attempt is
successful the process stops, so that at most one prey occupies the site.

Phil. Trans. R. Soc. A (2010)
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Figure 1. Rule number 2. Sites can be empty, occupied by preys (black circles) or by predators
(grey circles). The circumferences represent the predator home range. From left to right the panels
show a possible sequence of updates when site (i, j) containing two preys is chosen: the initial
configuration; (a) predation by site (i − 1, j) where R = 1.6; (b) predation by site (i, j + 1) where
R = 1.1 and (c) migration of a predator to site (i, j) with R = 1.1 ± d.

(2) If the site is occupied by preys, all predators that have the site in their
home range can prey there, with probability hy . The predators that are
nearest to the site are chosen to prey first; if the predation does not
occur, the second nearest predators have the chance of preying and so
on. This hierarchy is based on the fact that a predator spends more time
in the centre of the home range, where its nest is located (Samuel et al.
1985). When predation is successful, the prey population decreases by one
individual and the predator population at the corresponding site increases
by one individual. If the prey population decreases to a single individual
and a further predation success occurs, the predator so generated migrates
to the site (i, j), founding a new predator group. The offspring has a
probability m of having its predation radius increased or decreased in
relation to its parent. The final state becomes sn+1

i,j = Y R
1 or sn+1

i,j = Y R±d
1 ,

where R is the parent’s predation radius. If, on the other hand, at the
end of the predation process, there are still preys on the focal site, each
remaining prey has a chance of hx of having an offspring in the same site. In
this case, the final state becomes sn+1

i,j = Xm′ , where 1 ≤ m′ ≤ 2m. Notice
that this rule updates not only the randomly selected site, but also the
sites in its neighbourhood. Figure 1 illustrates the rule.

(3) If the site is occupied by predators, sn
i,j = Y R

m , it can be updated to sn+1
i,j =

Y R
m′ or sn+1

i,j = 0, considering that each predator has a probability d of
dying.

For a predator whose home range has v sites, the total chance of success in
preying is roughly proportional to vhy . If hy is kept constant for all predators,
the dynamics will clearly favour larger home ranges. However, there is a cost in
keeping a large home range and preying far from home. To take this into account
we set the probability of success per site as hy = gy/v, where gy is a constant
parameter.

One relevant characteristic of this model is the absence of a carrying capacity. If
we restrict the number of individuals per site to just one, outbreaks do not occur.
We have checked that the results reported here are maintained if the carrying
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Figure 2. Dynamics for m = 0, R = 1 and N = 100. (a) Time evolution of the average number of
preys, 〈X 〉, and predators, 〈Y 〉, for 1 ≤ t ≤ 1.5 × 104. (b) Spatial distribution at 1.5 × 104. Black
circles represent preys and grey circles predators. The symbol size is proportional to the number of
individuals. The biggest black (grey) symbol refers to about 150 preys (1000 predators) in one site.

capacity is set to 40 or more individuals per site. Another important feature of
the model is the hierarchical predation rule that gives preference to predators
that are nearest a given prey. This turns out to be responsible for the existence
of an optimal predation radius in the evolutionary scenario.

As a first example, we consider the dynamics without mutation, m = 0. In this
case, the size of the home range R is fixed and equal for all predators. We start the
simulations considering a random initial condition but ensuring that 50 per cent
of the sites are empty, 25 per cent are occupied by one prey and the remaining
25 per cent are occupied by one predator. The probability values associated with
rules 1, 2 and 3 are fixed to hx = 0.4, gy = 0.4 and d = 0.2.

Figure 2 shows the time evolution of the average number of preys and predators
per site and the spatial distribution at a fixed time. In these plots, the predation
radius is R = 1, so that the number of sites in the home range is v = 4 and
hy = gy/v = 0.1. Time is measured in units of lattice size, t = n/N 2, and we used
N = 100. The average populations display a series of peaks, or outbreaks, where
the population in a single site can reach up to 105 individuals. The spatial
distribution shows the populations at t = 1.5 × 104. Notice that, although the
average populations do not show any significant peak at this time, we still
find up to 1000 individuals in a single site. We tested different grid sizes,
N = {20, 50, 100, 150}, and found the same behaviour, except for a change in the
scale of the fluctuations of the average populations.

3. Fixed home ranges

One of our main interests was to quantify the outbreaks and to understand the
factors that drive the dynamics to such large fluctuations. Our simulations show
that the outbreaks are particularly sensitive to changes in the predation radius.
Figure 3 shows the probability distribution p(n) of the number of individuals in
a single site for different values of R. The distribution p(n) was generated from
the dynamics in the interval 5 × 103 < t ≤ 5 × 104.
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Figure 3. Probability distribution of the number of individuals in one site. The graphs on the left
(right) show the probability distribution for prey (predator) populations. (a) The graphs are in a
log–log scale; (b) the graphs are in a semi-log scale. The insert graphs show the kurtosis value for
each distribution of all critical values of R shown in table 1. Slopes: red line, a = −2.26; green line,
a = −2.80; blue line, a = −4.00; grey line, a = −5.50. Red dots, R = 1; green dots, R = 1.42; blue
dots, R = 2; light blue dots, R = 2.24; pink dots, R = 2.84; brown dots, R = 10; stars, mutation.
(Online version in colour.)

Table 1. Critical values of R and the corresponding number of sites in the home range.

R v R v

1.00 4 3.61 44
1.42 8 4.00 48
2.00 12 4.13 56
2.24 20 4.25 60
2.83 24 4.48 68
3.00 28 5.00 80
3.17 36 10.0 316

When R = 1, the home range has v = 4 sites. As the radius increases, the
number of sites in the home range increases discontinuously at the critical values
R = √

n2 + m2 where n and m are integers. At R = √
2 ≈ 1.42, for instance, the

number of sites jumps from four to eight. Table 1 displays the first 13 and the
43rd critical values of R and the corresponding number of sites in the home range.
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In all simulations, the grid size was kept constant at N = 100. We tested
different grid sizes and we observed that N = 100 is large enough not to change
the conclusions for R up to 10. The tail of distributions shown in figure 3 can be
fitted by a power-law function, p(n) ∝ na, if R is sufficiently small. For R = 1 the
slope is maximum, a = −2.26. For R larger than 2.0, the distribution changes
gradually from a power law. First, the modulus of the power-law exponent
changes from less than 3 to more than 3. If the exponent is larger than 3,
then the distribution has a finite variance. So, upon rescaling, the fluctuations
will appear to follow Gaussian statistics since the central limit theorem holds
when the variance is finite. Finally, the shape of the distribution undergoes a
distortion and no longer appears to be a power law. Instead, the distribution
seems to decay more rapidly than as a power law. For R = 10, for example,
a good fit for the prey population is provided by the stretched exponential
px(n) ∝ exp(n0.72).

Figure 3 also shows the kurtosis (Mandel & Wolf 1995), defined as the ratio
of the fourth to the square of the second momentum,

∑
p(n)n4/(

∑
p(n)n2)2, for

the same time interval 5 × 103 < t ≤ 5 × 104. We observed that the kurtosis seems
to become larger by several orders of magnitude for R = {1, 1.42, 2}. A diverging
kurtosis is a characteristic of power-law distributions when −5 < a ≤ 0.

This analysis indicates that population outbreaks become less frequent as the
radius increases. So fluctuations become less important as the predation radius
increases. This result is consistent with what one would expect theoretically,
since a larger radius leads to many more interactions such that the mean field
approximation becomes better.

4. Variable home ranges

The analysis of the previous section revealed that very large outbreaks can occur if
the predation home range is small; as R increases, the outbreak intensity decreases
and becomes independent of R. In this section, we test whether the system can
evolve towards a preferential home range size. To do that, we treat R as a variable
parameter that is transmitted through generations but is also subjected to small
random changes. As described in §2, when a predator with home range R migrates
to a new site by consuming the last prey on that site, its home range can remain
equal to R with probability 1 − m or change to R ± d with probability m/2. The
value of R is treated as a social feature, which is kept constant in a group of
predators inhabiting a site but may change when a new group is founded in a
newly invaded site. In what follows, we have fixed the variation in the radius at
d = 0.1 and the ‘mutation rate’ at m = 0.1.

We start the simulations assigning the same predation radius R0 to all
predators. Figure 4 shows the average number of preys and predators as a function
of time for two different initial values, R0 = 1 and R0 = 5. For R0 = 1, the density
of individuals increases initially because of the frequent outbreaks that occur for
small R. However, the density decreases again once the predators have adjusted
their home range to an evolutionary stable value. Figure 4 also shows a typical
spatial pattern of the population and the distribution of home range sizes over
space. The local patterns of home range sizes change in time very slowly when
compared with the frequency of outbreaks. While the local outbreaks oscillate
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Figure 4. Dynamics in the presence of mutation, m = 0.1 and N = 100. (a) The average of preys 〈X 〉
and predators 〈Y 〉 as a function of time for two different initial condition R0 = 1 (black) and R0 = 5
(grey). (b) Spatial population pattern when t = 2 × 104. Black plots mean the presence of prey and
grey plots the presence of predator. The symbol size is proportional to the number of individuals.
The biggest black (grey) symbol refers to about 20 preys (50 predators) in one site. (c) Spatial
predation radius pattern when t = 2 × 104. Each colour represents a radius range, indicated in the
side bar. (Online version in colour.)
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Figure 5. Dynamics in the presence of mutation, m = 0.1 and N = 100. (a) The average of predation
radius, 〈R〉, as a function of time for two different initial conditions, R0 = 1 (black) and R0 = 5
(grey). After 10 000 time steps, the average of R converges to about 2.84. (b) Contour plot of
the predation radius distribution over the sites as a function of time. The white line represents
the radius average value and the dotted lines represent the key radius value (which the value of
v changes).

with period of about 10 time steps, regions dominated by a given value of R
take about 100 iterations to evolve to a different value. Comparing with the case
without mutation (figure 2) reveals that the outbreaks are greatly suppressed
by mutation.

Figure 5 shows the evolution of R for the two initial conditions. In both
cases, the average of R converges to R ≈ 2.8 with significant occurrences in
the interval 2.24 < R < 3.16. The distribution of the number of individuals in
a single site is also plotted in figure 3 and is very similar to those of fixed R
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for 2.24 ≤ R ≥ 2.83. In conclusion, if the radius is allowed to vary, it evolves to
a preferential value around R = 2.8 where the outbreaks are reduced but are not
completely absent.

5. Analytical approximation

In order to better understand the existence of a preferential home range size,
we consider here a simplified version of the model that is amenable to analytical
treatment. We introduce two simplifications: the first consists in restricting the
number of individuals per site to just one. This ensures that the dynamical rules
change the state of only one site per time step. The second simplification is the
restriction of R to two values R1 and R2 only, where R2 = R1 + r . With these
modifications outbreaks are no longer possible, since the number of individuals
is limited to N 2. However, the new model still allows the study of preference for
a home range size.

The strategy is to construct a master equation for this simplified CA and to
derive mean field approximations for the average density of prey and predators. As
we shall see, the plain mean field approximation is not accurate enough to capture
the behaviour of the automaton and we will need to include pair correlations. We
will follow closely the methodology presented in Satulovsky & Tome (1994) and
de Aguiar et al. (2003, 2004).

The simplified dynamics of the system is as follows: there are four possible
states for each site in the lattice, empty (0), occupied by a prey (X), occupied by
a predator with predation radius R1 (Y1) or occupied by a predator with predation
radius R2 = R1 + r (Y2). At each time step, preys can reproduce with probability
hx in a nearby empty site. Predators Y1 (Y2) can prey with probability h1 (h2) in
the sites that are inside their respective home ranges. We set h1v1 = h2v2, where
vk is the number of sites in the home range Rk . When predation occurs in a given
site, a predator is born in that site and its predation radius has a probability m/2
of mutating. Each predator has a probability d of dying, leaving its site empty.
Therefore, the updates follow the cyclic transitions 0 → X → Yk → 0. We set the
mutation probability to m/2 because there are only two possible values of R, in
contrast with the general case of many values where the mutation probability is
m/2 for changing to both larger and smaller values of R.

In this section, to simplify the notation, we relabel the sites (i, j) with a single
index i. We call s = (s1, s2, . . . , sN 2) the state of the whole lattice and P(s, n)
the probability of finding the system in the state s at iteration n. The value of
P(s, n + 1) can be calculated as

P(s, n + 1) = P(s, n) +
N 2∑
i=1

∑
w

[T (si
w → s) − T (s →i sw)], (5.1)

where si
w and isw are states that are equal to s at all sites except at the site i,

whose state is w. The sum over w is necessary because two different site states
can be generated from the same state: observe that Y1 and Y2 can evolve to the
same empty state, and they both can be originated from the same X . T (si

w → s)
and T (s →i sw) are the probabilities that the transition indicated occurs in one
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time step. According to the dynamical rules, they are given by

∑
w

T (s →i sw) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P(s, n)P(0 → X) if si = 0
2∑

k=1

P(s, n)P(X → Yk) if si = X

P(s, n)P(Yk → 0) if si = Yk and k = {1, 2}

(5.2)

and

∑
w

T (si
w → s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2∑
k=1

P(si
Yk

, n)P(Yk → 0) if si = 0

P(si
0, n)P(0 → X) if si = X

P(si
X , n)P(X → Yk) if si = Yk and k = {1, 2},

(5.3)

where

P(0 → X) = 1 − (1 − hx)ni

P(X → Yk) = P(X → Y )Uk

and P(Yk → 0) = d.

⎫⎪⎬
⎪⎭ (5.4)

In these equations ni is the number of preys neighbouring the site i. The
probability P(X → Yk) is the probability of predation times the conditional
probability Uk that the new offspring is a specific predator with predation
radius Rk ,

P(X → Y ) = 1 − (1 − h1)m1i (1 − h2)m2i (5.5)

and

Uk =
[
pk ′(m/2) + pk(1 − m/2)

p1 + p2

]
, (5.6)

where mki is the number of predators Yk that are a distance smaller than or equal
to Rk from the site i. The term pk = 1 − (1 − hk)mki is the probability that one of
the mki predators will prey and the indices k �= k ′ can be 1 or 2.

The mean field equations for the density of preys and predators can be
derived with the help of a suitably chosen auxiliary function f (s). Let 〈f (s, n)〉 =∑

s P(s, n)f (s) be the ensemble average of f (s) at iteration n. Using the master
equation for P(s, n), equation (5.1), and the cyclic property of the transitions
we obtain

〈f (s, n + 1)〉 = 〈f (s, n)〉 +
N 2∑
j=1

∑
w

〈[f (jsw) − f (s)]P(s →j sw)〉. (5.7)
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Choosing f (s) = d(si , a), where a = {0, X , Y1, Y2}, we see that 〈f (s, n)〉 = Pn
a is

the probability that a site is in the state a at the time n. Explicitly,

Pn+1
X = Pn

X + 〈d(si , 0)P(0 → X)〉 − 〈d(si , X)P(X → Y )〉,
Pn+1

Y1
= Pn

Y1
+ 〈d(si , X)P(X → Y1)〉 − 〈d(si , Y1)P(Y1 → 0)〉,

Pn+1
Y2

= Pn
Y2

+ 〈d(si , X)P(X → Y2)〉 − 〈d(si , Y2)P(Y2 → 0)〉
and Pn

0 = 1 − Pn
X − Pn

Y1
− Pn

Y2
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.8)

The transition probabilities in the averages above involve the number of preys
ni or predators mki in a given neighbourhood. Since we may write, for example,
ni = ∑

j d(si+j , X) for j in the neighbourhood of i, it becomes evident that these
averages will involve pair correlations of the form 〈d(si , a)d(sj , b)〉 and higher
order correlations as well. If we approximate all these correlations’ by-products
of one-site averages, such as 〈d(si , a)d(sj , b)〉 ≈ Pn

a Pn
b , we obtain the mean field

approximation. Renaming the probabilities P0 → Z , PX → X and PYk → Yk we
find (see appendix A)

Xn+1 = Xn + ZnfX − XnFY1Y2 ,

Y n+1
1 = Y n

1 + Xnc̄
{m

2
f2 +

(
1 − m

2

)
f1

}
− dY n

1

and Y n+1
2 = Y n

2 + Xnc̄
{m

2
f1 +

(
1 − m

2

)
f2

}
− dY n

2 ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.9)

where
fX = 1 − (1 − hxX)vx ,

fk = 1 − (1 − hkYk)vk ; k = {1, 2},
FY1Y2 = 1 − (1 − h2Y2)v2−v1(1 − h2Y2 − h1Y1)v1 ,

Zn = 1 − Xn − Y n
1 − Y n

2

and c̄ = FY1Y2

(f1 + f2)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.10)

where vk is the number of sites in the home range with radius Rk and vx = 4.
If we keep the pair correlations as independent variables and only approximate

third and higher order correlations in terms of one- and two-site terms we obtain
the so-called pair approximation. In this case, we need to write down another
set of six equations for the independent probabilities Pn

ab of finding neighbouring
sites in states a and b. We shall not write these equations down here and will
only present numerical results. In §6, we describe in more detail the calculation
of the mean field approximation.

Figure 6 compares the average number of preys and predators for three cases:
simplified automaton version, mean field and pair approximation. In all plots,
we consider R2 = R1 + r , where r is the minimum value that increases R2 to the
next critical radius value (table 1). According to the automaton, the density of
predators Y2 is greater than Y1 if R1 ≤ 4. For R1 > 4, the density of Y1 is slightly
greater, indicating a preferential radius around R = 4. The crossing of the curves
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Figure 6. Average value of the predators Y R1 and Y R1+r as a function of R1. (a) Simulations,
(b) mean field and (c) pair approximation. (a,b,c) squares, PY 1; circles, PY 2. (Online version in
colour.)

at R = 4 is not an effect of fluctuation owing to system size or poor statistics: it is
robust against the increase in system size and the time interval used to generate
the averages.

The mean field approximation is almost insensitive to variations in R but
the pair approximation is quite accurate (except for R = 1), demonstrating the
importance of the spatial structure in the dynamics. However, even the pair
approximation is not capable of determining the preferential radius, since the
curves for Y1 and Y2 never really cross. Nevertheless, the two curves come very
close to each other for R ≈ 3.5 and remain so afterwards, indicating a change of
behaviour at this value.

The inability of the approximations to clearly point to the critical radius can
be understood in terms of the predator strategy. In the automaton, the action of
predators on a site containing preys happens in such a way that nearby predators
have priority to prey first. If the first neighbours to the prey are unsuccessful,
other predators, in order of distance from the prey, try their luck. Consider a
site with preys and all the predators trying to feed on them. For those with
small R the prey is likely to be outside their home range, whereas predators with
large R have low probability of success in a single attempt, since h � 1/v � 1/R2.
Therefore, predators with intermediate values of R will be more effective.

The predators’ strategy of giving priority to the nearest sites cannot be
included in the pair approximation and indeed is not reflected in its dynamics,
confirming the interpretation above. However, when R is very large, the spatial
fluctuations in the distribution of preys becomes irrelevant and the average
number of preys inside the home range compensates the low probability of success
per attempt, resulting in an overall probability of success that is independent of
R, as shown in the figures.

6. Conclusion

In this paper, we have considered the population dynamics of spatially distributed
preys and predators whose movements are restricted by a home range. We have
shown that self-organized population outbreaks occur if the size R of the home
range is sufficiently small. The distribution of the number of individuals per site
follows a power law for small R. As R increases, the shape of the distribution
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changes and seems to decay faster than a power law. There are two important
facts to note: (i) scale-free power-law behaviour is seen even though the model
itself does not possess scale-free properties and (ii) the power-law behaviour is
seen not for a special critical value of the predation radius but rather for any
sufficiently small value of this radius. Hence, the behaviour is closer to SOC than
to standard criticality. We interpret our results as evidence of SOC, such that,
for low radii, the system is driven to scale-free behaviour by the dynamical rules.
Empirical evidence of such outbreaks has been observed by Cooke & Lorenzetti
(2006) and Cooke et al. (2009) and power-law distributions of populations have
also been found in similar situations (Scanlon et al. 2007).

We have also studied the dynamics of the system, when the home range is
allowed to mutate whenever a predator invades a site previously occupied by
preys, founding a new group. In this case, the population evolves to a dynamical
equilibrium where the predators have a distribution of home ranges. We find that
the predators do not evolve to maximize their home range. Instead, the average
value of the distribution converges to a finite value.

Our model suggests that the reason for this preferential home range size is the
strategy of the predators to forage. If the predators forage randomly throughout
their home range, no preferential home range emerges. However, if the predators
forage preferentially around their home site, a trade-off between large and small
home ranges shows up. Indeed, predators with small home ranges will be very
effective in preying at the small number of sites in the range, but the chances of
finding preys there are small. On the other hand, if the home range is too large the
predator effectiveness per site is small, and the preys might be caught by other
more effective predators. The predator strategy adopted here is backed up by
previous work on animal foraging strategies (Charnov 1976; Pyke 1984; Samuel
et al. 1985; Borger et al. 2008) and home range characterization (Samuel et al.
1985; Giuggioli et al. 2006; Mitchell & Powell 2007). These qualitative arguments
were corroborated by a mean field analysis of the CA under certain simplifying
conditions.

This work was partially supported by CNPq, Fapesp and the Consortium of the Americas for
Interdisciplinary Science.

Appendix A. Mean field approximation

In this appendix, we calculate the average terms appearing in equation
(5.8). We start with 〈YkP(Yk → 0)〉, which can be calculated immediately: since
P(Yk → 0) = d we find 〈YkP(Yk → 0)〉 = dPn

k = dY n
k . The remaining terms are

calculated below.

(a) 〈d(si , 0)P(0 → X)〉
Expanding P(0 → X), equation (5.2), we obtain

〈d(si , 0)[1 − (1 − hx)ni ]〉 = hx 〈d(si , 0)ni〉 − h2
x

2! 〈d(si , 0)ni(ni − 1)〉 + · · · , (A 1)
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where ni = ∑
j d(si+j , X) and j runs through the nearest neighbours of i only.

This is the number of preys close to i. The terms of this series can be calculated
using the mean field approximation. The first term gives

hx 〈d(si , 0)ni〉 = hx

∑
j

Pi,i+j(0X) ≈ hxvxPn
0 Pn

X , (A 2)

where vx = 4 is the number of nearest neighbours.
The second term, equation (A 1), is calculated analogously,

h2
x

2! 〈d(si , 0)ni(ni − 1)〉

= h2
x

2! 〈d(si , 0)n2
i 〉 − h2

x

2! 〈d(si , 0)ni〉

= h2
x

2!

⎡
⎣∑

j ,l

〈d(si , 0)d(si+j , X)d(si+l , X)〉 −
∑

j

〈d(si , 0)d(si+j , X)〉
⎤
⎦. (A 3)

Separating the sums over l and j into j = l and j �= l a partial cancellation occurs
and we obtain

h2
x

2! 〈d(si , 0)ni(ni − 1)〉 = h2
x

2!
∑
j �=k

〈d(si , 0)d(si+j , X)d(si+k , X)〉

≈ vx(vx − 1)Pn
0

(hxPn
X )2

2! . (A 4)

The other terms can also be calculated in the same way, resulting in

〈d(si , 0)[1 − (1 − hx)ni ]〉 ≈ Pn
0

[
hxvxPn

X − vx(vx − 1)
(hxPn

X )2

2! − . . .

]
≡ Pn

0 fx ,

(A 5)
where fx = 1 − (1 − hxPX )vx .

(b) 〈d(si , X)P(X → Y )〉
This time the calculation is slightly more involved, but proceeds in the same

way. We first expand P(X → Y ), equation (5.5), in powers of h1 and h2 as

1 − (1 − h1)m1i (1 − h2)m2i = T1 + T2 + T3 + · · · , (A 6)

where

T1 = m1ih1 + m2ih2

and T2 = −m1im2ih1h2 − m1i(m1i − 1)
h2

1

2! − m2i(m2i − 1)
h2

2

2! ,
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and so on. The quantity mk = ∑
j d(sj , Yk) is the number of predators Yk that

can prey in the site i; the index j runs in the corresponding home range centred
on i. The contribution of the first term is

〈d(si , X)T1〉 = h1〈d(si , X)m1i〉 + h2〈d(si , 1)m2i〉
= h1

∑
j

〈d(si , X)d(sj , Y1)〉 + h2

∑
j

〈d(si , X)d(sj , Y2)〉

= v1h1Pi,j(XY1) + v2h2Pi,j(XY2)

≈ v1h1Pn
XPn

Y1
+ v2h2Pn

XPn
Y2

, (A 7)

where vk is the number of sites in the home range of predator Yk .
The remaining contributions are calculated analogously. When all the terms

are put together, we obtain an expression that can be rearranged as

〈d(si , 1)[1 − (1 − h1)m1i (1 − h2)m2i ]〉

≈ Pn
X

{
v1∑

m=1

(−1)m+1
[

Av1!
m!(v1 − m)! + Bv2!

m!(v2 − m)!
]

+
v1∑

m=1

v2∑
n=1

(−1)m+n+1ABv1!(v2 − m)!
m!n!(v1 − m)!(v2 − m − n)!

}
, (A 8)

where A = h1Pn
Y1

and B = h2Pn
Y2

. This series is the Taylor expansion of the
function 1 − (1 − B)v2−v1(1 − A − B)v1 . Therefore,

〈d(si , X)P(X → Y )〉 ≈ PXFY1Y2 , (A 9)

where
FY1Y2 = 1 − (1 − h2Pn

Y2
)v2−v1(1 − h1Pn

Y1
− h2PY n

2
)v1 . (A 10)

(c) 〈d(si , X)P(X → Yk)〉
We start by rewriting

〈d(si , X)P(X → Yk)〉 = 〈d(si , X)cqk〉 ≡ ck〈d(si , X)qk〉, (A 11)

where

c = P(X → Y )
p1 + p2

= 1 − (1 − h1)m1i (1 − h2)m2i

2 − (1 − h1)m1i − (1 − h2)m2i
(A 12)

and
qk = pk ′

m

2
+ pk

(
1 − m

2

)
; k, k ′ ∈ {1, 2}, k �= k ′. (A 13)

Using the same procedure described above we can calculate the average,
〈d(si , X)qk〉, and find

〈d(si , X)P(X → Y1)〉 = c1

[
m

2
fY2 +

(
1 − m

2

)
fY1

]
(A 14)

and

〈d(si , X)P(X → Y2)〉 = c2

[
m

2
fY1 +

(
1 − m

2

)
fY2

]
, (A 15)
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where
fk = 1 − (1 − hkPn

Yk
)vk . (A 16)

Now we use the fact that

〈d(si , X)P(X → Y )〉 = 〈d(si , X)[P(X → Y1)〉 + 〈P(X → Y2)]〉. (A 17)

Substituting equations (A 9), (A 14) and (A 15) in equation (A 17) we find

FY1Y2 = c1fY1 + c2fY2 . (A 18)

One possible solution for ck is

c1 = c2 = c̄ = FY1Y2

fY1 + fY2

(A 19)

and, therefore,

〈d(si , X)P(X → Yk)〉 = c̄

[
m

2
fYk′ +

(
1 − m

2

)
fYk

]
. (A 20)
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