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Abstract

We study the evolution of allele frequencies in a large population
where random mating is violated in a particular way that is related
to recent works on speciation. Specifically, we consider non-random
encounters in the haploid phase, which is relevant for organisms that
release gametes in the environment so that fertilization is external.
The gametes are described by biallelic genes at two loci and pairs of
gametes whose alleles differ at both loci are considered incompatible.
Evolution under these conditions lead to the complete disappearance
of one of the alleles and substantially reduce the diversity of the popu-
lation. Surprisingly, certain combinations of allele frequencies remain
constant during the evolution, revealing the emergence of strong cor-
relation between the two loci promoted by the epistatic mechanism
of incompatibility. The allele frequencies at equilibrium depend only
on their initial values, and so does the time to equilibration. We dis-
cuss the relation between this model of assortative fertilization and
selection against double heterozygous individuals and its relevance to
speciation in spatially extended populations.
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1 Introduction

While the origin of species has always been a central subject in evolutionary
biology, the large number of recent empirical and theoretical developments
has renewed the interest in the area (Coyne and Orr, 2004; Butlin et al., 2012;
Nosil, 2012). Individual-based simulations, in particular, have been success-
ful in fostering relevant discussions in speciation (Dieckmann and Doebeli,
1999; Doorn et al., 2009; de Aguiar et al., 2009). Specifically, simulations in
which mating is restricted by spatial and genetic distances have been able to
describe empirical patterns of species diversity (de Aguiar et al., 2009) and
within-species genetical diversity (Martins et al., 2013).

In order to reflect the dynamics of evolving populations, most simulations
incorporate several ingredients simultaneously, such as mutation, genetic
drift, recombination, assortativeness in mating and individual’s movement
and spatial positioning. Gavrilets (1999) proposed and analysed a number of
simplified mathematical models that are closely related to these simulations,
including selection, mutation, drift and population structure. These complex
approaches to speciation, although somewhat realistic, do not allow for the
detailed understanding of how each of the mechanisms involved contribute
to the emergence and maintenance of reproductive isolation.

The main purpose of the present work is to analyse, from a more theo-
retical point of view, the evolutionary consequences of restricting mating by
genetic distance.

One of the simplest ways of introducing assortativeness in mating in a
individual-based simulation is to attribute haploid genomes with B biallelic
loci to individuals and allow them to mate only if the genomes differ in no
more than G loci (Gavrilets et al., 2000; de Aguiar et al., 2009; Martins et al.,
2013). This approach considers that mate choice often relies on multiple cues
that are determined genetically (Candolin, 2003). In the case of assortative
mating, we assume that individuals have a certain tolerance to differences
when choosing a mate, however if the other individual is too different, it will
no longer be considered a potential mate. Under these assumptions, repro-
ductive isolation was shown to be maintained among demes in the presence of
sufficiently low migration rates (Gavrilets et al., 2000) and to emerge sponta-
neously from a genetically uniform population subjected to mutations in the
case of spatially extended populations for which mating is also constrained
by the spatial distance. (de Aguiar et al., 2009; Martins et al., 2013).

The introduction of mating incompatibility for individuals differing in too
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many loci can be viewed as a breakdown of the panmixia. Instead of being
allowed to mate with any other individual in the population, individuals can
only mate with others that are sufficiently similar genetically. Panmixia is
one of the central hypothesis of the Hardy-Weinberg (HW) equilibrium law
(Hardy, 1908; Weinberg, 1908), which establishes that in very large and well
mixed populations where mutations are negligible, the allele frequencies re-
main constant over generations and genotype frequencies remain constant
after the first generation. The result, known today as the Hardy-Weinberg
(HW) equilibrium law, set a null hypothesis for evolution and established the
mathematical grounds to understand the forces that cause it to break down.
Changes in allele or genotype frequencies are related to the breaking of one
or more HW hypothesis and can be regarded as evolutionary forces acting
on the population. Speciation is a particular case of evolution where sub-
populations follow different evolutionary paths. This process is associated
with the emergence of reproductive barriers that reduce gene flow and allow
differentiation by selection and/or drift. These barriers may pre-copulatory,
when individuals fail to copulate or post-copulatory, where copulation hap-
pens but fails to produce fertil descendants. Post-copulatory barriers may
be pre-zigotic, when individuals copulate but fertilization does not occur, or
post-zigotic, when the zigote is formed but has reduced viability or fertility
(Coyne and Orr, 2004).

In this work we study the breakdown of the HW law by violating random
fertilization in the way proposed by Gavrilets et al. (2000) and successfully
applied to speciation by de Aguiar et al. (2009) and Martins et al. (2013).
Even though individuals were treated as haploid in these simulations, pair-
ing of two genomes occurred during mating, characterizing a diploid phase.
Therefore, the non-random encounter of haploid individuals in these models
is equivalent to non-random encounter of gametes in a diploid model. We
hope our results will help clarify the processes described there and draw at-
tention to the evolutionary consequences of non-random encounters in the
haploid phase which differ from non-random encounters in the diploid phase
as described in several classic models (see Crow and Kimura (1970) for a
review).

Considering a very simple conceptual model where an organism’s life cycle
is divided in stages (Fig. 1), it is possible to map different reproductive
barriers to specific stages of this model in an attempt to unify the study of
reproductive isolation to the violation of assumptions of the HW law.

For the HW theorem to hold mating and fertilization must be random
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(Figs. 1(A) and 1(C)), meiosis must follow Mendelian segregation (Fig.1(B))
and survival must be independent of genotype (Fig.1(D)). There are innu-
merous mechanisms by which each stage may depart from the assumptions
of the HW’s law. Non-random mating that can drive speciation may be
caused by physical separation by geographical barriers (Mayr, 2001) or eco-
logical (e.g. habitat, temporal), behavioral or mechanical isolation (Coyne
and Orr, 2004). These mechanisms affect the encounter rate of diploid in-
dividuals (Fig. 1(A)). Hybrid inviability or sterility (Coyne and Orr, 2004),
and strong competition for resources (Dieckmann and Doebeli, 1999) (Fig.
1(D)), are also mechanisms that can drive speciation. Segregation distorters
(Fig. 1(B)) are known to cause at least partial reproductive isolation, how-
ever their role in speciation is less certain (Hurst and Schilthuizen, 1998;
Schluter, 2009).

In this paper, we turn our attention to non-random fertilization (i.e.
non-random encounters in the haploid phase, Fig. 1(C)). The role of ga-
metic incompatibilities in reproductive isolation is particularly important in
organisms for which gametes are released in the environment. If both males
and females release gametes, so that fertilization is external (i.e. broadcast
spawning) (Levitan, 1998), gamete recognition may be the only barrier to in-
terspecific fertilization and, therefore, the only mechanism driving speciation
(Eady, 2001). In addition, gametic isolation as an additional barrier to inter-
specific fertilization appears to be ubiquitious in many taxa and is expected
to be historically important in speciation (Coyne and Orr, 2004). While
our work may have direct importance in the case of external fertilizers, our
main goal is to take a minimalist approach to understand the consequences
of non-random gamete encounters.

We will work out the theory for infinitely large populations focusing on
two biallelic loci (B = 2) without mutations. Gametic incompatibilities will
be implemented by allowing gametic recognition only if the alleles form each
gamete differ at most in one locus (G = 1). This is the simplest system for
which the genetical mechanism of interest may be implemented. Contrary
to the consequences of non-random encounters in the diploid phase (Ewens,
2004), we will show that this process does lead to evolution by changing the
allele frequencies and that it is one of the main ingredients in the process of
speciation studied in (de Aguiar et al., 2009). Despite the changes in all allele
frequencies, we will demonstrate that a certain combination of frequencies
from the two loci remain constant during the evolution, revealing a strong
correlation between the loci introduced by the genetic restriction during fer-
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tilization. Moreover, we will show that the evolution of such a population is
equivalent to a population of diploid individuals with selection against dou-
ble heterozygous genotypes and will connect the result with previous models
that study the breakup of the Hardy-Weinberg theorem, selection in two-loci
systems and speciation.

2 Statement of the problem

We consider a very large population of diploid individuals with two biallelic
loci. Each individual produces gametes by combining the chromosomes in-
herited by its parents. The alleles at the first locus are A or a and the alleles
at the second locus are B or b.

Non-random encounters in our model occur in the haploid phase and it
will be convenient to focus mainly on this phase, as in previous models of
speciation (de Aguiar et al., 2009; Martins et al., 2013). Chromosomes AB
and ab of a diploid individual, for example, produce gametes Ab, AB, ab and
aB with 25% probability each. The gametes will later pair up with other
gametes in the pool to form new diploid individuals and will crossover to
produce the gametes of the next generation.

If all gametes are compatible there will be 9 different diploid genotypes
whose frequencies can be calculated from the four independent gametic fre-
quencies, as displayed in Table 1.

Table 1. Diploid frequencies for unrestricted fertilization.

AB aB Ab ab
AB f 2

AB fABfaB fABfAb fABfab
aB faBfAB f 2

aB faBfAb faBfab
Ab fAbfAB fAbfaB f 2

Ab fAbfab
ab fabfAB fabfaB fabfAb f 2

ab

In Gavrilets et al. (2000) de Aguiar et al. (2009) and Martins et al. (2013)
the gametes were treated as haploid individuals and recombination as mating
that produced the individuals (gametes) of the next generation. Moreover,
individuals were considered incompatible if their alleles differed in too many
loci. For the present case of two loci we forbid gametic recognition if both
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alleles are different. This implies that the gametes AB−ab and Ab−aB will
not pair up. The gametic frequencies in this case is shown in Table 2.

Table 2. Diploid frequencies for restricted fertilization.

AB aB Ab ab
AB f 2

AB fABfaB fABfAb 0
aB faBfAB f 2

aB 0 faBfab
Ab fAbfAB 0 f 2

Ab fAbfab
ab 0 fabfaB fabfaB f 2

ab

Interestingly, this type of mating restriction can be interpreted as selec-
tion against double heterozygous diploid individuals, as can be seen from
Table 2. Since the sum of all entries must add to one, the haplotype frequen-
cies in Table 2 are different from those in Table 1.

The purpose of this paper is to write down the evolution equations for the
gametic frequencies in both situations, with and without mating restriction,
and study the dynamics and the equilibrium solutions. We will show that
the population follow the HW law in the latter case but display unexpected
features in the former. In particular we will show that one of the alleles
completely disappears from the population, changing considerably its original
diversity. However, we will also show that a certain combination of alleles
from each locus remain constant during the evolution, revealing a strong
correlation between the two loci introduced by the dynamics.

3 Reproductive mechanism

Consider a population of N biallelic gametes with haplotypes AB, Ab, aB,
and ab (A and a being the alleles at the locus 1, and B and b the alleles
at the locus 2). The number of gametes of each type at time t is given by
NAB, NAb, NaB and Nab with

∑
i,j Nij = N , where i = {A, a} and j = {B, b}.

Pairs of gametes in this generation correspond to diploid individuals that will
contribute gametes to the next generation through independent segregation.
To each pair g1 and g2 there corresponds a fertilization probability rg1:g2 that
includes the effects of gametic compatibility and viability of the newly formed
gametes.
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Assuming no overlap of generations, the contribution of the current ga-
metes to the gametes AB of the next generation can be inferred from the
Table 3.

Table 3. Diploid individuals generating AB gametes.

Diploid genotypes Number of gamete Fraction of successful
encounters AB gametes

AB × AB 1
2
NAB × (NAB − 1) rAB:AB

AB × Ab NAB ×NAb 1/2× rAB:Ab

AB × aB NAB ×NaB 1/2× rAB:aB

AB × ab NAB ×Nab 1/4× rAB:ab

Ab× aB NAb ×NaB 1/4× rAb:aB

The number of gametes with haplotypes AB at time t+ 1 thus obeys the
equation

N t+1
AB =

N t
AB(N t

AB − 1)

2
rAB:AB +

N t
ABN

t
Ab

2
rAB:Ab +

N t
ABN

t
aB

2
rAB:aB

+
N t

ABN
t
ab

4
rAB:ab +

N t
AbN

t
aB

4
rAb:aB. (1)

By constructing equivalent tables, one obtains the equations for the num-
ber of gametes in the new generation for the remaining genotypes (see Ap-
pendix A). In the following sections we analyze, in the limit of infinitely
large populations, the dynamics of the gametic frequencies pij = Nij/N and
the corresponding allele frequencies p̃i =

∑
j pij and p̃j =

∑
i pij. The two

scenarios described above, with and without restriction in fertilization, will
be specified by the values of the probabilities rg1:g2 .

4 Random fertilization

If fertilization is random we set rg1:g2 = r for all pairs of gametes. We cal-
culate r imposing that the total number of gametes remains constant across
generations. Substituting this constant fertilization probability in equation
(1) and in equations (A.1)-(A.3) for the other types, summing their right
hand sides and setting the result to N we obtain

N = rN(N − 1)/2 (2)
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so that r = 2/N for very large populations. Accordingly, the dynamical
equations for the evolution of the genotypic frequencies pij = Nij/N , in the
infinite size limit, can be written as

pt+1
AB = ptAB −Dt/2 (3)

pt+1
Ab = ptAb +Dt/2 (4)

pt+1
aB = ptaB +Dt/2 (5)

pt+1
ab = ptab −Dt/2, (6)

where we used the normalization condition pAB + pAb + paB + pab = 1 to
simplify the equations and defined the linkage (or gametic) disequilibrium
(Hamilton, 2009)

Dt ≡ ptABp
t
ab − ptAbp

t
aB. (7)

It can be shown (see SOM, section 1) that

Dt = 2−tD0, (8)

where D0 is the initial value of D.
From equations (3)-(6) one immediately sees that a sufficient condition

for the equilibrium is D = 0, or pABpab = pAbpaB. Notice also that the allele
frequencies p̃A = pAB + pAb and p̃B = pAB + paB (and therefore p̃a and p̃b)
remain constant and equal to their initial values.

The dynamics defined by equations (3-6) can be solved analytically (see
SOM, section 1). If D0 = 0 the gametic frequencies also remain constant
and are determined by the product of the corresponding allele frequencies,
pAB = p̃Ap̃B, etc. If D0 6= 0 the population is in linkage disequilibrium and
the gametic frequencies evolve toward the equilibrium where pAB = p̃Ap̃B,
etc, but the frequencies reach these values only asymptotically as Dt → 0,
and not in a single step as in the one-locus HW equilibrium. These results
are equivalent to previous known results of evolution towards gametic equi-
librium.

5 Genetically restricted fertilization

To describe the incompatibility between gametes differing by more than one
allele, we redefine the compatibility-viability fertilization rate as follows
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rg1:g2 =

{
0 g1 :g2 = AB :ab or g1 :g2 = Ab :aB
r′ otherwise.

(9)

To calculate the rate r′ we impose again that the total population size
remains constant through generations. We obtain

r′ =
2

N

1

1− 2∆
(10)

where

∆ ≡ NABNab +NAbNaB

N2
= pABpab + pAbpaB (11)

Notice that r′ depends on the number of incompatible pairs in the pop-
ulation and is no longer constant. The larger the number of incompatible
pairs the larger the chances that a compatible pair leaves an offspring to the
next generation.

In this case the equations for the evolution of the gametic frequencies can
be put in the form

pt+1
AB =

ptAB(1− ptab)
1− 2∆t

(12)

pt+1
Ab =

ptAb(1− ptaB)

1− 2∆t
(13)

pt+1
aB =

ptaB(1− ptAb)

1− 2∆t
(14)

pt+1
ab =

ptab(1− ptAB)

1− 2∆t
. (15)

In what follows, we explore the dynamics governed by these equations on the
basis of stability analysis of the equilibrium solutions.

5.1 Equilibrium solutions and stability analysis

The equilibrium solutions are obtained by setting the frequencies at genera-
tion t+1 equal to the corresponding frequencies at generation t: pt+1

AB = ptAB,
pt+1
Ab = ptAb, etc. Equations (12)-(15) display four different types of equilibria

which are grouped and labelled in Table 3. As we will show next, only types
1 and 2 are stable.
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Since pAB+pAb+paB+pab = 1, it is possible to give a graphical description
of the dynamics by representing only three independent frequencies. We
arbitrarily chose as the phase space frequencies pAB, pAb and paB, as depicted
in Figure 2. The constrains pAB ≥ 0, pAb ≥ 0, paB ≥ 0, and pAB+pAb+paB ≤
1 gives the phase space the geometry of a tetrahedron having right triangular
faces.

Table 3. The four types of equilibrium points.

Type Label Solution

Type 1. Continuous sets. Ea pAB = pAb = 0, paB = λa, pab = 1− λa; pa = 1
Two compatible haplotypes Eb pAB = paB = 0, pAb = λb, pab = 1− λb; pb = 1
have zero frequency; one allele EA paB = pab = 0, pAB = λA, pAb = 1− λA; pA = 1
is lost in one locus and the other EB pAb = pab = 0, pAB = λB , paB = 1− λB ; pB = 1
locus remains polymorphic. where λa,b,A,B ∈ (0, 1)

Type 2. Three haplotypes have Eab pAB = pAb = paB = 0, pab = 1
zero frequency. One allele is lost EAb pAB = paB = pab = 0, pAb = 1
in each loci. EaB pAb = paB = pab = 0, pAB = 1

Eab pAB = pAb = pab = 0, paB = 1

Type 3. Two incompatible EU1 pAb = paB = 0, pAB = pab = 1/2
haplotypes have zero frequency EU2 pAB = pab = 0, pAb = paB = 1/2

Type 4. Equiprobable ES pAB = pAb = paB = pab = 1/4
distribution

The equilibrium points enumerated in Table 3 can be easily identified in
figure 2. The continuous sets containing solutions Ea (purple), Eb (blue), EA
(red) and EB (cyan) correspond to four of the six edges of the tetrahedron.
The points Eab, EAb, EaB and EAB are the vertices of the tetrahedron
(black circles), points EU1 and EU2 are located at the midpoints of the edges
not containing equilibrium points (orange circles) and finally, the center of
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the tetrahedron houses the point ES (brown circle).
The stability analysis of the equilibrium solutions of each of the four types

is desbribed in the Appendices B and C and in section 2 of the SOM. The
results are summarized in Table 4. The stable equilibria consist of types 1 and
2 and form a continuous set containing of the four edges of the tetrahedron
displayed in Figure 2, including the vertices. Given an initial condition the
population will converge to one of these equilibrium points, and we still need
to find which one will be reached. This is the goal of the next two subsections.

Table 4. Stability of the equilibrium points.

Type Label in Figure 2 Stability

Type 1. Colored lines Locally stable
(Ea, Eb, EA, EB) (purple, blue, red, cyan)

Type 2. Black circles Locally stable
(Eab, EAb, EaB, Eab)

Type 3. Orange circles Unstable
(EU1, EU2)

Type 4. Brown circle Saddle point with a single
(ES) stable direction

5.2 Dynamics and Geometrical interpretation

Quantities that do not change in time give powerful insights in the under-
standing of dynamical problems. In the absence of restrictions in fertilization,
the allele frequencies p̃A and p̃B remain constant and this property charac-
terizes the gametic equilibrium. Surprisingly, the dynamics with restrictions
in fertilization described here also has a conserved quantity that allows for
the complete solution of the evolution equations.
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In Appendix D we use equations (12)-(15) to show that all allele frequen-
cies obey the same evolution equation, which can be written in the form

p̃t+1
u − 1/2 =

p̃tu − 1/2

1− 2∆t
(16)

for u = A,B, a, b. Writing this equation for u = A and u = B and dividing
one by the other implies that the quantity

T =
p̃A − 1/2

p̃B − 1/2
(17)

remains constant from the first generation. Therefore, the dynamic is con-
strained by two linear relations: constancy of T and normalization (pAB +
pAb + paB + pab = 1). Given the two linear relations above, the trajectory
of any initial condition is restricted to a two-dimensional plane in the four
dimensional space of genotype frequencies. We call this plane where the
dynamics take place the T-plane. The value of T is fixed by the initial con-
ditions and determines if the T-plane will intersect simultaneously the lines
of fixed points Eb and EB (as illustrated in Figure 3) or the lines Ea and EA.

This construction allows us to predict, for an arbitrary initial condition,
the asymptotic equilibrium point of the population. First we need to specify
in which plane the initial condition is located. Second, as the plane contains
two stable fixed points, we also need to establish which of these equilibrium
points will be reached. Since the dynamics is restricted to the T-plane and
type 1 solutions are locally stable, it is possible to demonstrate (see Appendix
E) that haplotype and allele frequencies will evolve toward one of these two
points, losing one allele. The line passing through ES and connecting to EU1

and EU2 lies on the T plane and happens to be the subspace where ES is
stable. Therefore, because ES is a saddle point, any trajectory that is not
exactly on this line will be repelled towards one of the two available stable
points contained in the T plane. Accordingly, knowing on which side of this
line the initial point is suffices to determine which equilibrium point will be
reached, as illustrated in Figure 3.

Let us assume that −1 < T < 1 so that the T-plane intersects the axis
as in Figure 3. In this case points below the EU1-EU2 line move towards the
pAb axis, to a Eb fixed point, for which b is fixed and B is lost. Points above
this line move towards the EB fixed point. Let us call X the point where the
T-plane crosses the pAb axis. Using pAb = X and pAB = paB = 0 in equation
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(17) we find X = pAb = (1−T )/2, which emphasizes that the T-plane crosses
the Eb and EB lines only if −1 < T < 1. For T > 1 or T < −1 the T-plane
crosses the Ea and EA lines.

We shown in Appendix E that, if p̃B < 1/2 the point is the lower half
of the T-plane and the equilibrium point is of the type Eb with pAb = X =
(1 − T )/2, pAB = paB = 0, pab = (1 + T )/2. Otherwise the point is on the
upper half and goes to the EB fixed point given by pAb = 0, pAB = (1+T )/2,
paB = (1 − T )/2, pab = 0. Also, from equation (17) we find that p̃B < p̃A,
otherwise T > 1. Similarly, p̃B < p̃a, otherwise T < −1. The conclusion is
that if p̃B is the smallest of the allele frequencies, the equilibrium point is
pAb = (1 + T )/2, pAB = paB = 0, pab = (1− T )/2 which has p̃B = 0.

The practical result of this analysis is that the smallest among the initial
allelic frequencies always goes to zero. This information, together with the
conserved quantity T suffices to determine all frequencies. For example, if pb
is the smallest initial frequency, in the equilibrium pb = 0 and, consequently,
pB = 1. From equation (17) we find pA = (1 + T )/2 and pa = 1 − pA =
(1−T )/2 and all genotype frequencies have been calculated. In addition, the
time it takes to reach the equilibrium also depends on the initial condition
and is calculated in detail in section 3 of SOM.

6 Discussion

Understanding how allele frequencies changes in a population is central to
evolution. Depending on the conditions and constrains to which these changes
are subjected, very different outcomes can result. Here we considered an iso-
lated and large population where gametic recognition is controlled by alleles
in two independent loci. We postulated that individuals whose genotypes
differ in both loci (double heterozygotes) are inviable whereas all other in-
dividuals have the same fitness. The model was motivated by previous spe-
ciation studies where haploid individuals with B biallelic genes differing in
more than G alleles could not mate because of accumulated differences. The
problem considered here consists in the simplest case where B = 2 and
G = 1 and we have shown that it is equivalent to a two loci diploid model
with selection against double heterozygous individuals (i.e. underdominance
for fitness). While this approach has been used in multiple computational
models of speciation (Gavrilets et al., 1998; de Aguiar et al., 2009; Martins
et al., 2013), to our knowledge, its connection to Hardy-Weinberg theory and
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equivalence with selection against heterozygous individuals has never been
explicitly stated. If we define n = G+1, restriction in mating between haploid
individuals is equivalent to selection against n-uple to B-uple heterozygote.
For example, a case where B = 5 and G = 2 is equivalent to selection against
triple, quadruple and quintuple heterozygotes. Gavrilets (1999) while work-
ing on a equivalent model with multiple loci stated that this mechanism is
similar to underdominance. By taking a step back and analysing a two-loci
model, we have been able to conclude that this type of mating restriction in
the haploid phase is actually the same as underdominance. This result high-
lights the importance of carefully evaluating assumptions and mechanisms
used in more complex models.

Although selection against heterozygotes and non-random fertilization are
completely equivalent under the assumptions taken into account in this work,
the biological mechanisms involved are not expected to be the same. Gamete
recognition in free-spawning species is the result of the interaction between
multiple molecules on gamete surface that mediate the different stages of fer-
tilization (Vieira and Miller, 2006; Lessios, 2011) and genes involved in this
process are expressed specically in reproductive cells (Palumbi, 2008). Selec-
tion agains heterozygotes may arrise from intrisic genetic incompatibilities
or other mechanisms that cause reduction in survival or mating probabilities
of heterozygous individuals (Coyne and Orr, 2004) and the genes involved
may have very different functions (Wu and Ting, 2004; Nosil and Schluter,
2011)

In particular, intrinsic genetic incompatibilities which are expected to be
explained by specific epistatic interactions, are likely to be subject to a dif-
ferent mechanism. The evolutionary dynamics of these incompatibilities are
usually studied by Dobzhansky-Muller models (Coyne and Orr, 2004). These
models propose that incompatibilities arise from interactions between alleles
that have evolved in different subpopulations. In that case the process involve
an initial population of diploid individuals with genotype AABB, which has
been divided in two subpopulations. Allele a may evolve in one population
and allele b in the other and when individuals of different subpopulations
breed, the hybrid offspring may have reduced fitness due to interactions be-
tween alleles a and b. These assumptions lead to an important difference
with respect to the model of selection against double heterozygotes, where
all genotypes are equally fit, except for the double heterozygotes which are
less fit. In the Dobzhansky-Muller model, besides the double heterozygotes,
some individual which are heterozygous for just one locus and one type of

15



double homozygotes may also be less fit, depending on assumptions of ances-
try and dominance. Therefore, the system here described does not present
the asymmetry that is characteristic of the Dobzhansky-Muller mechanism.
Despite these differences, our approach shares one important feature with
the Dobzhansky-Muller model: in subdivided populations both mechanisms
explain how diverging populations may arrive at opposite sides of an adaptive
valley without ever crossing it. They evolve through ridges of equal fitness
values (Gavrilets, 2004).

It has been known for decades that non-random encounters between geno-
types during reproduction often lead to change in alleles frequencies in two-
allele models. Nonetheless, the cases of inbreeding and pure positive assorta-
tive mating are often emphasized. In both cases the allele frequencies remain
constant, although the frequencies of the genotypes do change through gen-
erations, and the constancy in allele frequencies is attributed to the fact
that random encounters are disrupted in a away that is symmetrical to both
alleles. (Hamilton, 2009; Crow and Kimura, 1970). In the present case,
reproductive encounters between haploid genotypes are also restricted in a
away that is symmetrical to both alleles in each loci, however this restriction
is equivalent to selection against double heterozygotes, which leads to disrup-
tive selection resulting in changes in allele frequencies. Moreover, one of the
four alleles always disappears from the population. Note that this affects the
diversity of the population in a drastic way: of the nine possible genotypes,
six disappear, not only the double heterozygote.

Surprisingly we find that, despite theses drastic changes, certain combi-
nations of allele frequencies remain constant during the entire process, even
though alleles segregate independently. In order to understand the meaning
of these constants, we define

du = p̃u − 1/2 (18)

for u = A, a, B or b, as the deviation of the frequency of allele u from value
1/2, where p̃A = p̃a = p̃B = p̃b. In the phase space, the point where all alleles
have equal frequencies corresponds to a saddle point unstable equilibrium.

In terms of du the first conserved quantity is

T =
dA
dB

=
da
db

which measures the ratio between the deviations of alleles A and B. The
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second conserved quantity is the sign of du, which also remain fixed for all
alleles.

Using these two quantities we were able to compute all allele frequencies
in equilibrium. The genotypic frequencies are then obtained by the corre-
sponding product of the allele frequencies. Since the values of T and the signs
of du depend on the initial conditions, so does the final allele and genotypic
frequencies. In particular, we have shown that the allele that disappears from
the population is the one that starts with the smallest frequency (smallest
du). This model is closely related to the classical of models of selection in
two biallelic loci propsed by Kimura (1956), Karlin (1975) and others (Ewens,
2004) in which arbitrary fitness values can be attributed to each of the nine
possible diploid genotypes. These models, however, focus on different modes
of overdominance in search of stable polymorphisms. By introducing under-
dominance under the same framework, we have find that the stable solutions
are still polymorphic in one loci.

The constant T also reflects a correlation between the allele frequencies
at the two loci that arise due to epistasis. This correlation explicitly shows
how allele frequencies in one loci change as a function of the frequencies at
the other loci and how a polymorphic stable equilibrium may be attained
in a model of underdominance. For one-locus, two-alleles systems, the poly-
morphic equilibrium is always unstable (Hamilton, 2009). This result, which
was also found in a previous model that combined overdominance and un-
derdominance, draws attention to the importance of studying multiple-loci
systems, since their dynamics may not be well represented by simpler systems
(Hastings, 1981).

The consequences of this result to population diversity and speciation
can be understood in the context of structured populations. For one-locus
systems, selection against the heterozygote in subdivided population may
lead to coexistence of both alleles in the whole population, if migration is
low enough (Altrock et al., 2011). If more loci are taken into account, al-
lele a may be lost in one group and allele b may be lost in another group.
The diversity of each population would be reduced and the genetic distance
between individuals of different populations would become larger than the
distance between individuals within each population. For the case studied,
B = 2 and G = 1, such populations would not be reproductively isolated: in
terms of gametes, the first would have AB and Ab whereas the second would
have AB and aB and gamete recognition between populations would still
be possible. Joining the two populations would result in further evolution
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and one of the alleles would be lost altogether. However, for larger number
of participating genes, reproductive isolation could be achieved. For B = 3
and G = 1, for instance, the equilibrium solutions ABc and ABC would be
isolated from the solution abC and abc.

The model proposed in de Aguiar et al. (2009) breaks the HW hypothe-
sis because the population is finite, includes mutations and is not panmictic
because of spatial and genetic constrains. It shows that speciation can occur
as a consequence of two reinforcing trends: isolation by spatial distance and
isolation by genetic distance. Isolation by spatial distance is a consequence
of limited dispersal across space and was originally studied by Sewall Wright
(1943). Mating between individuals located more than a maximum distance
S from each other does not occur simply. If S is much smaller than the size L
of population range, alleles become spatially autocorrelated and individuals
become isolated by spatial distance. In addition, haploid individuals whose
genetic distance exceeds a maximum G are not allowed to mate. This is
equivalent to assigning a lower fitness to individuals that are homozygous
for more than G loci. Initially, differentiation occurs solely by mutation and
drift. However, as diversity increases the genetical constrain aids differenti-
ation by disruptive selection. If G is much smaller than the total number of
genes B involved in reproduction, mutations may lead to incompatible hap-
loid genotypes. Mutations that are responsible for the differences between
individuals that are spatially distant cannot spread through the population
because selection against heterozygous individuals acts removing alleles that
have lower local frequency. Analytical expressions indicating when speciation
is possible under these conditions where recently obtained (de Aguiar and
Bar-Yam, 2011; Baptestini et al., 2013), but the contribution of the genetic
mating restriction to the process was included as ansatz based on numerical
simulations. The main contribution of the present work is to understand
in detail the core ingredient of these models, namely, the dynamics of al-
lele frequencies, and to connect it to previous classic models in population
genetics.
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Figure 1: Conceptual model of an life cycle that includes a diploid and an
haploid phase.
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Figure 2: The 4 families of equilibrium solutions: Ea (purple), Eb (blue), EA

(red) and EB (cyan); Eab, EAb, EaB and EAB (black circles); EU1 and EU2

(orange circles) and; ES (brown circle). The light brown face corresponds to
pAB + pAb + paB = 1, or pab = 0, whereas the origin pAB = pAb = paB = 0
implies is pab = 1.
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Figure 3: (a) T-plane T = −0.8 intersecting the Eb fixed points at pAb = 0.9
and the EB points at pAB = 0.1, paB = 0.9. (b) T-plane projected on the
pAb-pAB plane showing the fixed points ES, EU1 and EU2. Vectors û1 and
û2 are shown in green (see Appendix E). Sample trajectories are shown by
dots, connected by straight lines to guide the eye.
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Figure 4: Eigenvectors of equilibrium points Eb for λb = 0, λb = 1/2 and
λb = 1. v1 (green) points to EU1 in the pAb−pAB plane. v2 (brown) points
to EU2 in the pAb−paB plane.
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A Master equations for haplotypes Ab, aB

and ab

N t+1
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N t
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Ab − 1)

2
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N t
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N t
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4
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4
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N t+1
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aB − 1)

2
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t
aB

2
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aBN

t
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2
raB:ab

+
N t

ABN
t
ab

4
rAB:ab +

N t
AbN

t
aB

4
rAb:aB (A.2)
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N t
ab(N

t
ab − 1)

2
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AbN

t
ab

2
rAb:ab +

N t
aBN

t
ab

2
raB:ab

+
N t

ABN
t
ab

4
rAB:ab +

N t
AbN

t
aB

4
rAb:aB (A.3)

B Equilibrium solutions and stability analy-

sis

The stability analysis of the equilibrium solutions consists in linearizing the
equations (12)-(15) around the equilibrium point and computing the eigen-
values ζ of the 3×3 matrix governing the linear equations. Stability requires
|ζ| < 1 for all eigenvalues. In order to make their identification easier, we
refer to the equilibirum points by their colors in Figure 2.

Stability of points EU1 and EU2 (orange dots)
For these points the stability matrix has three equal eigenvalues ζ = 2.

As a consequence, both points EU1 and EU2 are unstable, whence the choice
of labels EU.

Stability of points ES (brown dot)
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The eigenvalues of the stability matrix of ES are ζs = 2/3 and ζu1 =
ζu2 = 4/3. Accordingly, this equilibrium is a saddle point (ES), being un-
stable in a two dimensional subspace and stable in a one dimensional sub-
space. The stable subspace is spanned by the eigenvector associated to ζs,
(pAB, pAb, paB) = (1,−1,−1). Notice that along this direction and equidis-
tant to the point ES, are located the points EU1 and EU2 (figure 2). This
fact is very important to the global structure of the phase space.

Stability of points in types 1 and 2 (colored lines and black dots)
Equilibrium points of types 1 and 2 are certainly peculiar. Not displaying

exactly the same properties, they share some common features, so it is in-
structive to analyze their stability at the same time. We take as an example
the set of points Eb (blue line) and its λb → 0 and λb → 1 limits, which are
the points Eab and EAb (black circles at the end of the blue line), respec-
tively. Section 2 of SOM explains how to transfer the present analysis to the
remaining equilibrium points of groups 1 and 2. The stability matrix for any
equilibrium point Eb has the following eigenvalues and eigenvectors:

• ζ1 = λb: v1 = (1,−2λb, 0).

• ζ2 = 1− λb: v2 = (0, 1− 2λb, 1).

• ζ3 = 1: v3 = (0, 1, 0).

Because ζ3 = 1 the v3 direction is neutral, and initial conditions slightly
shifted from the equilibrium points in this direction are not repelled nor
attracted. This is consistent with the fact that this direction corresponds to
the pAb axes, where the entire set of equilibrium points Eb is located, as well
as points Eab and EAb.

In the directions spanned by v1 and v2, the equilibrium points Eb are
stable (the points Eab and EAb are also stable, although the analysis for
these point can not be performed in the standard linear way). Moreover, as
demonstrated in Appendix C, the line spanned by v1 contains the equilibrium
point EU1 (orange circle), whereas the line spanned by v2 contains the point
EU2 (orange circle), as illustrated in figure B-1.
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C Properties of eigenvectors v1 and v2

In this appendix we demonstrate, for the case of equilibrium points Eb and
its limits λb → 0 (point Eab) and λb → 1 (point EAb), that the line spanned
by v1 contains the point EU1 and the line spanned by v2 contains the point
EU2. The demonstrations can be directly extended to the remaining stable
fixed points.

To prove the first statement, consider the straight line l1 defined by

(pAB, pAb, paB) = χ v1 + (0, λb, 0). (C.1)

The value of χ value for which pAb = 0 is χ = 1/2. Replacing this value in
equation (C.1) we find pAB = 1/2 which is exactly the coordinates of EU1.
Accordingly, for any 0 ≤ λb ≤ 1, the line spanned by the eigenvector v1

crosses both the specific fixed point in the set Eb ∪ Eab ∪ EAb and the fixed
point EU1.

By constructing a second straight line l2

(pAB, pAb, paB) = χ v2 + (0, λb, 0) (C.2)

we can prove the second statement. We need now to solve for the χ value for
which pAb = 1/2, which again gives χ = 1/2. The corresponding paB value is
paB = 1/2, which implies that the line spanned by the eigenvector v2 crosses
both the specific fixed point in the set Eb (or Eab and EAb) and the fixed
point EU2.

D Conserved quantities

We start by writing the evolution equations for the allele frequencies using
equations (12-15). In this appendix we omit the superscript t on the right
hand side of the equations to simplify the notation. For p̃A = pAB + pAb we
obtain

p̃t+1
A = pt+1

AB + pt+1
Ab =

pAB + pAb −∆

1− 2∆
=
p̃A −∆

1− 2∆
(D.1)

where
∆ = pABpab + pAbpaB. (D.2)

Notice that, as the relationship between the alleles and the genotype
frequencies can not be inverted, it is not possible to obtain a closed formula
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in terms of the allele frequencies only. Here, the presence of the genotype
frequencies is implicit in ∆. The calculation for p̃B is similar and we obtain

p̃t+1
B =

p̃B −∆

1− 2∆
(D.3)

We could proceed in the same way for the remaining two allele frequencies.
However, it is instructive to derive them using the normalization conditions.
For instance,

p̃t+1
a = 1− p̃t+1

A =
1− 2∆

1− 2∆
− p̃A −∆

1− 2∆
=

1− p̃A −∆

1− 2∆
=
p̃a −∆

1− 2∆
. (D.4)

and similarly for p̃b. Interestingly, all allele frequencies obey the same evolu-
tion equation, which can thus be condensed in the form

p̃t+1
u =

p̃u −∆

1− 2∆
, (D.5)

for u = A,B, a, b. Subtracting 1/2 from both sides leads to

p̃t+1
u −1/2 =

p̃u −∆

1− 2∆
− 1− 2∆

2(1− 2∆)
=

2p̃u − 2∆− 1 + 2∆

2(1− 2∆)
=
p̃u − 1/2

1− 2∆
. (D.6)

Now, consider two arbitrary alleles u′ and u′′. From equation (D.6) it
turns out that

p̃t+1
u′ − 1/2

p̃t+1
u′′ − 1/2

=
p̃u′ − 1/2

p̃u′′ − 1/2
. (D.7)

Of course, this relationship holds for u′ and u′′ at the same locus, but in
this case it is trivial. However, when the alleles are taken at different loci
(i. e., in the combinations A − B, A − b, a − B, or a − b), the resulting
relationship is very interesting. For instance, for u′ = A and u′′ = B, one
gets

p̃t+1
A − 1/2

p̃t+1
B − 1/2

=
p̃A − 1/2

p̃B − 1/2
. (D.8)

which means that the quantity

T =
p̃A − 1/2

p̃B − 1/2
(D.9)
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remains constant from the first generation on. Moreover, as relationship
(D.7) for the other 3 possible combinations of the 2 alleles can be derived
directly from equation (D.8), it turns out that there is only one independent
choice to define the constant T . We will keep the definition given in equation
(D.9).

E Dynamics and Geometrical interpretation

The dynamic is constrained by two two linear relations: normalization

pAB + pAb + paB + pab = 1

and constancy of T

T (pAB + paB − 1/2)− pAB − pAb + 1/2 = 0.

The trajectory of any initial condition is, therefore, restricted to a two-
dimensional plane in the four dimensional space of genotype frequencies. We
have already used the normalization condition to draw the three-dimensional
figures 2 and B-1. It is easy to check that the plane defined by equation (17)
always contains the fixed points ES, EU1 and EU2, since they trivially satisfy
the linear relation above for any value of T .

We call this plane where the dynamics take place the T-plane and note
that it is completely defined by the initial condition. Since it always contains
the straight line connecting EU1 and EU2 passing through ES, changing the
value of T only rotates the plane around this line. Depending on the value of
T the plane will intersect simultaneously the lines of fixed points Eb and EB
(as illustrated in figure 3) or the lines Ea and EA. In the limiting cases T = 1
and T = −1 it intersects the points EAb-EaB and Eab-EAB respectively.

The T-plane can be fully characterized by containing the point ES and
being perpendicular to the vector

t̂ =
za × zb
|za × zb|

. (E.1)

where za is the vector from the initial condition to the point EU1 and zb the
vector from the initial condition to the point EU2. After some simplifications
we find

t̂ = A(1, 1− T,−T )
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with A−1 =
√

2− 2T + 2T 2.
The line passing through ES and connecting to EU1 and EU2 form the

stable manifold of ES. Since no trajectory can cross the stable manifold,
knowing on which side of this line the initial point is suffices to determine
which equilibrium point will be reached.

This construction allows us to predict, for an arbitrary initial condition,
the asymptotic equilibrium point of the population. First we need to specify
in which plane the initial condition is located. Second, as the plane contains
exactly two stable fixed points, we also need to establish on which side relative
to the stable manifold of the point ES the initial condition lies.

Let us assume that −1 < T < 1 so that the T-plane intersects the axis
as in figure 3. In this case points below the EU1-EU2 line move towards
the pAb axis, to a Eb fixed point, and points above this line move towards
the EB fixed point. Let us call X the point where the T-plane crosses the
pAb axis. Using pAb = X and pAB = paB = 0 in equation (17) we find
X = (1 − T )/2, which emphasizes that the T-plane crosses the Eb and EB
lines only if −1 < T < 1. For T > 1 or T < −1 the T-plane crosses the Ea
and EA lines.

We define the unit vectors û1 from ES to EU1 and û2 as perpendicular to
û1 (and in the T-plane). These two vectors span the T-plane and are given
by

û1 =
1√
3

(−1, 1,−1)

and
û2 = B(1− 2T,−(1 + T ),−2 + T )

where B−1 =
√

6(1− T + T 2) is the normalization.
Any point ~p on the T-plane can therefore be written as

~p = ~ES + αû1 + βû2. (E.2)

If β > 0 the point is the lower half of the T-plane and the equilibrium point
is of the type Eb with pAb = X = (1−T )/2, pAB = paB = 0, pab = (1+T )/2.
Otherwise the point is on the upper half and goes to the EB fixed point given
by pAb = 0, pAB = (1 + T )/2, paB = (1− T )/2, pab = 0.

Taking the scalar product of equation (E.2) with û2 we find

β =

√
1− T + T 2

6
(1− 2p̃B) (E.3)
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where (1− T + T 2) > 0 for −1 < T < +1.
This rather complicated calculation turns out to have a very simple in-

terpretation: β > 0 only if p̃B < 1/2. Also, from equation (17) we find that
p̃B < p̃A, otherwise T > 1. Similarly, p̃B < p̃a, otherwise T < −1. The con-
clusion is that if p̃B is the smallest of the allele frequencies, the equilibrium
point is pAb = (1 + T )/2, pAB = paB = 0, pab = (1− T )/2 which has p̃B = 0.
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