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Abstract

The Kirchhoff model describes the statics and dynamics of thin rods within the approximations of the linear elasticity
theory. In this paper we develop a method, based on a shooting technique, to find equilibrium configurations of finite rods
subjected to boundary conditions and given load parameters. The method consists in making a series of small changes on a
trial solution satisfying the Kirchhoff equations but not necessarily the boundary conditions. By linearizing the differential
equations around the trial solution we are able to push its end point to the desired position, step by step. The method is also
useful to obtain configurations of rods with fixed end points but different mechanical parameters, such as tension, components
of the moment or inhomogeneities.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The study of conformations of slender elastic rods is of substantial utility in several applications, ranging from
the fields of structural mechanics and engineering to biochemistry and biology. Examples are the study of coiling
and loop formation of sub-oceanic cab[és4], filamentary structures of biomoleculgs-9] and bacterial fibers
[10,11] the phenomenon of helix hand reversal in climbing plgh®} and the shape and dynamics of cracking
whips[13].

The Kirchhoff model[14] provides a powerful approach to study the statics and dynamics of elastic thin rods
[8,15]. In this model the rod is described by a set of nine partial differential equations (the Kirchhoff equations) in the
time and arclength of the rod. They contain the forces and torques plus a triad of vectors describing the deformations
of the rod. These equations are the result of Newton’s second law for the linear and angular momentum applied to
the thin rod plus a linear constitutive relationship between moments and strains. The Kirchhoff model holds true
in the approximation of small curvatures of the rod, as compared to the radius of the local crossfséttian
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interesting characteristic of this model, knowrkashhoff kinetic analogyis that the equations governing the static
problem are formally equivalent to the Euler equations describing the motion of spinning tops in a gravity field.
The Kirchhoff equations for equilibrium configurations can, therefore, be written in Hamiltonian form.

The Kirchhoff equations have been solved for a number of simple situations. Shi and Hgérst obtained
analytical solutions of the equilibrium equations and, recently, Nizzete and G{tidlyompleted the study by
making a classification of all kinds of equilibrium solutions. Goriely and Tgb®y19]developed a method to study
the dynamical stability of these solutions and da Fonseca and de A8Q]applied this method to study the near
equilibrium dynamics of nhon-homogeneous closed rods in viscous media. Recently, Tobid2 Bt @gveloped
the necessary and sufficient criteria for elastic stability of equilibrium configurations of closed rods.

In many cases of interest, including biological molecules, the filaments are subject to boundary conditions.
Examples are the problem of multiprotein structures, such as histones and gyrase, about which long pieces of DNA
wrap [22], and multiprotein structures, such as the repressorcomplex[23]. Despite the many achievements
described above, the study of the boundary value problem (BVP) associated with Kirchhoff filaments is still a big
challenge. While the integration of differential equations from initial conditions is a relatively simple numerical
task, the difficulties of finding solutions for given boundary conditions are well known in classical mechanics,
electromagnetism and quantum mechanics. Typical examples are classical trajectories connecting two given spac
points in the time, electric potentials that vanish at given surfaces and eigenvalues of the Laplace operator defined
inside a finite domain (quantum billiards).

Because of the analogy with spinning tops, the case of trajectories of Hamiltonian systems is of particular interest
here. Themonodromy methqdaleveloped by Baranger and Daysl], was designed specifically to find periodic
solutions of Hamiltonian systems witki degrees of freedom. Xavier and de Aguiab] extended the method to
find non-periodic trajectories with any given combination of gosition and momenta at initial and/or final times.

Awidely used method to solve BVPsis the so calibdoting methof26,27] For a single second-order differential
equation, the method consists in finding the proper ‘velocity’ at the initial point so as to reach the desired ‘target’
at the end point, similar to the shooting of a projectile. Examples of applications of this method to the Kirchhoff
equations are the search for homoclinic orbits in reversible sysfe8isheteroclinic orbits resembling tendril
pervesion$29] and the study of localized buckling modes of thin elastic filamggas31]

In the case of open rods some specific BVPs were solved recently. Karolyi and Dof@kassing symbolic
dynamics, found global invariants for BVPs of elastic linkages, as natural discretization of continuous elastic beams,
an old problem solved by Euler (see R@2]). Gottlieb and Perking33] investigated spatially complex forms in a
BVP governing the equilibrium of slender cables subjected to thrust, torsion and gravity. Also, the criteria of Tobias
et al.[21] was applied to linear segments subjectedttong anchoring end conditions/here not only the end
points but also the tangent vector at the end points are held fixed. The dependence of DNA tertiary structure on
end conditions was studied jA2], where explicit expressions for equilibrium configurations were obtained for a
specific case with symmetric end conditions.

Our aim in this paper is to develop a method to find equilibrium solutions of finite rods subjected to boundary
conditions at their end points and with given load parameters. We emphasize that this is different from the approach
in [30,31] where the authors use shooting methods to calculate localized buckling modes. These modes are treated a
homoclinic solutions of the Kirchhoff equations, corresponding to infinite rods that become asymptotically straight
in the infinite. Our objective is to find equilibrium solutions forite rods subjected to boundary conditions at both
ends.

Our method is an adaptation of the monodromy matrix method for non-periodic traje {2&ijiesthe Hamiltonian
formulation of the static Kirchhoff equations. We work with the Kirchhoff equations directly in Euler angles, instead
of using the Cartesian position and tangent vedi®®s31] The difficulty in working with Euler angles is that the
variables that one wants to hold fixed, the spatial position of the filament end points, are not the variables appearing
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in the differential equations describing the rod. However, the number of differential equations to be solved is much
smaller in these variables. Using a symmetry of the Hamiltonian, we end up with only two independent equations
to solve.

One of the motivations of this work is its possible biological applications as, for example, the study of single
DNA molecules manipulated by optical traf1—36] and the DNA loops between multiprotein structures (such
as thelac repressor—operator complg23,37]

This work is organized as follows. I8ection 2we review the Kirchhoff equations and, Bection 3 their
Hamiltonian formulation. Ir'Section 4ve describe our method for solving the BVP. The monodromy method enters
as part of the solution, and proves to be a very efficient todbdation Swe give numerical examples, calculating
the three-dimensional configuration of rods with different sets of load parameters and end positions. We also discuss
the existence of solutions as function of the load parameteiSettion 6 motivated by the repeated sequences
of base-pairs commonly found in DNA molecules, we consider rods with periodically varying Young’'s modulus.
We compare the configurations of these non-homogeneous rods against their homogeneous counterparts, fixing the
same end points and mechanical parameterSeblition Ave summarize our conclusions.

2. TheKirchhoff equations

The Kirchhoff model describes the dynamics of inextensible thin elastic filaments within the approximation of
linear elasticity theorJ16]. They result from the application of Newton’s laws of mechanics to a thin rod, and
consist of two equations describing the balance of linear and angular momentum plus a constitutive relationship
of linear elasticity theory, relating moments to strains. The Kirchhoff model assumes that the filament is thin and
weakly bent (i.e., its cross-section radius is much smaller than its length and its curvature at all points). In this
approximation it is possible to derive a one-dimensional theory where forces and moments are averaged over the
cross-sections perpendicular to the central axis of the filament.

A thin tube can be described by a smooth curve the 3D space parameterized by the arclergtind whose
position depends on the time:= X(s, 7). A local orthonormal basigor director basisyl; = d;(s,7),i = 1,2, 3, is
defined at each point of the curve, withchosen as the tangent vectihs,= x'. In this paper we shall use primes to
denote differentiation with respecti@nd dots to denote differentiation with respect to time. The two orthonormal
vectors,d1 anddy, lie in the plane normal tds, for example, along the principal axes of the cross-section of the
rod. These vectors are chosen such fdatd,, d3} form a right-handed orthonormal basis for all values ahd
t. The space and time evolution of the director basis along the curve are controtiegtgndspin equations

di=kxd, d=exd, i=123, )

which follow from the orthonormality relationd; - d; = §jj. The components & andw in the director basis are
defined ak = 21-3:1 kid; andw = Z?:l w;d;. k1 andky are the components of the curvature agdhe twist
density of the rod. The solution of the twist and spin equations deterrdiies), which can be integrated to give
the space curveg(s, r).

Let the material points on the rod be labeled by

X (s, 1) = X(s, 1) + 1 (s, 1), (2
where

r(s, 1) = x1d1(s, 1) + x2d2(s, 1) ©))
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gives the position of the point on the cross-sectigs), perpendicular ta’(s), with respect to the central axis. The
total forceF = F(s, ) and the total momen#l = M (s, r) (with respect to the axis of the rod) on the cross-section
are defined by

F=[ psds, (4)
S(s)

M =/ r x p,ds, )
S(s)

wherep; is the contact force per unit area exerted on the cross-sestionin terms of the director basis we write
F= 21-3:1 fid; andM = Zis:l M;d;.

In order to derive a set of equations describing the rod as a one-dimensional object, the rod is divided into thin disks
of length d and cross-sectiof(s). To each of these disks the conservation laws of linear and angular momentum
are applied16]. The result is

F/ +/ fextdS = / pOX dS, (6)
S(s) S(s)

M/+x’xF+/

r x fextds = / pol X X dS, (7)
S(s) S(s)

wherefeyt is an external force that will not be considered in our calculatibig=£ 0 in what follows).

In this article we are interested only in the equilibrium solutions and, therefore, we shall drop the derivatives
with respect to time. Assuming that the rod has a uniform circular cross-section of degs. (6) and (7¢an be
simplified to yield

F =0, (8)
M’ +d3 x F=0, ()]

which are a set of six equations for nine variablesM andk (from which we determine;). In order to close the
system of equations we needtanstitutive relatiorrelating the local forces and moments (stresses) to the elastic
deformations of the body (strains). In the linear theory of elasticity, and for a homogeneous elastic material, the
stress is proportional to the deformation. The Young's modalasd the Shear modulyscharacterize the elastic
properties of the material. Therefore, it is possible to obtain, for small deformations, a constitutive relation for the
moment. For an isotropic material, in the director basis, this relatif6is

M = El(k1 — k¥)d1 + El(kz — k¥)da + 201 (ks — kY)d3, (10)

where] is the principal moment of inertia of the cross-sectinthe components of the strain vector aritdthe
components of the twist vector in the unstressed configuration. Thetas@ corresponds to a naturally straight
and untwisted rod. We shall assuije= 0.

Egs. (8)-(10xan be further simplified by the introduction of scaled variables:

El El 1
s — sl F—->F—= M—>MI, k—>kz. (11)

L2
In the new variables the rod has total length= 1. The static Kirchhoff equations become
F =0, (12)

M’ +d3 x E=0, (13)
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M = k1d1 + kodz + Iksds, (14)

wherel” = 2/ E is an elastic parameter that does not affect the equilibrium solutions.

3. Hamiltonian formulation

In order to construct a Hamiltonian formulation of the Kirchhoff equations we first notdctat(12)—(14pre
integrable ifE andu are constantl7]. Eq. (12)shows that the tensidnis constant. Let us choose the direction of
the force as the-direction:

F = Fey. (15)

In analogy to the spinning top, the tensiéorresponds to the gravity fieldmg. Here,F can be considered as an
external parameter and not as a first integral. Substitliang15)into Eq. (13)and projecting along; we get

M’ -ez; =M, =0, (16)
which does represent a first integral. By projectitgy (13)alongds we obtain another integral/s, since

M’ ds= M} =0. (17)
Finally, it is also possible to show that the elastic energy per unit arclength

H=1M k+F d; (18)

is constant, i.e.H’ = 0. ThereforeH is the last integral.
The orthonormal Cartesian basis can be connected to the director basis by Euler angles with

3
di=Y_Sjej. (19)
j=1

where
COSH COS¢ COSY — Sing Sinyr cosf cos¢ Sinyr + singcosy  — cos¢ sind
S = | —cosfsing cosyr — cosgsiny — coshsing siny + cosp cosy  singsing | . (20)
sind cosyr sing siny cost
The static Kirchhoffequations (12)—(149an then be written in terms 6f ¢ andy,. We get

0" — (y')?sinB cosh + I'y/ (¢’ + ¥’ cosh) sind = F siné,

Y sind + 24’6 cosh — 1Y (¢’ + ' cosh) = 0, Y cosf = '8 sind — ¢”. (21)
These equations can also be derived directly fieqs. (16)—(18)In terms of the Euler angles the Hamiltonian
becomes

_ P2 P} (Py — Pycosh)?

H=—> F coso 22

2 + 2r 2sin26 + ’ (22)
where

Py=¢, (23)

Py = M3 = I(¢' + ¥/ cosb), (24)
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Py = Mz = ¢/ sin%0 + P, cosb. (25)

Eq. (21)correspond to Hamilton’s equatior’¥, = —3H/do’ ando«’ = 0H/3P, for « = 6,y or ¢. We see
immediately thatP, and Py, are constants and thais the only independent variable.
The total elastic energy of the rod can be calculated by the integratigq.q22)

1
Er= f H(s) ds. (26)
0

The energy is a function a?y,, Py andF. It also depends on the initial conditiof® = 0) = 6p and Py(s = 0) =
Poo.

The procedure to construct equilibrium solutions for given constBptand Py and initial condition(6o, Pgo)
is as follows: first we solve the equatioRs = —9H/30" and¢’ = 9H/dPy to obtain(6(s), Ps(s)). Second, using
Eq. (25) we obtainy/(s). The solution®(s) andy(s) are sufficient to construct the rod by integrating the tangent
vectords:

X(s) = / ' da(s’) ds’. (27)
0
Explicitly
x(s) = /S siné(s") cosy(s') ds’, (28)
0
y(s) = /S sind(s") siny(s") ds’, (29)
0
2(s) = / " cosas') dy', (30)
0
where
_ s Py — Py cosh(s’) |,
R e e (31)
Substitutingeq. (31)in (28)—(30)and re-arranging the terms we obtain, in matrix form:
x(s) cosyg sinyg O xo(s)
ys) | = —sinvo cosyo O || yols) |, (32)
z(s) 0 0 1 z(s)

wherexg(s) andyp(s) areEgs. (28) and (29or v = 0. Therefore, it suffices to find the solution wigly = 0.
The solutions for other values gfy are simple rotations of this basic solution.

4. Thelinearized method

In this section we present our method for finding the configuration of finite rods subject to boundary conditions in
the position of its initial and final points. In fact, since the Kirchhoff equations are invariant under space translations,
we can always choose the initial point be the origin. As we saw in the previous section, equilibrium solutions for the
static Kirchhoff equations depend only on two initial conditions, nan#glgnd Pyo. The third initial conditionyrg
corresponds to a rotation of this solution around#ais. The problem is then that of finding a solution that starts
from the origin and ends at and at a distance = (yf2 + xfz)l/2 from thez-axis. Our method is based on a series



A.F. da Fonseca, M.A.M. de Aguiar/Physica D 181 (2003) 53-69 59

of small deformations made upon an initial solution of the Kirchhoff equations which, however, does not have the
desired boundary values fgrandz;. We call this initial solution thérial solution. The method consists in pushing
the end point of the trial solution to the desired position, step by step. The basic idea, which is a type of shooting
procedure, is to find a variation in the initial conditions so as to obtain the desired variation in the end point.

In order to do so, we shall employ a variation of the monodromy mefp@5], originally devised to calculate
periodic solutions of chaotic Hamiltonian systems. As discuss8éation 1 working with the Kirchhoff equations
in Euler angles poses an extra difficulty on the already hard problem of satisfying boundary conditions: the variables
to be held fixedrs andz;, are not the ones entering the equations of motion, nameB; and+r. The advantage
is that we can find the solutions solving only two differential equations.

The rod can be obtained from the Euler angkesq. (28)—(30) The Euler angles, in their turn, obey the equations

0 = Py, (33)
Py — Py COSO) P Py, — P, cos9)2cost .
Pé:—(w pCOO Py  (Py b ) + Fsing (34)
sing sin3g
and
§ Py — Py cosd(s")
= - s 35
V) /O sin2e(s) (39)

If we integrateEgs. (33)—(35)using the initial condition provided by the trial solution and further integrate
Egs. (28)—(30)with the resulting Euler angles, we get, of course, the trial rod. Variations in these initial condi-
tions will produce variations in the rod configuration, and, in particular, in its end point. In what follows we shall
construct an explicit relation between a small variation in the initial variafyesd Pyo and the rod’s end point,
represented by andz;. Explicitly, we shall find the matrid8 such that

<5rf>=B(590>. (36)
8zf 6 Pyo

OnceB is obtained (and if it can be inverted) we can work our way from the trial solution, whose end point is at,

say,rt andzt, to the desired end point at andzs, provided we do that in a series of small steps. In each step we

use the previous solution as the trial input, pushing the rod’s end point slowly towards its final destination.
Usingrs = (x7 + y?)/2, the components of the matrixcan be written as

Ore _ Xt 0%yt Oyt

B11 = = —— 37
Y= %0 ~ 7t 960 1t 000 37)
0 0. 0
Bip= —t = X DT (38)
0Pyo ri 0Pgo ri 0Pyo
azf
By1 = —, 39
21= 590 (39)
zZf
Boo = ——. 40
2= 3p - (40)
FromEgs. (28)—(30) and (35ye find
1 1
Sxt = / COSA(s) COSY(5)50(s) ds — / SiNA(s) SiN Y (s)8v/(s) ds, (41)
0 0

1 1
Syp = / €osH(s) Sinyr(s)86(s) ds + / sind(s) cosy(s)8y(s) ds, (42)
0 0
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1
8zf = —/ Sinf(s)80(s) ds (43)
0
and
3mg=/mmaﬁmmﬁdﬂ (44)
0

whereA(6) is given by
Py 2(Py — Py cosb) cost

A0) = — -
© sing sin3p

(45)
Finally, to find the relation between the variatiaitgs) andéPy(s) and their values at the initial point= 0, we
consider small variations dqgs. (33) and (34around the trial solution:

80 = 8Py, 8Py = C(6)86, (46)
whereC(6), given by

(Py — Py cOsH)(Py — 4Pycos)  3(Py — Pycosh)? cos?d

Cc® =—P2—
© ¢ sin26 sin4

+ F cosf 47

is computed at the trial solution.
The solution to these linear equations can be written in matrix form as

80(s) _ M11(s) Mio(s) 86p (48)
8Py (s) Mai(s)  Maa(s) ) \8Pso )
where M is thetangent matrix satisfyingM(0) = 1. In the special case where the trial solution is periotids

called themonodromy matrix
Writing 86(s) explicitly as

86(s) = M11(s)860 + M12(s5)8 Pgo (49)

and usingeqgs. (41)—(44we can readily obtain

8Xf ' ! . . s / / /
%o = /c.) cosh(s) cosyr(s) M11(s) ds — /o sind(s) siny(s) /c; A(O(s"))M11(s") ds’ ds,
0xt ' ! : . : ’ / /
Y /c.) cosh(s) cosyr(s) M1o(s) ds — /; sind(s) siny(s) /c.) A(O(s"))M12(s) ds’ ds,
1 1 )
2% 2/ cosA(s) sinyr(s) M11(s) ds~|—/ siné(s) COSI//(S)/ AO(s)) M11(s") ds’ ds,
o 0 0 5
1 1 :
38% =/ CoSA(s) Sinyr(s) M12(s) ds—i—/ siné(s) cosw(s)/ AO(s")) M1o(s') ds'ds,
%0 0 0 5
1 1
%; = _/0 sind(s) M11(s) ds, %20 = _/o Siné(s)M12(s) ds (50)

and, therefore, the matrig,

Since we linearized the equations of motion, we have to check if the new solution, starting; feerty + 36p
and Py1 = Pgo + §Pgo generates a rod with the chosen final point, within a given precision. If the precision is
not reached, we can use the newly computed solution as a new trial one, usingaggf) now with @rf, 8zf)
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Fig. 1. Trial (thin line), intermediate (thick line) and final (thick gray line) solutions for a rod with desired end pointai0.7, 0.0). The load
parameters ar@;, = 1.0, Py = 1.0 andF = 1.0, in scaled units.

corresponding to the distance between the fixed end point and the end point of the previously computed rod. The
process can be repeated until the desired accuracy is obtained.

Finally we note that the elemenig; (s) can be computed by solving the lineaquation (46ith proper initial
conditions. Indeed, settimtfg = 1 andé Pyo = 0, Eq. (48)gives M11(s) = 80(s) and M21(s) = 8 Py(s). If, on the
other hand, we s&®9y = 0 andd Py = 1 we getM12(s) = 80(s) and M2a(s) = 8 Py(s). Therefore,M11(s) and
Mo (s) are solutions of the linearizdelgs. (46)with the initial conditionsség = 1 andsPyo = 0 andM12(s) and
M>2(s) are the solutions of the same equations Wéih—= 0 ands Pgo = 1.

In many cases we might want to push the rod’s end-point to a positien (1, zs) far from that of the initial
trial solution,ry = (rt, zt). To do that we can divide the line connectingo r; into N small segments and apply the
linearized metho@v times, moving a small distance at each step. The number of steps required will depend on the
particular configuration and possibly on the stability of the rod. In all integrations presented in this paper, we used
a fourth order Runge—Kutta method with fixed step. In all cases the distance between the end-point of the trial rod
and the target position was divided into 10 segments and the solution converged to the desired boundary condition
with a precision of 10 in each componentandz.

Fig. 1 shows an example of the method. We have chosen the following load parameters in scaled units (see
Eq. (11): Py = 1.0, P, = 1.0 andF = 1.0. The desired end point i = 0.7 andz; = 0.0. We plot the trial,
an intermediate and the converged rods together, in order to show the process of convergence from the trial to the
desired solution. The trial solution was computed integrating the Kirchhoff equations startinggfren®.5 and
Pyo = 1.0, which corresponds to a rod whose final point;is~ 0.8 andz; ~ 0.455. The intermediate solution
was computed fromlg >~ 0.216 andPyy >~ 2.257, which corresponds to a rod whose final pointisz 0.73 and
zf >~ 0.15. Finally, the initial conditions obtained for the converged solutiordgre 0.307 andPyg ~ 2.510.

5. Numerical examples

The particular trial solution used in the previous numerical example converged smoothly to the chosen final
position. In some cases, however, a given trial solution does not converge to its destination no matter how many
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intermediate steps are used to divide the line betweandr;. As we shall see, this problem has to do with the
existence or not of solutions for a given In scaled units, it is obvious that there are no solutiosif- z2)1/? > 1.
The restrictions are actually much stronger than this simple ’length rule’, and depend on the vatyegpfind
F. It might also happen that the solution for a givemoes exist, but that the straight line connectiptp r; passes
throughforbiddenregions, hindering the convergence. In this section we investigate the space of possible solutions
and give several examples of rods computed with our method.

Each initial conditiorfp and Pyg leads to an end point. The easiest way to map all possible final points is to scan
the space of initial conditions. Therefore, for a fixed set of paramétgr®, and F we calculatat = r¢ (6o, Pso)
and plot the resulting figure in thes, zs) Space. Points outside this region are unreachable by the rod. Changing
the parameters, such as the tension, changes the region of possible solutions, including end-points that were nc
previously present and excluding others.

The results in this section are presented as follows: for each fixed Bgt & and F we show the(rs, z)-space
of possible solutions. On the same plot we draw curves of conﬁtaﬂt(rf2 + zfz)l/2 and, for eachD we compute
the three-dimensional configuration of a few rods.

In order to compare the rods, we always adjust the valugoasuch that the rod ends iy = 0 plane.yyg is
determined by

yO
tanyo = =5, (51)
i

Wherex? andyf0 are the final values of andy for the rod calculated witkyg = 0.
In all cases tested our method converged with at least six significant figures to the previously defined final values
of rf ande.

5.1. Pw =0, P¢ =landF =0.1
Fig. 2shows thers, z;) map for this case. The map was generated by varying the initial condition in the intervals

0 < 6y < 7 (30 points) and-5.0 < Py < 5.0 (200 points). For larger values &g the total elastic energy of the
rod increases and the final points tend to concentrate in the region near the origin (data not shown). The full thick

1.00
0.75 I
0.50 >_‘ ]

0.25 I N

-0.25
050
-0.75

-1.00

Fig. 2. Regions of the existence of final points Ry = 0, Py = 1, F = 0.1. The curvesD = 1.0 (full thick line), D = 0.9 (full line), D = 0.7
(dashed line) an@ = 0.4 (dotted-dashed line) are also shown. The circles correspond to the rieids &1 The plot was generated by varying
the initial conditions in the intervals @ 6y < 7 (30 points) and-5.0 < Py < 5.0 (200 points).
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Fig. 3. Up and down solutions (drawn in the same color) for the end points shown by the cifeigsan(a) D = 0.4; (b) D = 0.7; (¢) D = 0.9.

line represents the curv@ = 1.0, which is the natural limit for the solutions. But there is a large region inside the

D = 1 line where no solutions exist. We shall compare it with that of other load parameters later on. We also show
the lines of constanb for D = 0.9 (full line), D = 0.7 (dashed line) and = 0.4 (dotted-dashed line). It is also
interesting to note a forbidden region centered araind 0 andr; ~ 0.25. From the sequence of points crossing
each other, it is evident that there are two sets of initial condit{éfsPyo) that generate rods with the same end
point. In general they correspond to rods that are above or belogvakis, and we shall call them the ‘up’ solution

and the ‘down’ solution, respectively.

1.00

0.75
0.50

0.25

-0.25
-0.50
-0.75

-1.00

Fig. 4. Regions of the existence of final points ®y = 0, Py = 5, F = 1. The curvesD = 1.0 (full thick line), D = 0.9 (full line), D = 0.7
(dashed line) and = 0.4 (dotted-dashed line) are also shown. The circles indicate the rods dr&ign B The plot was generated by varying
the initial conditions in the intervals @ 6p < 7 (30 points) and-20.0 < Py < 20.0 (200 points).
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Fig. 3shows the examples of the rods whose end points are marked with cirétes i We show the up and
down solutions for each final poirftig. 3a and b shows three rods each for= 0.4 andD = 0.7, respectively.
Fig. 3c shows five different rods fab = 0.9.

Notice that wherPy or Py, are zero, the Hamiltonigi22), becomes symmetric under the transformafior> —F
andd — m — 0. In these cases the ‘up’ solution for a givErandé is identical to the ‘down’ solution for F and
7 — 6. When bothP, and Py, are non-zero the symmetry disappears.

52. Py =0, Py = 5andF =1

The (rf, zt) map for these parameters is showrFig. 4. It has a curious pattern of thin bulbs centered around
thezs = 0-axis, that degenerate for smgll The only rods possible in this case are those that return close to the
z = 0 plane.

KeepingPy = 0 andF = 1 but increasingP results in even thinner bulbBig. Xa) and (b) shows the up and
down solutions, respectively, fey = 0.7,z = 0 andPy = 1, 5 and 10. Panels (c) and (d) show the up and down
solutions for the same parameters, exceptrfor= 0.9. Notice that large values df, correspond to horizontal
helical rods.

Fig. 5. Rods forP, = 0 andF = 1. The lines corresponds #®, = 1 (thin black),Ps = 5 (thick black) andP; = 10 (gray): (a) up solutions
for ri = 0.7; (b) down solutions fors = 0.7; (c) up solutions for; = 0.9; (d) down solutions fory = 0.9.
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Fig. 6. Regions of the existence of final points &y = P, = 5, F = 1. The curvesD = 1.0 (full thick line), D = 0.9 (full line), D = 0.7
(dashed line) and = 0.4 (dotted-dashed line) are also shown. The circles indicate the rods dr&ign ih The plot was generated by varying
the initial conditions in the intervals @ 6g < 7 (30 points) and-10.0 < Py < 10.0 (200 points).

5.3. Pw = P¢ andF =1

Fig. 6shows thers, z¢) map forPy, = P, = 5. It resembles the map Fig. 4, only distorted towardss = 1. For
these values of the parameters the rod admits ‘vertical’ configurations, as opposed to the ‘horizontal’ configurations
displayed in the previous cageéig. 7 shows the examples of rods wi#), = Py = 5 andP, = P, = 10 for
rf = 0.39 andr; = 0.5.

6. Application to non-homogeneous DNA

As a last application of our method we shall consider the equilibrium configuratiomsnefiomogeneousds.

We restrict ourselves to the simplest case of periodic non-homogeneities in Young’s modulus. The motivation for this

study is the fact that repeated (and therefore periodic) DNA sequences form a substantial fraction of all eukaryotic
genomeg38,39] The calculations presented here are based on the stiffness parameters recently computed for the
32 tri-nucleotide units from DNA dat@0]. Our goal is to understand how much the equilibrium configuration of

a non-homogeneous rod differs from that of the homogeneous case when the rod is subject to fixed mechanical
conditions.

Repetitive DNA is formed by nucleotide sequences of varying lengths and compositions. Repeated sequences,
reaching up to 100 megabase-pairs of lerj§®1, appear to have little or no functional role, and are commonly
regarded as “selfish” or “junk” DNA41]. We shall use a simple periodic formula for the (scaled) Young’s modulus
that covers most of the parameter interval spanned by the tri-nucleotides given jadRef.

2
E() =1+« COS%S. (52)

L is the period of the oscillations of the Young’s modulus along the DNAaaisch parameter that depends on the
specific sequence being repeated and that cannot be greater than 0.66.
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.1

(@) (b)

() (d)

Fig. 7. Rods forPy, = P; andF = 1. The lines corresponds #, = Py, = 10 (black) andPy = P, = 5 (gray). (a,b) up and down solutions
for s = 0.39 andzs = 0.8; (c,d) up and down solutions fey = 0.5 andz; = 0.49.

Egs. (22)—(25)have to be slightly modified to include the non-constant Young’s and shear moduli. We obtain

2 p2 _ 2
= ZAIEJ(zs) 2FOZ(s) (PZE(SI;)Z;()ZZ@) + Fcosd (53)
with
Py = E(5)0, (54)
Py = M3 = Tou(s)(¢' + v cosb), (55)
Py = Mz = E(s)y/ sin?0 + P, cosb. (56)

The solutions do not depend @(s), since it does not enter in the differential equationsé#foPy andr. Notice
that these equations are not integrable i# 0. Although Py, and P, are still constants, the elastic energy per unit
arclength is not.
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(@)

Fig. 8. Comparison between homogeneous and non-homogeneous rods. Panels (a) and (b) show the up and down solutions, respectively. The
parameters ar®®y, = 0, Py = 10, F = 1, = 0.9 andzs = 0. The black curve shows the homogeneous rod and the gray curve the

non-homogeneous rod with= 0.66 and. = 0.1.

The method for solving the BVP for a non-homogeneous rod is the following: consider a solution extending from
the origin tors with « = 0 and initial condition® and Ps,. Now integrate the Kirchhoff equations from the same
initial conditions but usindeq. (52)with « # 0. This new solution, whose end pointris+ r, can be used as a
trial solution for the non-homogeneous rod. Using the method of section IV we push the rod back to

0.2 042
0.025 0.4 0.05 0.4
0 05849 0.025 0658
-0.025
-0.05 -0.025
-0.05
0.075
0.025
0.05
0
0.025
-0.025
-0.05
-0.025
-0.075

(a) (b)
Fig. 9. Comparison between non-homogeneous rods with different petidesnels (a) and (b) show the up and down solutions, respectively.
The load parameters and final positigrare the same as Fig. 8 The curves show rods f@ = 0.1 (gray),£ = 0.5 (thick black) andC = 0.65

(thin black).
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Fig. 8shows the up and down solutions for load paramekets 1, P, = 0, Py = 10,r = 0.9 andzs = O for
the homogeneous rod (black curve) and a non-homogeneous rod with66 andZ = 0.1 (gray curve).

Finally, Fig. 9 shows the effect of changing the period of oscillations in Young’s modulus. We show the up and
down solutions for non-homogeneous rods with the same load parameters of the previous figure &66.
The curves show rods fof = 0.1 (gray),£L = 0.5 (thick black) andC = 0.65 (thin black). The changes in
the three-dimensional shape of the rods are evident for these values of load parameters. The sensitivity of the
three-dimensional shape to the base-pair sequences indicated that DNA repeats may have conformational roles.

7. Conclusions

In this work we presented a general method to solve the BVP for finite Kirchhoff filaments. The method consists
in making small changes to a knownal rod that satisfies the Kirchhoff equations but not necessarily the boundary
conditions. We combine a shooting technique with the method of monodromy matrix to push the end point of the trial
solution to the desired position, step by step. By linearizing the Kirchhoff equations we obtain an explicit relation
between a variation of the initial conditions (expressed in terms of Euler angles) and the consequent variation of
the rod’s end point.

The solutions of the BVP are limited by the physical constraints of the rod, such as the moments and tension.
A sketch of the allowed end points can be constructed by integrating the Kirchhoff equations for a large number
of initial conditions. The regions of possible end points form complex figures reflecting the nonlinear character of
the equations. The regions of existence of end points may serve as a guide to find the appropriate load parametel
needed for a desired solution.

We presented several examples of rods with different end positions at different distances from the origin for
various sets of load parameters. In all cases the method worked very well and the BVP was solved with at least six
significant figures in the values gfandzs. We also applied the method to non-homogeneous, sequence-dependent,
DNAs. We modeled pieces of repeated sequences by a sinusoidal oscillation of the Young's modulus. We showed
that the three-dimensional structure of the DNA is indeed sensitive to the presence of such sequences, a propert
that has been considered befft2] but studied only in terms of the DNA intrinsic curvati#e]. The effect studied
here may contribute to other sequence-dependent properties that affect the three-dimensional conformations of th
DNA.
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