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Solving the boundary value problem for finite Kirchhoff rods
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Abstract

The Kirchhoff model describes the statics and dynamics of thin rods within the approximations of the linear elasticity
theory. In this paper we develop a method, based on a shooting technique, to find equilibrium configurations of finite rods
subjected to boundary conditions and given load parameters. The method consists in making a series of small changes on a
trial solution satisfying the Kirchhoff equations but not necessarily the boundary conditions. By linearizing the differential
equations around the trial solution we are able to push its end point to the desired position, step by step. The method is also
useful to obtain configurations of rods with fixed end points but different mechanical parameters, such as tension, components
of the moment or inhomogeneities.
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1. Introduction

The study of conformations of slender elastic rods is of substantial utility in several applications, ranging from
the fields of structural mechanics and engineering to biochemistry and biology. Examples are the study of coiling
and loop formation of sub-oceanic cables[1–4], filamentary structures of biomolecules[5–9] and bacterial fibers
[10,11], the phenomenon of helix hand reversal in climbing plants[12] and the shape and dynamics of cracking
whips[13].

The Kirchhoff model[14] provides a powerful approach to study the statics and dynamics of elastic thin rods
[8,15]. In this model the rod is described by a set of nine partial differential equations (the Kirchhoff equations) in the
time and arclength of the rod. They contain the forces and torques plus a triad of vectors describing the deformations
of the rod. These equations are the result of Newton’s second law for the linear and angular momentum applied to
the thin rod plus a linear constitutive relationship between moments and strains. The Kirchhoff model holds true
in the approximation of small curvatures of the rod, as compared to the radius of the local cross-section[16]. An
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interesting characteristic of this model, known asKirchhoff kinetic analogy, is that the equations governing the static
problem are formally equivalent to the Euler equations describing the motion of spinning tops in a gravity field.
The Kirchhoff equations for equilibrium configurations can, therefore, be written in Hamiltonian form.

The Kirchhoff equations have been solved for a number of simple situations. Shi and Hearst[7] first obtained
analytical solutions of the equilibrium equations and, recently, Nizzete and Goriely[17] completed the study by
making a classification of all kinds of equilibrium solutions. Goriely and Tabor[18,19]developed a method to study
the dynamical stability of these solutions and da Fonseca and de Aguiar[20] applied this method to study the near
equilibrium dynamics of non-homogeneous closed rods in viscous media. Recently, Tobias et al.[21] developed
the necessary and sufficient criteria for elastic stability of equilibrium configurations of closed rods.

In many cases of interest, including biological molecules, the filaments are subject to boundary conditions.
Examples are the problem of multiprotein structures, such as histones and gyrase, about which long pieces of DNA
wrap [22], and multiprotein structures, such as thelac repressorcomplex[23]. Despite the many achievements
described above, the study of the boundary value problem (BVP) associated with Kirchhoff filaments is still a big
challenge. While the integration of differential equations from initial conditions is a relatively simple numerical
task, the difficulties of finding solutions for given boundary conditions are well known in classical mechanics,
electromagnetism and quantum mechanics. Typical examples are classical trajectories connecting two given space
points in the timet, electric potentials that vanish at given surfaces and eigenvalues of the Laplace operator defined
inside a finite domain (quantum billiards).

Because of the analogy with spinning tops, the case of trajectories of Hamiltonian systems is of particular interest
here. Themonodromy method, developed by Baranger and Davis[24], was designed specifically to find periodic
solutions of Hamiltonian systems withN degrees of freedom. Xavier and de Aguiar[25] extended the method to
find non-periodic trajectories with any given combination of 2N position and momenta at initial and/or final times.

A widely used method to solve BVPs is the so calledshooting method[26,27]. For a single second-order differential
equation, the method consists in finding the proper ‘velocity’ at the initial point so as to reach the desired ‘target’
at the end point, similar to the shooting of a projectile. Examples of applications of this method to the Kirchhoff
equations are the search for homoclinic orbits in reversible systems[28], heteroclinic orbits resembling tendril
pervesions[29] and the study of localized buckling modes of thin elastic filaments[30,31].

In the case of open rods some specific BVPs were solved recently. Károlyi and Domokos[32], using symbolic
dynamics, found global invariants for BVPs of elastic linkages, as natural discretization of continuous elastic beams,
an old problem solved by Euler (see Ref.[32]). Gottlieb and Perkins[33] investigated spatially complex forms in a
BVP governing the equilibrium of slender cables subjected to thrust, torsion and gravity. Also, the criteria of Tobias
et al. [21] was applied to linear segments subjected tostrong anchoring end conditions, where not only the end
points but also the tangent vector at the end points are held fixed. The dependence of DNA tertiary structure on
end conditions was studied in[22], where explicit expressions for equilibrium configurations were obtained for a
specific case with symmetric end conditions.

Our aim in this paper is to develop a method to find equilibrium solutions of finite rods subjected to boundary
conditions at their end points and with given load parameters. We emphasize that this is different from the approach
in [30,31], where the authors use shooting methods to calculate localized buckling modes. These modes are treated as
homoclinic solutions of the Kirchhoff equations, corresponding to infinite rods that become asymptotically straight
in the infinite. Our objective is to find equilibrium solutions forfinite rods subjected to boundary conditions at both
ends.

Our method is an adaptation of the monodromy matrix method for non-periodic trajectories[25] to the Hamiltonian
formulation of the static Kirchhoff equations. We work with the Kirchhoff equations directly in Euler angles, instead
of using the Cartesian position and tangent vectors[30,31]. The difficulty in working with Euler angles is that the
variables that one wants to hold fixed, the spatial position of the filament end points, are not the variables appearing
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in the differential equations describing the rod. However, the number of differential equations to be solved is much
smaller in these variables. Using a symmetry of the Hamiltonian, we end up with only two independent equations
to solve.

One of the motivations of this work is its possible biological applications as, for example, the study of single
DNA molecules manipulated by optical traps[34–36], and the DNA loops between multiprotein structures (such
as thelac repressor–operator complex)[23,37].

This work is organized as follows. InSection 2we review the Kirchhoff equations and, inSection 3, their
Hamiltonian formulation. InSection 4we describe our method for solving the BVP. The monodromy method enters
as part of the solution, and proves to be a very efficient tool. InSection 5we give numerical examples, calculating
the three-dimensional configuration of rods with different sets of load parameters and end positions. We also discuss
the existence of solutions as function of the load parameters. InSection 6, motivated by the repeated sequences
of base-pairs commonly found in DNA molecules, we consider rods with periodically varying Young’s modulus.
We compare the configurations of these non-homogeneous rods against their homogeneous counterparts, fixing the
same end points and mechanical parameters. InSection 7we summarize our conclusions.

2. The Kirchhoff equations

The Kirchhoff model describes the dynamics of inextensible thin elastic filaments within the approximation of
linear elasticity theory[16]. They result from the application of Newton’s laws of mechanics to a thin rod, and
consist of two equations describing the balance of linear and angular momentum plus a constitutive relationship
of linear elasticity theory, relating moments to strains. The Kirchhoff model assumes that the filament is thin and
weakly bent (i.e., its cross-section radius is much smaller than its length and its curvature at all points). In this
approximation it is possible to derive a one-dimensional theory where forces and moments are averaged over the
cross-sections perpendicular to the central axis of the filament.

A thin tube can be described by a smooth curvex in the 3D space parameterized by the arclengths, and whose
position depends on the time:x = x(s, t). A local orthonormal basis(or director basis)di = di(s, t), i = 1,2,3, is
defined at each point of the curve, withd3 chosen as the tangent vector,d3 = x′. In this paper we shall use primes to
denote differentiation with respect tos and dots to denote differentiation with respect to time. The two orthonormal
vectors,d1 andd2, lie in the plane normal tod3, for example, along the principal axes of the cross-section of the
rod. These vectors are chosen such that{d1,d2,d3} form a right-handed orthonormal basis for all values ofs and
t. The space and time evolution of the director basis along the curve are controlled bytwist andspin equations:

d′
i = k × di, ḋi = ω × di, i = 1,2,3, (1)

which follow from the orthonormality relationsdi · dj = δij . The components ofk andω in the director basis are
defined ask = ∑3

i=1 kidi andω = ∑3
i=1ωidi. k1 andk2 are the components of the curvature andk3 the twist

density of the rod. The solution of the twist and spin equations determinesd3(s, t), which can be integrated to give
the space curvex(s, t).

Let the material points on the rod be labeled by

X(s, t) = x(s, t)+ r(s, t), (2)

where

r(s, t) = x1d1(s, t)+ x2d2(s, t) (3)
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gives the position of the point on the cross-sectionS(s), perpendicular tox′(s), with respect to the central axis. The
total forceF = F(s, t) and the total momentM = M(s, t) (with respect to the axis of the rod) on the cross-section
are defined by

F =
∫
S(s)

ps dS, (4)

M =
∫
S(s)

r × ps dS, (5)

whereps is the contact force per unit area exerted on the cross-sectionS(s). In terms of the director basis we write
F = ∑3

i=1 fidi andM = ∑3
i=1Midi.

In order to derive a set of equations describing the rod as a one-dimensional object, the rod is divided into thin disks
of length ds and cross-sectionS(s). To each of these disks the conservation laws of linear and angular momentum
are applied[16]. The result is

F′ +
∫
S(s)

fext dS =
∫
S(s)

ρ0Ẍ dS, (6)

M′ + x′ × F +
∫
S(s)

r × fext dS =
∫
S(s)

ρ0r × Ẍ dS, (7)

wherefext is an external force that will not be considered in our calculations (fext = 0 in what follows).
In this article we are interested only in the equilibrium solutions and, therefore, we shall drop the derivatives

with respect to time. Assuming that the rod has a uniform circular cross-section of areaA, Eqs. (6) and (7)can be
simplified to yield

F′ = 0, (8)

M′ + d3 × F = 0, (9)

which are a set of six equations for nine variables:F, M andk (from which we determinedi). In order to close the
system of equations we need aconstitutive relationrelating the local forces and moments (stresses) to the elastic
deformations of the body (strains). In the linear theory of elasticity, and for a homogeneous elastic material, the
stress is proportional to the deformation. The Young’s modulusE and the Shear modulusµ characterize the elastic
properties of the material. Therefore, it is possible to obtain, for small deformations, a constitutive relation for the
moment. For an isotropic material, in the director basis, this relation is[16]:

M = EI(k1 − ku
1)d1 + EI(k2 − ku

2)d2 + 2µI(k3 − ku
3)d3, (10)

whereI is the principal moment of inertia of the cross-section,ki the components of the strain vector andku
i the

components of the twist vector in the unstressed configuration. The caseku
i = 0 corresponds to a naturally straight

and untwisted rod. We shall assumeku
i = 0.

Eqs. (8)–(10)can be further simplified by the introduction of scaled variables:

s → sL, F → F
EI

L2
, M → M

EI

L
, k → k

1

L
. (11)

In the new variables the rod has total lengthL = 1. The static Kirchhoff equations become

F′ = 0, (12)

M′ + d3 × F = 0, (13)
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M = k1d1 + k2d2 + Γk3d3, (14)

whereΓ = 2µ/E is an elastic parameter that does not affect the equilibrium solutions.

3. Hamiltonian formulation

In order to construct a Hamiltonian formulation of the Kirchhoff equations we first note thatEqs. (12)–(14)are
integrable ifE andµ are constant[17]. Eq. (12)shows that the tensionF is constant. Let us choose the direction of
the force as thez-direction:

F = FeZ. (15)

In analogy to the spinning top, the tensionF corresponds to the gravity field−mg. Here,F can be considered as an
external parameter and not as a first integral. SubstitutingEq. (15)into Eq. (13)and projecting alongeZ we get

M′ · eZ ≡ M ′
Z = 0, (16)

which does represent a first integral. By projectingEq. (13)alongd3 we obtain another integral,M3, since

M′ · d3 ≡ M ′
3 = 0. (17)

Finally, it is also possible to show that the elastic energy per unit arclength

H = 1
2M · k + F · d3 (18)

is constant, i.e.,H ′ = 0. ThereforeH is the last integral.
The orthonormal Cartesian basis can be connected to the director basis by Euler angles with

di =
3∑
j=1

Sij ej, (19)

where

S =




cosθ cosφ cosψ − sinφ sinψ cosθ cosφ sinψ + sinφ cosψ − cosφ sinθ

− cosθ sinφ cosψ − cosφ sinψ − cosθ sinφ sinψ + cosφ cosψ sinφ sinθ

sinθ cosψ sinθ sinψ cosθ


 . (20)

The static Kirchhoffequations (12)–(14)can then be written in terms ofθ, φ andψ. We get

θ′′ − (ψ′)2 sinθ cosθ + Γψ′(φ′ + ψ′ cosθ) sinθ = F sinθ,

ψ′′ sinθ + 2ψ′θ′ cosθ − Γθ′(φ′ + ψ′ cosθ) = 0, ψ′′ cosθ = ψ′θ′ sinθ − φ′′. (21)

These equations can also be derived directly fromEqs. (16)–(18). In terms of the Euler angles the Hamiltonian
becomes

H = P2
θ

2
+
P2
φ

2Γ
+ (Pψ − Pφ cosθ)2

2 sin2θ
+ F cosθ, (22)

where

Pθ = θ′, (23)

Pφ ≡ M3 = Γ(φ′ + ψ′ cosθ), (24)
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Pψ ≡ MZ = ψ′ sin2θ + Pφ cosθ. (25)

Eq. (21) correspond to Hamilton’s equationsP ′
α = −∂H/∂α′ andα′ = ∂H/∂Pα for α = θ, ψ or φ. We see

immediately thatPφ andPψ are constants and thatθ is the only independent variable.
The total elastic energy of the rod can be calculated by the integration ofEq. (22):

ET =
∫ 1

0
H(s)ds. (26)

The energy is a function ofPψ, Pφ andF . It also depends on the initial conditionsθ(s = 0) ≡ θ0 andPθ(s = 0) ≡
Pθ0.

The procedure to construct equilibrium solutions for given constantsPψ andPφ and initial condition(θ0, Pθ0)

is as follows: first we solve the equationsP ′
θ = −∂H/∂θ′ andθ′ = ∂H/∂Pθ to obtain(θ(s), Pθ(s)). Second, using

Eq. (25), we obtainψ(s). The solutionsθ(s) andψ(s) are sufficient to construct the rod by integrating the tangent
vectord3:

x(s) =
∫ s

0
d3(s

′)ds′. (27)

Explicitly

x(s) =
∫ s

0
sinθ(s′) cosψ(s′)ds′, (28)

y(s) =
∫ s

0
sinθ(s′) sinψ(s′)ds′, (29)

z(s) =
∫ s

0
cosθ(s′)ds′, (30)

where

ψ(s) = ψ0 +
∫ s

0

Pψ − Pφ cosθ(s′)
sin2θ(s′)

ds′. (31)

SubstitutingEq. (31)in (28)–(30)and re-arranging the terms we obtain, in matrix form:

x(s)

y(s)

z(s)


 =




cosψ0 sinψ0 0

− sinψ0 cosψ0 0

0 0 1





x0(s)

y0(s)

z(s)


 , (32)

wherex0(s) andy0(s) areEqs. (28) and (29)for ψ0 ≡ 0. Therefore, it suffices to find the solution withψ0 = 0.
The solutions for other values ofψ0 are simple rotations of this basic solution.

4. The linearized method

In this section we present our method for finding the configuration of finite rods subject to boundary conditions in
the position of its initial and final points. In fact, since the Kirchhoff equations are invariant under space translations,
we can always choose the initial point be the origin. As we saw in the previous section, equilibrium solutions for the
static Kirchhoff equations depend only on two initial conditions, namely,θ0 andPθ0. The third initial condition,ψ0

corresponds to a rotation of this solution around thez-axis. The problem is then that of finding a solution that starts
from the origin and ends atzf and at a distancerf ≡ (y2

f + x2
f )

1/2 from thez-axis. Our method is based on a series
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of small deformations made upon an initial solution of the Kirchhoff equations which, however, does not have the
desired boundary values forrf andzf . We call this initial solution thetrial solution. The method consists in pushing
the end point of the trial solution to the desired position, step by step. The basic idea, which is a type of shooting
procedure, is to find a variation in the initial conditions so as to obtain the desired variation in the end point.

In order to do so, we shall employ a variation of the monodromy method[24,25], originally devised to calculate
periodic solutions of chaotic Hamiltonian systems. As discussed inSection 1, working with the Kirchhoff equations
in Euler angles poses an extra difficulty on the already hard problem of satisfying boundary conditions: the variables
to be held fixed,rf andzf , are not the ones entering the equations of motion, namely,θ, Pθ andψ. The advantage
is that we can find the solutions solving only two differential equations.

The rod can be obtained from the Euler angles (Eqs. (28)–(30)). The Euler angles, in their turn, obey the equations

θ′ = Pθ, (33)

P ′
θ = − (Pψ − Pφ cosθ)Pφ

sinθ
+ (Pψ − Pφ cosθ)2 cosθ

sin3θ
+ F sinθ (34)

and

ψ(s) =
∫ s

0

Pψ − Pφ cosθ(s′)
sin2θ(s′)

ds′. (35)

If we integrateEqs. (33)–(35)using the initial condition provided by the trial solution and further integrate
Eqs. (28)–(30)with the resulting Euler angles, we get, of course, the trial rod. Variations in these initial condi-
tions will produce variations in the rod configuration, and, in particular, in its end point. In what follows we shall
construct an explicit relation between a small variation in the initial variablesθ0 andPθ0 and the rod’s end point,
represented byrf andzf . Explicitly, we shall find the matrixB such that(

δrf

δzf

)
= B

(
δθ0

δPθ0

)
. (36)

OnceB is obtained (and if it can be inverted) we can work our way from the trial solution, whose end point is at,
say,rt andzt, to the desired end point atrf andzf , provided we do that in a series of small steps. In each step we
use the previous solution as the trial input, pushing the rod’s end point slowly towards its final destination.

Usingrf = (x2
f + y2

f )
1/2, the components of the matrixB can be written as

B11 = ∂rf

∂θ0
= xf

rf

∂xf

∂θ0
+ yf

rf

∂yf

∂θ0
, (37)

B12 = ∂rf

∂Pθ0
= xf

rf

∂xf

∂Pθ0
+ yf

rf

∂yf

∂Pθ0
, (38)

B21 = ∂zf

∂θ0
, (39)

B22 = ∂zf

∂Pθ0
. (40)

FromEqs. (28)–(30) and (35)we find

δxf =
∫ 1

0
cosθ(s) cosψ(s)δθ(s)ds−

∫ 1

0
sinθ(s) sinψ(s)δψ(s)ds, (41)

δyf =
∫ 1

0
cosθ(s) sinψ(s)δθ(s)ds+

∫ 1

0
sinθ(s) cosψ(s)δψ(s)ds, (42)
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δzf = −
∫ 1

0
sinθ(s)δθ(s)ds (43)

and

δψ(s) =
∫ s

0
A(θ(s′))δθ(s′)ds′, (44)

whereA(θ) is given by

A(θ) = Pφ

sinθ
− 2(Pψ − Pφ cosθ) cosθ

sin3θ
. (45)

Finally, to find the relation between the variationsδθ(s) andδPθ(s) and their values at the initial points = 0, we
consider small variations ofEqs. (33) and (34)around the trial solution:

δθ′ = δPθ, δP ′
θ = C(θ)δθ, (46)

whereC(θ), given by

C(θ) = −P2
φ − (Pψ − Pφ cosθ)(Pψ − 4Pφ cosθ)

sin2θ
− 3(Pψ − Pφ cosθ)2 cos2θ

sin4θ
+ F cosθ (47)

is computed at the trial solution.
The solution to these linear equations can be written in matrix form as(

δθ(s)

δPθ(s)

)
=
(
M11(s) M12(s)

M21(s) M22(s)

)(
δθ0

δPθ0

)
, (48)

whereM is thetangent matrix, satisfyingM(0) = 1. In the special case where the trial solution is periodic,M is
called themonodromy matrix.

Writing δθ(s) explicitly as

δθ(s) = M11(s)δθ0 +M12(s)δPθ0 (49)

and usingEqs. (41)–(44)we can readily obtain

∂xf

∂θ0
=
∫ 1

0
cosθ(s) cosψ(s)M11(s)ds−

∫ 1

0
sinθ(s) sinψ(s)

∫ s

0
A(θ(s′))M11(s

′)ds′ ds,

∂xf

∂Pθ0
=
∫ 1

0
cosθ(s) cosψ(s)M12(s)ds−

∫ 1

0
sinθ(s) sinψ(s)

∫ s

0
A(θ(s′))M12(s

′)ds′ ds,

∂yf

∂θ0
=
∫ 1

0
cosθ(s) sinψ(s)M11(s)ds+

∫ 1

0
sinθ(s) cosψ(s)

∫ s

0
A(θ(s′))M11(s

′)ds′ ds,

∂yf

∂Pθ0
=
∫ 1

0
cosθ(s) sinψ(s)M12(s)ds+

∫ 1

0
sinθ(s) cosψ(s)

∫ s

0
A(θ(s′))M12(s

′)ds′ds,

∂zf

∂θ0
= −

∫ 1

0
sinθ(s)M11(s)ds,

∂zf

∂Pθ0
= −

∫ 1

0
sinθ(s)M12(s)ds (50)

and, therefore, the matrixB,
Since we linearized the equations of motion, we have to check if the new solution, starting fromθ1 = θ0 + δθ0

andPθ1 = Pθ0 + δPθ0 generates a rod with the chosen final point, within a given precision. If the precision is
not reached, we can use the newly computed solution as a new trial one, using againEq. (36), now with (δrf , δzf )
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Fig. 1. Trial (thin line), intermediate (thick line) and final (thick gray line) solutions for a rod with desired end point atrf = (0.7,0.0). The load
parameters arePψ = 1.0,Pφ = 1.0 andF = 1.0, in scaled units.

corresponding to the distance between the fixed end point and the end point of the previously computed rod. The
process can be repeated until the desired accuracy is obtained.

Finally we note that the elementsMij (s) can be computed by solving the linearequation (46)with proper initial
conditions. Indeed, settingδθ0 = 1 andδPθ0 = 0, Eq. (48)givesM11(s) = δθ(s) andM21(s) = δPθ(s). If, on the
other hand, we setδθ0 = 0 andδPθ0 = 1 we getM12(s) = δθ(s) andM22(s) = δPθ(s). Therefore,M11(s) and
M21(s) are solutions of the linearizedEqs. (46)with the initial conditionsδθ0 = 1 andδPθ0 = 0 andM12(s) and
M22(s) are the solutions of the same equations withδθ0 = 0 andδPθ0 = 1.

In many cases we might want to push the rod’s end-point to a positionrf = (rf , zf ) far from that of the initial
trial solution,rt = (rt, zt). To do that we can divide the line connectingrt to rf intoN small segments and apply the
linearized methodN times, moving a small distance at each step. The number of steps required will depend on the
particular configuration and possibly on the stability of the rod. In all integrations presented in this paper, we used
a fourth order Runge–Kutta method with fixed step. In all cases the distance between the end-point of the trial rod
and the target position was divided into 10 segments and the solution converged to the desired boundary condition
with a precision of 10−6 in each componentr andz.

Fig. 1 shows an example of the method. We have chosen the following load parameters in scaled units (see
Eq. (11)): Pψ = 1.0, Pφ = 1.0 andF = 1.0. The desired end point isrf = 0.7 andzf = 0.0. We plot the trial,
an intermediate and the converged rods together, in order to show the process of convergence from the trial to the
desired solution. The trial solution was computed integrating the Kirchhoff equations starting fromθ0 = 0.5 and
Pθ0 = 1.0, which corresponds to a rod whose final point isrf � 0.8 andzf � 0.455. The intermediate solution
was computed fromθ0 � 0.216 andPθ0 � 2.257, which corresponds to a rod whose final point isrf � 0.73 and
zf � 0.15. Finally, the initial conditions obtained for the converged solution areθ0 � 0.307 andPθ0 � 2.510.

5. Numerical examples

The particular trial solution used in the previous numerical example converged smoothly to the chosen final
position. In some cases, however, a given trial solution does not converge to its destination no matter how many
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intermediate steps are used to divide the line betweenrt andrf . As we shall see, this problem has to do with the
existence or not of solutions for a givenrf . In scaled units, it is obvious that there are no solutions if(r2f +z2

f )
1/2 > 1.

The restrictions are actually much stronger than this simple ’length rule’, and depend on the values ofPφ, Pψ and
F . It might also happen that the solution for a givenrf does exist, but that the straight line connectingrt to rf passes
throughforbiddenregions, hindering the convergence. In this section we investigate the space of possible solutions
and give several examples of rods computed with our method.

Each initial conditionθ0 andPθ0 leads to an end pointrf . The easiest way to map all possible final points is to scan
the space of initial conditions. Therefore, for a fixed set of parametersPψ, Pφ andF we calculaterf = rf (θ0, Pθ0)

and plot the resulting figure in the(rf , zf ) space. Points outside this region are unreachable by the rod. Changing
the parameters, such as the tension, changes the region of possible solutions, including end-points that were not
previously present and excluding others.

The results in this section are presented as follows: for each fixed set ofPψ, Pφ andF we show the(rf , zf )-space
of possible solutions. On the same plot we draw curves of constantD = (r2f + z2

f )
1/2 and, for eachD we compute

the three-dimensional configuration of a few rods.
In order to compare the rods, we always adjust the value ofψ0 such that the rod ends inyf = 0 plane.ψ0 is

determined by

tanψ0 = y0
f

x0
f

, (51)

wherex0
f andy0

f are the final values ofx andy for the rod calculated withψ0 = 0.
In all cases tested our method converged with at least six significant figures to the previously defined final values

of rf andzf .

5.1. Pψ = 0, Pφ = 1 andF = 0.1

Fig. 2shows the(rf , zf )map for this case. The map was generated by varying the initial condition in the intervals
0< θ0 < π (30 points) and−5.0< Pθ0 < 5.0 (200 points). For larger values ofPθ0 the total elastic energy of the
rod increases and the final points tend to concentrate in the region near the origin (data not shown). The full thick

Fig. 2. Regions of the existence of final points forPψ = 0,Pφ = 1,F = 0.1. The curvesD = 1.0 (full thick line),D = 0.9 (full line),D = 0.7
(dashed line) andD = 0.4 (dotted-dashed line) are also shown. The circles correspond to the rods inFig. 3. The plot was generated by varying
the initial conditions in the intervals 0< θ0 < π (30 points) and−5.0< Pθ0 < 5.0 (200 points).
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Fig. 3. Up and down solutions (drawn in the same color) for the end points shown by the circles inFig. 2: (a)D = 0.4; (b)D = 0.7; (c)D = 0.9.

line represents the curveD = 1.0, which is the natural limit for the solutions. But there is a large region inside the
D = 1 line where no solutions exist. We shall compare it with that of other load parameters later on. We also show
the lines of constantD for D = 0.9 (full line),D = 0.7 (dashed line) andD = 0.4 (dotted-dashed line). It is also
interesting to note a forbidden region centered aroundzf ∼ 0 andrf ∼ 0.25. From the sequence of points crossing
each other, it is evident that there are two sets of initial conditions(θ0, Pθ0) that generate rods with the same end
point. In general they correspond to rods that are above or below thez-axis, and we shall call them the ‘up’ solution
and the ‘down’ solution, respectively.

Fig. 4. Regions of the existence of final points forPψ = 0,Pφ = 5,F = 1. The curvesD = 1.0 (full thick line),D = 0.9 (full line),D = 0.7
(dashed line) andD = 0.4 (dotted-dashed line) are also shown. The circles indicate the rods drawn inFig. 5. The plot was generated by varying
the initial conditions in the intervals 0< θ0 < π (30 points) and−20.0< Pθ0 < 20.0 (200 points).
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Fig. 3shows the examples of the rods whose end points are marked with circles inFig. 2. We show the up and
down solutions for each final point.Fig. 3a and b shows three rods each forD = 0.4 andD = 0.7, respectively.
Fig. 3c shows five different rods forD = 0.9.

Notice that whenPφ orPψ are zero, the Hamiltonian(22), becomes symmetric under the transformationF → −F
andθ → π− θ. In these cases the ‘up’ solution for a givenF andθ0 is identical to the ‘down’ solution for−F and
π − θ0. When bothPφ andPψ are non-zero the symmetry disappears.

5.2. Pψ = 0, Pφ = 5 andF = 1

The (rf , zf ) map for these parameters is shown inFig. 4. It has a curious pattern of thin bulbs centered around
thezf = 0-axis, that degenerate for smallrf . The only rods possible in this case are those that return close to the
z = 0 plane.

KeepingPψ = 0 andF = 1 but increasingPφ results in even thinner bulbs.Fig. 5(a) and (b) shows the up and
down solutions, respectively, forrf = 0.7, zf = 0 andPφ = 1, 5 and 10. Panels (c) and (d) show the up and down
solutions for the same parameters, except forrf = 0.9. Notice that large values ofPφ correspond to horizontal
helical rods.

Fig. 5. Rods forPψ = 0 andF = 1. The lines corresponds toPφ = 1 (thin black),Pφ = 5 (thick black) andPφ = 10 (gray): (a) up solutions
for rf = 0.7; (b) down solutions forrf = 0.7; (c) up solutions forrf = 0.9; (d) down solutions forrf = 0.9.
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Fig. 6. Regions of the existence of final points forPψ = Pφ = 5, F = 1. The curvesD = 1.0 (full thick line),D = 0.9 (full line), D = 0.7
(dashed line) andD = 0.4 (dotted-dashed line) are also shown. The circles indicate the rods drawn inFig. 7. The plot was generated by varying
the initial conditions in the intervals 0< θ0 < π (30 points) and−10.0< Pθ0 < 10.0 (200 points).

5.3. Pψ = Pφ andF = 1

Fig. 6shows the(rf , zf )map forPψ = Pφ = 5. It resembles the map inFig. 4, only distorted towardszf = 1. For
these values of the parameters the rod admits ‘vertical’ configurations, as opposed to the ‘horizontal’ configurations
displayed in the previous case.Fig. 7 shows the examples of rods withPψ = Pφ = 5 andPψ = Pφ = 10 for
rf = 0.39 andrf = 0.5.

6. Application to non-homogeneous DNA

As a last application of our method we shall consider the equilibrium configurations ofnon-homogeneousrods.
We restrict ourselves to the simplest case of periodic non-homogeneities in Young’s modulus. The motivation for this
study is the fact that repeated (and therefore periodic) DNA sequences form a substantial fraction of all eukaryotic
genomes[38,39]. The calculations presented here are based on the stiffness parameters recently computed for the
32 tri-nucleotide units from DNA data[40]. Our goal is to understand how much the equilibrium configuration of
a non-homogeneous rod differs from that of the homogeneous case when the rod is subject to fixed mechanical
conditions.

Repetitive DNA is formed by nucleotide sequences of varying lengths and compositions. Repeated sequences,
reaching up to 100 megabase-pairs of length[39], appear to have little or no functional role, and are commonly
regarded as “selfish” or “junk” DNA[41]. We shall use a simple periodic formula for the (scaled) Young’s modulus
that covers most of the parameter interval spanned by the tri-nucleotides given in Ref.[40]:

E(s) = 1 + α cos
2π

L
s. (52)

L is the period of the oscillations of the Young’s modulus along the DNA andα is a parameter that depends on the
specific sequence being repeated and that cannot be greater than 0.66.
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Fig. 7. Rods forPψ = Pφ andF = 1. The lines corresponds toPφ = Pψ = 10 (black) andPφ = Pψ = 5 (gray). (a,b) up and down solutions
for rf = 0.39 andzf = 0.8; (c,d) up and down solutions forrf = 0.5 andzf = 0.49.

Eqs. (22)–(25)have to be slightly modified to include the non-constant Young’s and shear moduli. We obtain

H = P2
θ

2E(s)
+

P2
φ

2Γ0µ(s)
+ (Pψ − Pφ cosθ)2

2E(s) sin2θ
+ F cosθ (53)

with

Pθ = E(s)θ′, (54)

Pφ ≡ M3 = Γ0µ(s)(φ
′ + ψ′ cosθ), (55)

Pψ ≡ MZ = E(s)ψ′ sin2θ + Pφ cosθ. (56)

The solutions do not depend onµ(s), since it does not enter in the differential equations forθ, Pθ andψ. Notice
that these equations are not integrable ifα �= 0. AlthoughPψ andPφ are still constants, the elastic energy per unit
arclength is not.
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Fig. 8. Comparison between homogeneous and non-homogeneous rods. Panels (a) and (b) show the up and down solutions, respectively. The
parameters arePψ = 0, Pφ = 10, F = 1, rf = 0.9 andzf = 0. The black curve shows the homogeneous rod and the gray curve the
non-homogeneous rod withα = 0.66 andL = 0.1.

The method for solving the BVP for a non-homogeneous rod is the following: consider a solution extending from
the origin torf with α = 0 and initial conditionsθ0 andPθ0. Now integrate the Kirchhoff equations from the same
initial conditions but usingEq. (52)with α �= 0. This new solution, whose end point isrf + δr, can be used as a
trial solution for the non-homogeneous rod. Using the method of section IV we push the rod back torf .

Fig. 9. Comparison between non-homogeneous rods with different periodsL. Panels (a) and (b) show the up and down solutions, respectively.
The load parameters and final positionrf are the same as inFig. 8. The curves show rods forL = 0.1 (gray),L = 0.5 (thick black) andL = 0.65
(thin black).
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Fig. 8shows the up and down solutions for load parametersF = 1,Pψ = 0,Pφ = 10, rf = 0.9 andzf = 0 for
the homogeneous rod (black curve) and a non-homogeneous rod withα = 0.66 andL = 0.1 (gray curve).

Finally, Fig. 9shows the effect of changing the period of oscillations in Young’s modulus. We show the up and
down solutions for non-homogeneous rods with the same load parameters of the previous figure andα = 0.66.
The curves show rods forL = 0.1 (gray),L = 0.5 (thick black) andL = 0.65 (thin black). The changes in
the three-dimensional shape of the rods are evident for these values of load parameters. The sensitivity of the
three-dimensional shape to the base-pair sequences indicated that DNA repeats may have conformational roles.

7. Conclusions

In this work we presented a general method to solve the BVP for finite Kirchhoff filaments. The method consists
in making small changes to a knowntrial rod that satisfies the Kirchhoff equations but not necessarily the boundary
conditions. We combine a shooting technique with the method of monodromy matrix to push the end point of the trial
solution to the desired position, step by step. By linearizing the Kirchhoff equations we obtain an explicit relation
between a variation of the initial conditions (expressed in terms of Euler angles) and the consequent variation of
the rod’s end point.

The solutions of the BVP are limited by the physical constraints of the rod, such as the moments and tension.
A sketch of the allowed end points can be constructed by integrating the Kirchhoff equations for a large number
of initial conditions. The regions of possible end points form complex figures reflecting the nonlinear character of
the equations. The regions of existence of end points may serve as a guide to find the appropriate load parameters
needed for a desired solution.

We presented several examples of rods with different end positions at different distances from the origin for
various sets of load parameters. In all cases the method worked very well and the BVP was solved with at least six
significant figures in the values ofrf andzf . We also applied the method to non-homogeneous, sequence-dependent,
DNAs. We modeled pieces of repeated sequences by a sinusoidal oscillation of the Young’s modulus. We showed
that the three-dimensional structure of the DNA is indeed sensitive to the presence of such sequences, a property
that has been considered before[42] but studied only in terms of the DNA intrinsic curvature[43]. The effect studied
here may contribute to other sequence-dependent properties that affect the three-dimensional conformations of the
DNA.
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