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Abstract
The motion of coupled oscillators based on multiwalled carbon nanotubes is
studied using rigid-body dynamics simulations. The results show the
existence of chaotic and regular behaviours for a given total energy,
indicating the manifestation of chaos in nanoscaled mechanical systems
based on carbon nanotube oscillators. Different regular motions are
observed for different total energies, and they can be obtained by
appropriately choosing the initial conditions. This possibility can allow the
construction of multi-functional nano-devices based on multiwalled carbon
nanotube oscillators.

M This article features online multimedia enhancements

1. Introduction

It has become common knowledge that multiwalled carbon
nanotubes (MWNTs) [1] represented a breakthrough in
nanotechnology [2]. New and exciting phenomena have been
observed in these systems [3], including field emission [4],
quantum conductance [5], constant-force nanosprings [6],
as well as proposals for MWNT-based nano-devices [7].
High-resolution transmission electron microscopy (HRTEM)
experiments involving MWNTs have demonstrated an ultra-
low friction telescopic extension of MWNTs, opening up the
possibility of building new kinds of nano-devices such as linear
bearings [6] and nano-oscillators [7].

Analyzing a slightly modified configuration of the
HRTEM experiments of Cumings and Zettl [6], Zheng
and Jiang [7] have proposed an MWNT-based mechanical
oscillator which could oscillate at gigahertz range. The
oscillation mechanism is due to the excess of the van der Waals
potential energy which leads to a restoring force acting on
the MWNT core and causing its retraction to the equilibrium
position [8]. Several studies involving double-walled carbon
nanotubes have been carried out in order to investigate the
operation of such nanotube-based devices [9–16].

An application of carbon nanotube oscillators as building
blocks for nanoscale engines has been investigated by Kang

and Hwang using molecular dynamics simulations [17]. They
have analysed the integration of different nano-devices and
their respective functionalities to simulate the operation of a
nanoscale engine based on carbon nanotube oscillators. This
approach creates the possibility of using integrated carbon
nanostructures in the design of nano-engineering machines.

The goals of the present work are to propose and
study a modification of the carbon nanotube oscillator
configuration [7] in order to allow the movement of more
than one tube. This new configuration can be seen as two
coupled carbon nanotube oscillators and represents a new
building block type for nano-machines. We have demonstrated
that chaotic and regular movements can appear in such a
configuration.

It is well known that oscillator based configurations, such
as the Duffing oscillator and the double pendulum, can exhibit
chaotic behaviours. The irregular behaviour of many physical
systems has been the subject of intense experimental and
theoretical investigations [18, 19]. Chaotic manifestations
can appear in systems with different size scales, from the
quantum domain (the behaviour of a hydrogen atom in an
oscillating electric field [20–22]) to stellar dimensions with,
for instance, the motion of a relativistic three-body self-
gravitating system [23]. The system of two coupled carbon
nanotube oscillators investigated in this work is an example of a
nanoscaled configuration which can exhibit chaotic behaviour.
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Figure 1. (a) Schematic representation of a multiwalled carbon
nanotube composed of one fixed outer tube, one moveable four-shell
core and three inner tubes. (b) The simplest case of (a) where the
oscillator is formed by a one-shell core (1), one inner (2), and one
outer (3) tube with diameters d1, d2, and d3, respectively. For this
case the centre of mass of the core is located at the distance x10 from
the reference system origin.

2. Coupled carbon nanotube oscillators

Oscillators based on MWNTs are formed by a combination
of capped and non-capped n concentric tubes. The model
considered in this work (figure 1) is an extension of the
configuration proposed by Zheng and Jiang [7]. In our system
the fixed part is the l outermost tubes, and the remaining
tubes are divided into a k-shell core, and n–k–l inner tubes
(figure 1(a)). In the particular case of HRTEM experiments [6],
an n = 9 and k = 4 tube configuration has been investigated.
On the other hand, the theoretical works involving carbon
nanotube oscillators [9–16] have mainly focused on a double-
walled system, i.e., n = 2, k = 1, and l = 1. In this case, it
is only one tube (core) that can move under the effect of one
fixed outer tube.

However, in principle, for oscillators based on MWNTs
with n > 2 and k � 1, the inner tubes could also move
and interact with the core, disturbing its movement. The
purpose of this work is to study of the effects of moveable
inner tubes in the oscillation behaviour of MWNT oscillators.
We have investigated the motion of a triple-walled carbon
nanotube oscillator (figure 1(b)) and determined the types of
motions that this system can exhibit. This is the simplest
case (n = 3, k = 1, and l = 1) of the figure 1(a), where
the outer tube is fixed and the core and the inner tube can be
viewed as two coupled oscillators. An atomistic view of such
a configuration is shown in figure 2. Experimentally, triple-
walled carbon nanotubes can be obtained by catalytic chemical
vapour deposition processes; see for instance [24].

3. Methodology

We consider a system of three rigid tubes perfectly coupled
in the radial direction where the moveable tubes (core and
inner tube) can move only in the x direction (figure 1(b)).
The total energy E is assumed to be conserved and we have
not considered any type of rotation. This approach has also
been used by Zheng et al [8] for determining the oscillation

Figure 2. Atomistic view of a triple-walled carbon nanotube. If the
outer tube (white) is fixed, the moveable core (yellow/light grey) and
inner tube (red/dark grey) can be viewed as two coupled oscillators.

(This figure is in colour only in the electronic version)

frequency expression for carbon nanotube oscillators, and
by Sohlberg et al [25] in the study of molecular bearings.
Sohlberg et al [25] have also shown that this approximation can
accurately model nanosystems operating in low temperatures,
reproducing the essentials of their dynamics.

Within this approximation vibrational effects due to
the thermal motion of the atoms are neglected. These
effects have been shown to be important to the friction
phenomenon [12, 15]. Tangney et al have shown that
when the timescale of the relative motion between the tubes
is comparable to the thermal vibrations of the atoms the
friction force is strongly nonlinear (∝|v|2, where v is the
relative velocity of the tubes) [15]. However, the rigid-body
approximation is expected to be reasonable within the regime
of low temperatures and low relative velocities, enough to
reduce the dissipation rate. Following the expression obtained
by Zheng et al [8] for the oscillation frequency which depends
on the initial extension of the inner tube as well as on the lengths
of the inner and outer tubes, low frequencies, and consequently
low relative velocities, can be achieved by just increasing the
tube length.

Within these approximations we can write the Hamilto-
nian of the system as

H = p2
1

2m1
+

p2
2

2m2
+ U13(x1) + U23(x2) + U12(x1 − x2), (1)

where m1 and m2 are the masses of the core and the inner
tube, respectively. The quantities x1 and x2 are the separation
distances between the centre of mass of the tube (1) and
(3) and (2) and (3), respectively, and p1 (p2) is the total
linear momentum of the core (inner tube). The trajectory
of the system at any time t is completely characterized by
the four-dimensional set (x1(t), p1(t), x2(t), p2(t)), which is
determined by solving the motion equations derived from (1).
The potential energy U = U13 + U23 + U12 is due to the excess
of van der Waals interaction energy [7, 8], which responds in
first order for the main contribution of all the interactions in
the system. The potential energy terms can be written in a
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compact form as [7, 8]

Ui j (xi j ) =




Fi j xi j , if |L−| < xi j < L+

−Fi j xi j , if −|L+| < xi j < −|L−|
Fi j |L−|, if xi j � |L−|
0, otherwise,

(2)

where x13 = x1, x23 = x2, x12 = x1 − x2, L± = (Li ± L j )/2,
Fi j is the constant van der Waals force in the tube i due to tube
j , and Li is the length of the tube i .

Two tube configurations were considered. The
configuration (A) was formed by the following tubes, (1) =
(9, 0), (2) = (18, 0), and (3) = (27, 0)Note 3 and the
configuration (B) by (1) = (18, 0), (2) = (27, 0), and (3) =
(36, 0). The magnitude of the forces for each configuration
was estimated from molecular dynamics simulations using the
methodology in [9, 10]. The values (in nN) for configuration
(A) are F12 = 2.5, F13 = 0.3, and F23 = 3.5, and for (B)
F12 = 3.5, F13 = 0.4, and F23 = 4.5. For the configurations
considered in this work we can see that F12/F13 � 8.5 and
F23/F12 � 1.3. The former value is due to the larger distance
between the walls of the tubes (1) and (3) in comparison with
tubes (1) and (2) which weakens the van der Waals interactions
between those tubes and therefore leads to a smaller value of
F13. On the other hand, the latter value is due to the larger
diameters of the adjacent tubes (2) and (3) compared with
the tubes (1) and (2) (for the same distance between walls
∼=3.4 Å). These larger diameters increase the number of
interacting atoms strengthening the van der Waals interactions
between tubes (2) and (3) and therefore making F23 greater
than F12.

In order to study the influence of the tube length and
the length mismatch (e.g. |L1 − L2|) we have considered
different combinations of tube lengths and the corresponding
tube masses; the results are presented below. All the quantities
in this paper will be written in the following units: length
l0 = 46.497 Å, time t0 = 1 ps, mass m0 = 1.676 × 10−23 kg,
momentum p0 ≡ m0l0/t0 = 7.792 × 10−22 kg Å ps−1, and
energy E0 = 93.694 kcal mol−1.

The evolution of the system was determined by integrating
the motion equations derived from (1) through the Hamilton
equations:

ẋ1 = ∂ H

∂p1
= p1

m1
(3)

ẋ2 = ∂ H

∂p2
= p2

m2
(4)

ṗ1 = −∂ H

∂x1
= −(C12(x12) + C13(x13)) (5)

ṗ2 = −∂ H

∂x2
= C12(x12) − C23(x23) (6)

where

Ci j (xi j ) =




Fi j , if |L−| < xi j < L+

−Fi j , if −|L+| < xi j < −|L−|
0, otherwise.

(7)

3 The (N, M) nomenclature is commonly used to classify zigzag (M = 0),
armchair (N = M) and chiral (N �= M �= 0) nanotubes. The tube diameter is
given by a

√
N2 + M2 + N M/π , where a = √

3 × 1.44 Å [3].

These four equations were numerically integrated using
the fourth-order simplectic method with time step h =
0.1 fs [26], i.e., the values of x1(t), p1(t), x2(t), and p2(t)
are given by the succession of the mappings (i = 1, . . . , 4 and
j = 1, 2):

pi
j = pi−1

j − hci
∂U

∂x j
(xi−1

j ), (8)

xi
j = xi−1

j + hdi
∂T

∂p j
(pi

j ), (9)

where T is the kinetic energy, U the potential energy, x j (0) =
x0

j , p j (0) = p0
j , x j (t) = x4

j , p j (t) = p4
j , and ci and di are

numerical coefficients4.
Rivera et al [13, 14] studied the motion of a double-walled

carbon nanotube oscillator using classical molecular dynamics
simulations, and derived a mechanical model similar to the one
used in the present work. They included a friction force that
opposes the movement of the nanotube in order to reproduce
the damped oscillatory behaviour observed in the molecular
dynamics results. From their results [14], the friction force
was estimated to be more than 40 times smaller than the van
der Waals force. The model used in the present work does not
include frictional forces, since we are mainly interested in the
behaviour of an ideal triple-walled carbon nanotube oscillator
system.

In order to characterize the behaviour of the system we
have calculated Poincaré sections, i.e., sections in the four-
dimensional phase space determined by plotting a point in a
x1 p1 plane each time the trajectory passes through the plane
x2 = 0 with p2 � 0. The section is generated for various initial
conditions with the same total energy. Poincaré sections give
us the information about the integrability of the system. If
the system is integrable, all trajectories appear as a series of
points lying on one-dimensional curves and the system is said
to be regular. In this case the trajectories are quasiperiodic,
developing an orderly pattern over time. On the other hand,
if the system is non-integrable, some of the trajectories will
appear as a scatter of points limited to a finite region due to
energy conservation, thus characterizing a chaotic region.

4. Results

If only the core is allowed to move, the system is reduced to a
one-body problem and it is transformed to the usual carbon
nanotube oscillator [7]. In this case, the potential energy
is given by U = U12 + U13 with x12 = x13 = x1, and
x23 = 0 (U23 = 0) for all times. Figure 3(a) shows the
core centre of mass evolution for configuration (A), and 3(b)
the respective phase space for the above situation. The initial
conditions were x10 = 0.5 and x20 = p10 = p20 = 0 (E = 10)
for L1 = 0.94 and L2 = L3 = 1.0, and m1 = 0.943,
and m2 = 1.478. The flat parts in the phase space (near to
x1 = 0) correspond to the situations where the core travels
inside the fixed tubes. If the tube lengths are the same (i.e.,
L1 = L2 = L3) these flat regions disappear. The other
parts are parabolic and indicate the core motion during the
action of the constant van der Waals force due to the fixed
4 The values of the coefficients are given by [26]: c1 = c4 = α + 1

2 ,
c2 = c3 = −α, d1 = d3 = 2α + 1, d2 = −4α − 1, and d4 = 0, where
α ∼= 0.1756.
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Figure 3. (a) Evolution of the core centre of mass for the case where
both inner and outer tubes are kept fixed and (b) the respective phase
space.

tubes. For these conditions, we recover the main features of the
previous results [8, 7, 9] for the oscillatory core movement and,
for the particular configuration used here, with an oscillation
frequency of approximately 49 GHz (see the complementary
material, movie 1, at stacks.iop.org/Nano/16/583).

If we also allow the movement of the inner tube, the
resulting configuration is converted to a coupled oscillator
system and is described by the Hamiltonian (1) within the
rigid-body approximation. We have found that, in this case, the

Figure 4. Resulting Poincaré sections of the system where both core and inner tube can move (configuration (B)) for different values of F12

(in nN): (a) 0.0035, (b) 0.035, (c) 0.35, and (d) 3.5.

system exhibits a mixed behaviour, partly chaotic and partly
regular, which is due to the interaction between the core (1)
and the inner tube (2). In our case this interaction is controlled
by F12, which is determined by the tube configuration. In
order to see the role of this interaction in the chaotic signature,
different values were assigned to F12. The resulting dynamics
are presented in figure 4, which shows the Poincaré sections for
configuration (B) with L1 = L2 = L3 = 10 and m1 = 14.78
and m2 = 19.71 for E = 14.64. When the interaction is
very weak (figure 4(a)) the system presents a regular character,
but as F12 is increased to its maximum allowed value, chaotic
behaviour emerges (figures 4(b)–(d)). In this case, chaotic and
regular regions co-exist, and the system is characterized by
presenting a soft deterministic chaos [18, 19].

Another quantity that affects the dynamics of the system
is the relation between the moveable tube lengths. This is
illustrated in figure 5, where we present Poincaré sections for
configuration (A) for different tube lengths. When the lengths
are equal (figures 5(a) and (c)), the same type of dynamics is
present even when the total energy of the system is altered. This
result indicates that when the lengths of all tubes that compose
the oscillator are equal the Hamiltonian (1) is invariant under
a scale transformation. This property can be seen in several
other types of potentials (see for instance [27]). This scale
invariance allows us to make predictions about tubes with large
lengths simulating tubes with small lengths, which is the case
presented here.

On the other hand, when L1 �= L2 and L2 = L3 the
picture is different. In this case (figures 5(b) and (d)), the
scale invariance of the Hamiltonian is broken, and distinct
dynamics appear and the dependence on the total energy is
evident.
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Figure 5. Resulting Poincaré sections of the evolution of configuration (A) for (a) E = 100, (b) E = 106, (c) E = 10, and (d) E = 10.6.
The tube lengths used were: ((a), (c)) L1 = L2 = L3 = 10, and ((b), (d)) L1 = 10.6, and L2 = L3 = 10.
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Figure 6. Poincaré sections showing examples of regular orbits found in three total energy values: (a) E = 1, (b) E = 10, and (c) E = 23,
respectively. Configuration (A) was used in this case with lengths L1 = 0.94 and L2 = L3 = 1.0. The respective centre of mass motion for
each case is shown on the right side of the figure.

In both figures 4 and 5 we can see chaotic regions
permeating islands of regularity. The pattern and distribution
of the islands size depend on the total energy. For the
particular cases of figures 4(d) and 5(c) we can observe a
‘heart’-shaped region. The presence of these one-dimensional
curves indicates the existence of stable quasiperiodic orbits
when specific initial conditions are chosen. This aspect is
illustrated in figure 6, where three selected regular orbits

are shown. In figure 6(a) both tubes oscillate with small
amplitudes, with the inner tube showing the smaller one. For
a higher energy (figure 6(b)) the amplitudes are increased and
the oscillation pattern is different. For this situation, the core
reaches both right and left sides of the oscillator, while the
range of the inner tube oscillation is comprised mainly in the
left side (see the complementary material, movies 2 and 3, at
stacks.iop.org/Nano/16/583).
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Figure 7. Example of a chaotic behaviour presented by (a) the core and (b) the inner tube. The initial conditions were x10 = 0.5 and
x20 = p10 = p20 = 0 (E = 10). In (c) the graph presents the behaviour of inner tube at the first 250 ps of the movement. In (d) the inner
tube motion is shown for two slightly different initial conditions x10 = 0.5 (=23.248 Å) and x10 = 0.4892 (=22.746 Å), with
x20 = p10 = p20 = 0 in both cases.

In figure 6(c) the selected ‘heart’-shaped orbit is shown;
this was obtained by setting x10 = 0.5, x20 = −0.3,
and p10 = p20 = 0, i.e., the tubes are extruded in
opposite directions and then released. For this situation,
the amplitudes are comparable and the movements of both
tubes are approximately the same up to a phase shift (see
movie 4, at stacks.iop.org/Nano/16/583). Interestingly, the
Poincaré sections showing ‘heart’-shaped curves (figure 4(d)
for instance) are very similar to the one found near to a
nonlinear resonance island for the driven one-dimensional
hydrogen system [22]. Quasiperiodic orbits have also been
reported by Sohlberg et al when the movement of molecular
bearings has been investigated using rigid-body dynamics [25].
As pointed out by Sohlberg et al, these types of trajectories are
important because they correspond to frictionless motion. In
the case of oscillators we remark that the quasiperiodic orbits
are dependent on the initial conditions, and that perturbations
can produce chaotic results.

An example of a chaotic movement is shown in
figures 7(a)–(c), obtained for configuration (A) (L1 = 0.94
and L2 = L3 = 1.0) from the condition where the core was
released from the rest (zero initial velocity) at the position
x10 = 0.5, and the inner tube was initially at rest at x20 = 0
(E = 10). Small oscillations of high frequency are induced in
the inner tube by the core during the first 250 ps (figure 7(c)).
After this period, the oscillation amplitude of the inner tube
increases and its movement begins to disturb the core motion
more strongly (see the complementary material, movie 5,
at stacks.iop.org/Nano/16/583). The resulting orbit presents
chaotic features and therefore no periodicity is observed. In
addition, the system evolution is very sensitive to changes
in the initial conditions when they are in a chaotic phase
space region. This is illustrated in figure 7(d), where we have
changed the releasing point x10 by 0.5 Å and have obtained a
totally different inner tube evolution after about 250 ps. Such

sensitivity makes the behaviour of the analysed coupled carbon
nanotube oscillator unpredictable over longer timescales.

Despite the presence of chaotic regions, the existence
of regular orbits could allow the development of multi-
functional nano-devices. Choosing and setting appropriate
initial conditions for a carbon nanotube oscillator (n > 2
and k � 1), different motion types could be provided by the
device. Each type could represent a specific role within a
nanomachinery context, thus providing operational building
blocks for nanomechanical systems in the sense of the scheme
proposed by Kang and Hwang [17]. However, temperature
and energy dissipation effects must be carefully considered
and investigated, since they can lead to undesirable device
behaviours.

5. Conclusion

We investigated configurations of MWNT nano-oscillators
composed of three tubes where the outer one is fixed and
both core and inner tube are allowed to move. Through rigid-
body dynamics simulations we found typical signatures of
soft deterministic chaos, where chaotic and regular regions
co-exist. This is the first indication of chaos in nanoscaled
mechanical systems based on multiwalled carbon nanotube
oscillators [7]. The regular orbits can be tuned by varying
the total energy of the system, e.g., by releasing the extruded
core and inner tube from the rest in different initial positions.
Appropriately choosing the initial conditions can provide a
way to induce different movements of the coupled oscillators,
thus allowing the construction of a multi-functional nano-
device based on MWNT oscillators. Besides the technological
interest in these systems, the addition of a fourth nanotube,
heavier and slower, could provide a very interesting system to
study adiabatic energy dissipation induced by chaos [28, 29].
Work along this direction is in progress.
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