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We study the dynamical entanglement between the spin and the spatial degrees of freedom for a spin-1/2
charged particle in a square billiard, subject to a nonhomogeneous magnetic field, a system which is classically
nonintegrable. This system has three degrees of freedom, one of them being strictly quantum, and we consider
initial states which are coherent states with spin in thex direction. The center of the coherent state can be
chosen to lie on classically chaotic or regular initial conditions. We show that for chaotic initial conditions the
entanglement is rather fast and increases monotonically, while for the regular ones it may present strong
recoherences, whose period is related to the classical motion. We also show that this system exhibits special
initial conditions which entangle even faster than a typical chaotic one.
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Recent technological advances have made it possible to
create and manipulate individual quantum states in the labo-
ratory, thus allowing direct observations of entanglement and
decoherence[1], concepts that are central to quantum com-
putation and quantum information[2]. Dynamical generation
of entanglement and its relation to classical chaos has been
the subject of many recent investigations. Furuyaet al. [3]
have studied the Jaynes–Cummings model without the
rotating-wave approximation, and found the entanglement
rate to be greater for quantum states centered on classically
chaotic initial conditions. In later works[4,5] they have
shown that a regular initial condition can sometimes lead to
faster entanglement than a chaotic one and that recoherences
were related to the compactness of the spin degree of
freedom.

In the past few years much work has been done in this
area [6], and also about the relation between decoherence
and fidelity, a measure of a system’s sensitivity to perturba-
tions. If a stateuc0l evolves under the action of two different
HamiltoniansH1 andH2, then the overlap

ukc1uc2lu2 = ukc0ueiH1t1/"e−iH2t2/"uc0lu2 s1d

depends ont1 andt2 and has been suggested as a good mea-
sure of quantum chaoticity. One typically considerst1= t2, in
which case this can be considered as a time-reversal experi-
ment and(1) is called the quantum fidelity or the “Loschmidt
echo.” Jalabert and Pastawski showed[7] that its decay de-
pends on the classical Lyapunov exponent for a narrow wave
packet in a chaotic region of phase space. Since then, many
different decay regimes have been investigated[8]. The con-
nection with decoherence comes as follows: ifuc0l is seen as
the initial state of some “environment,” then its ability to
induce decoherence upon some system is given by the over-
lap (1), as analyzed for example in[9,10].

Most of these previous works have considered the inter-
action of two subsystems,D1 and D2, or systems with two
degrees of freedom. The system we study here is a spin-1/2
charged particle in a square billiard. This system has three
degrees of freedom: two spatial ones, which have a very
well-defined classical limit, and the spin, which is strictly
quantum. We consider the entanglement between the spin

degree of freedomD2 and the spatial degrees of freedomD1,
in the case when onlyD1 can have chaotic dynamics. Cou-
pling of a qubit or a pair of qubits to a chaotic environment
has been studied for example in[11,12].

On the other hand, in studies of quantum fidelity decay
the classical dynamics ofH1 and H2 in Eq. (1) are always
assumed to be qualitatively the same, i.e., initial conditions
(IC) that behave regularly forH1 also behave regularly for
H2 and the same holds for the chaotic ones. This is intuitive
if H2 is seen as a slightly perturbed version ofH1. In the
present case, however, this is not always true. We shall con-
struct Hamiltonians, corresponding to spin up and spin
down, whose phase spaces have regions which are regular
and stable for one Hamiltonian but chaotic for the other. For
ICs in this region the amount of entanglement grows faster
than for a purely chaotic IC.

We consider a spin-1/2 charged particle(with massm
=1 and chargeq=1) confined to a two-dimensional(2D)
square-shaped quantum well of sideL, subject to a nonho-
mogeneous perpendicular magnetic field, so that the Hamil-
tonian inside the well is(we use units in which"=1)

H =
1

2
fpW − AW sx,ydg2 + eBW sx,yd ·SW , s2d

where

AW sx,yd = sly3/3 − B0y/2dx̂ + s− lx3/3 + B0x/2dŷ s3d

is the vector potential corresponding to the magnetic field

BW sx,yd = sB0 − lx2 − ly2dẑ, s4d

and the coordinatesx andy are measured in units ofL.
The parabolic profile of the magnetic field is given byl,

which is also responsible for the coupling between the spin
and the orbital motion. The magnitude ofB0 controls the

amount of chaos. SinceBW is in the ẑ direction theSz compo-
nent of the spin is conserved, and the Hamiltonian is block
diagonal in thehu+l , u−lj basis(denoting “spin up” and “spin
down,” respectively). It is natural to define
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H± =
1

2
fpW − AW sx,ydg2 ±

e

2
sB0 − lx2 − ly2d, s5d

because any initially separable state likeuclsu+l+ u−ld will
evolve according to

e−iHtuclsu + l + u− ld = e−iH+tuclu + l + e−iH−tuclu− l, s6d

and therefore will become entangled with time. Note thatH+
andH− play the role of the previousH1 andH2.

In what follows we will considerucl to be a coherent state
uzx,zyl. Coherent states are minimum-uncertainty states that
provide a natural phase-space description of quantum me-
chanics[13]. They correspond to Gaussian wave functions

kx,yuzx,zyl =
1

bÎp
exph− urW − rW0u2/2b2 + irW0 · pWj, s7d

whererW=sx,yd, rW0=sx0,y0d, pW =spx,pyd, and

zx =
x0

bÎ2
+ i

bpx

Î2
, zy =

y0

bÎ2
+ i

bpy

Î2
. s8d

Note that we use equal variancesbx=by=b in both
directions.

In the semiclassical limit, and for short times, the evolu-
tion (6) will, according to Ehrenfest’s theorem, depend on
the classical dynamics ofH+ and H−. In Fig. 1 we show
Poincaré sections, or bouncing maps, for both these Hamil-
tonians, where we have usedB0=77, l=25, e=50, and all

ICs have the same energyE=104. These values are chosen so
that the dynamics is in the semiclassical regime, in the sense
that the wave packet can collide with the walls a few times
before spreading significantly(we shall comment more on
these choices later). In Fig. 1 thex axis shows the arc length
s (in units of the side) along the boundary where the collision
occurs, counted from the lower left corner of the square, and
the y axis shows the cosine of the angle between the tangent
of the trajectory just after the collision and the corresponding
side of the square[14]. In the following we will use the ICs
marked withP (regular), j (chaotic), andm (regular inH−
but chaotic inH+, which we call “mixed”) for the center of
our initial coherent state, and we set the dispersionb=0.1.
Let us denote byt the period of theP orbit at this energy
and measure time in units oft.

In order to quantify entanglement we use the linear en-
tropy d, defined in terms of a partial trace[3,15],

d = 1 − Tr2r2
2, s9d

where r2 is the reduced density matrix of subsystemD2,
given byr2=Tr1r. How fastd grows indicates how fast sub-
systemD2 suffers decoherence due to the entanglement with
subsystemD1. Notice that we takeD1 as the spatial degrees
of freedom; we are thus tracing out the chaotic subsystem. If
we take the spin component att=0 to besu+l+ u−ld /Î2 and
define

e−iH±tuzx,zyl = uzW±stdl, s10d

then the linear entropy at timet is given by

dstd =
1 − zkzW+stduzW−stdlz2

2
. s11d

We see that the entanglement process is governed by the
overlap between the coherent state propagated withH+ and
the same state propagated withH−, the quantum fidelity.
Usually, when studying fidelity one considers a change in the
Hamiltonian caused by a variation in some external param-
eter. In the present study this is not the case, since the exis-
tence of two different Hamiltonians is due to the intrinsic
spin of the particle. Therefore, the relation between fidelity
and entanglement appears naturally here. We also note that in
the present case the difference betweenH+ and H− is con-
trolled by l and need not be small in principle.

We now place our coherent state in the chaotic IC denoted
by j in Fig. 1. Initially we haveuzW+s0dl= uzW−s0dl and d=0,
indicating no entanglement. As time passes,uzW+stdl anduzW−stdl
evolve differently, both becoming distorted and less local-
ized, leading to an increase ind. After some time the initial
states have spread all over the square, andd saturates to a
maximum value of 0.5, which corresponds to orthogonality
betweenuzW+stdl and uzW−stdl.

In Fig. 2(a) we see the probability densityzkx,yuzW+stdlz2 at
t=25t. It is randomly distributed through the square. The
corresponding density foruzW−stdl is very similar, although
orthogonal to this one. In Fig. 3 we see the corresponding
evolution ofd (dashed line), which saturates very fast.

If we place the coherent state on the IC denoted byP in
Fig. 1, the situation is different. A classical probability dis-

FIG. 1. Poincaré sections forB0=77 andl=25 (“spin up” on
top). The arc lengths is measured in units of the sideL. We use the
points denoted byP (regular), j (chaotic), and m (“mixed”) as
initial conditions for the quantum wave packet.
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tribution centered close to the periodic orbit would be bound
to stay inside the regular island: it could not leak into the
chaotic sea. A quantum wave function may tunnel to classi-
cally forbidden regions, but this takes place on a very large
time scale. Therefore, instead of spreading all over the
square, it remains localized around the classical trajectory for
some time. We can verify this by looking at the probability
densityzkx,yzzW+stdlz2, shown in Fig. 2(b) for t=25t. The state
uzW−stdl is also localized.

The effect of this localization upon entanglement is clear.
We see in Fig. 3 the evolution ofd as a solid line. The first
important difference between the chaotic and regular cases is

that the latter takes a much longer time to saturate compared
to the first. Another important difference is the presence of
recoherences. Furuyaet al. [5] have studied recoherences in
the Jaynes–Cummings model, and concluded that the time
scale was related to the compactness of the spin phase space.
Even though we are also dealing with a spin, the reason for
the recoherences here is completely different. Let us assume
that uzW±stdl approximately follows a classical trajectory in
configuration space given byrW±std=fx±std ,y±stdg, and let us
calculate the distance

dstd = urW+std − rW−stdu s12d

between these classical particles as a function of time. Since
they have different energies, they rotate with different peri-
ods, as we can see from Fig. 4. The particles start at the same
point, and they are again at the same point att.7t. The
recoherence time is equal to this time.

Finally, we place our initial coherent state in the special
IC marked with am. It is periodic and stable in theH−
dynamics but chaotic in theH+ dynamics. ThereforeuzW−stdl
remains trapped inside the regularity island, butuzW+stdl is free
to spread over the chaotic sea. This produces a fast entangle-
ment, even faster than that associated with the purely chaotic

FIG. 2. Probability densityukx,yuzW+stdlu2 for the chaotic initial
condition (top) and for the regular one(bottom) at t=25t. The
parameters are the same as in Fig. 1. The solid line is the periodic
classical trajectory.

FIG. 3. Linear entropy as a function of time(in units of the
basic periodt), for the regular(solid line), chaotic(dashed line),
and mixed(dotted line) initial conditions, depicted in Fig. 1.

FIG. 4. Distancedstd= urW+std−rW−stdu between the two regular ICs.
Besides the period of the orbit there is another time scale, which
corresponds to the quantum recoherences.

FIG. 5. Linear entropy as a function of time(in units of the
basic periodt) for the regular initial condition and different values
of l.
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IC, as we can see in Fig. 3. It has only small, erratic
oscillations.

We have also considered smaller values of the nonhomo-
geneity parameterl, and we can see its influence on the
entanglement rate of the regular initial condition in Fig. 5.
For small values ofl the dynamics ofH− and H+ are very
similar, and thus the amount of entanglement grows slowly.
Also the energy difference betweenuzW−stdl and uzW+stdl is
smaller, and therefore the recoherence time may become
much larger than the Ehrenfest time, so that all recoherences
vanish anddstd grows almost monotonically. We do not show
chaotic ICs because the analysis would be essentially the
same. We also do not consider any mixed IC because the
stability island involved becomes too small asl decreases.

In summary, we have studied the dynamical generation of
entanglement for a system with three degrees of freedom,
one of them being strictly quantum and the others being
classical and displaying chaotic behavior. We have calculated
the entanglement by tracing out the space, and this leads to a
very natural connection between deterministic entanglement

and quantum fidelity for this system. Chaotic initial condi-
tions were seen to entangle in a fast and monotonic way,
while regular ones may present strong recoherences, whose
time scale is related to the classical motion. We have also
shown special initial conditions which entangle faster than a
typical chaotic one.

Finally, we note that billiards of this type should be ac-
cessible to experiment, using semiconductor quantum dots
[16]. For a square well on GaAs/AlxGa1−xAs of 1 mm in
length the parameters we used correspond to energies of the
order of 10 meV and magnetic fieldsB0 of the order of
20 mT. The coupling constante is fixed by the magnetic
moment of the electron, but the parabolic parameterl can be
adjusted to enhance the coupling effect.
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