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Abstract

We study the three-dimensional static configurations of nonhomogeneous Kirchhoff

filaments with periodically varying Young’s modulus. We analyze the effects of the Young’s

modulus frequency and amplitude of variation in terms of stroboscopic maps, and in the

regular (non chaotic) spatial configurations of the filaments. Our analysis shows that the

tridimensional conformations of long filaments may depend critically on the Young’s modulus

frequency in case of resonance with other natural frequencies of the filament. As expected, far

from resonance the shape of the solutions remain very close to that of the homogeneous case.

In the case of biomolecules, although various other elements, besides sequence-dependent

effects, combine to determine their conformation, our results show that sequence-dependent

effects alone may have a significant influence on the shape of these molecules, including DNA.
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The study of tridimensional structures of filamentary objects is of great interest in
several areas of knowledge, ranging from microscopic to macroscopic systems.
Examples of macroscopic systems in Engineering are the stability of suboceanic
cables [1,2] and installation of optical fibers [3,4]; in Biology, the shape of climbing
plants [5]; and, in Physics and Mathematics, the shape and dynamics of cracking
whips [6]. Microscopic examples are found in Structural Biology, as in the study of
the structure of biomolecules [7,8] and bacterial fibers [9,10], and in Nanoscience, as
the study of the elastic properties of nanosprings [11].

Filamentary systems are usually modeled as thin uniform rods. However,
nonuniformities in the filament properties can affect significantly its tridimensional
structure. In this work we study certain resonant variations in the shape of helical
rods induced by periodic variations in the stiffness of the rod. One of the motivations
for this theoretical study is, on one hand, the observation that the DNA stiffness is
sequence-dependent [12]. On the other hand, it is also known [13,14] that a
substantial fraction of all eukaryotic genomes are composed of tandemly repeated
sequences of base-pairs. These repetitive DNAs are formed by nucleotide sequences
of varying length and composition reaching up to 100 megabasepairs of length [14].
Usually they are regarded as ‘‘selfish’’ or ‘‘junk’’ DNA [15] because they seem to
have little or no functional role. In fact, some studies suggest that the behavior of
repetitive sequences can be, in some cases, beneficial to the organism and, in others,
harmful [13,14]. It could also be related to some form of cancer [16].

In this work we consider rods with small periodic variation of the Young’s
modulus. Since our motivation is the repetitive sequences of DNA, the numerical
calculations presented here have been performed using DNA parameters. Never-
theless, the qualitative results remain valid for general rods with periodic stiffness
variation. We remark that ideal elastic rod models dot not furnish realistic solutions
for the spatial structure of the DNA or other biomolecules [17]. Therefore, our
results for the tridimensional configurations must be considered as general
mechanical tendencies due to sequence-dependent variations of the Young’s
modulus, rather than exact solutions for the DNA structure. Realistic models for
the DNA consider base-pair parameters, as the recent theory of sequence-dependent
DNA elasticity proposed by Coleman, Olson and Swigon [18], where the elastic
energy depends on a function of the six kinematical variables relating the relative
orientation and displacement between successive base-pairs. Thermal fluctuations
play also an important role in the structure of these molecules and, therefore,
statistical mechanical approaches are more appropriate to model their spatial
configurations [19–21]. Nevertheless, in order to analyze the effect of periodic
nonhomogeneities in equilibrium configurations, it is sufficient to take into account
thermal fluctuations just roughly. This has been done by adopting an excess of 5% of
linking number [22].

A table with the Young’s modulus of all 32 trinucleotide units was recently
obtained in Ref. [23] that can be used as a reference for the amplitude of the
variation. We analyze the effects of the frequency of these periodic modulations in
the Young’s modulus, in terms of dynamical stroboscopic maps and directly in the
tridimensional structure of the rod. We are particularly interested in understanding
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how the sequence-dependent mechanical properties of the filament can cause its
shape to deviate from the well known uniform solution, namely, the helix.

Mielke and Holmes [24] demonstrated that the variation of the bending stiffness
along the rod can cause spatially complex tridimensional shapes and sensitivity with
respect to initial conditions. They described infinitely long rods as initial value
problems (IVP) and used analytical techniques based on dynamical systems theory to
study some specific hyperbolic fixed points related to homoclinic orbits.

It should be stressed that here we analyze a case where it is not possible to use the
perturbative methods of dynamical systems theory, therefore we had to resort to
numerical simulations.

The Kirchhoff rod model has been extensively used in the literature to model
continuous rods [25–27]. For example, Shi and Hearst [28] and Nizette and Goriely
[29] obtained and classified, respectively, all the solutions of the static Kirchhoff
equations for homogeneous rods with circular cross section. Coleman et al. [30]
made a complete analysis of the stability of DNA within the framework of the
Kirchhoff rod model, subjected to strong anchoring end conditions. Recently,
Neukirch [31] used the Kirchhoff rod model to study the twist rigidity of single
supercoiled DNA molecules. Neukirch and Henderson [32,33] studied the properties
of the equilibrium configurations of homogeneous rods subjected to clamped
boundary conditions. Da Fonseca and de Aguiar [34] compared homogeneous and
nonhomogeneous rods, with varying stiffness, subjected to boundary conditions.
The effects of nonhomogeneous mass distribution in the dynamics of unstable closed
rods have been analyzed by Fonseca and de Aguiar [35]. Yang et al. [8] have studied
a particular case of nonhomogeneous Young’s modulus for closed rods. Manning et
al. [36] have incorporated into the Kirchhoff model the sequence-dependent discrete
data of the intrinsic curvature of DNA. In the present study we assume that the
DNA is intrinsically an untwisted straight rod, but we include sequence-dependent
stiffness.

In the Kirchhoff model for an inextensible rod the Young’s modulus appears in
the equations through its bending coefficient. As there is no table with the bending

coefficients for all di or trinucleotides, we shall consider the data in Ref. [23] as a
reference for our calculations, as mentioned.

We shall consider the Hamiltonian formulation of the Kirchhoff’s equations. We
shall follow the simplest derivation by Nizette and Goriely [29] instead of the
rigorous Hamiltonian formulation by Mielke and Holmes [24]. The reader is referred
to Refs. [26,27,35] for a derivation of the Kirchhoff model, and to Ref. [29] for the
Hamiltonian formulation. Hamilton’s equations for the Kirchhoff model are
analogous to those of a symmetric spinning top in a gravity field, with the arc
length s along the rod playing the role of time. The main advantage of a Hamiltonian
formulation is that the theory of chaotic Hamiltonian systems and stroboscopic
maps can be directly applied to understand the spatial behavior of the filament. The
length of the tandemly repeated sequences can reach up to 100 megabasepairs [14]
while the length of the repeats is no more than a few hundreds of basepairs long. So
we shall solve the Kirchhoff’s equations as an IVP to find the conformational
solutions of the filament problem.
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The Hamiltonian for an elastic rod with circular cross section, in Euler angles, is

H ¼
P2
y

2E
þ

P2
f

2G0m
þ

ðPc � Pf cos yÞ2

2E sin2 y
þ F cos y . (1)

The Euler angles y; f and c connect a fixed Cartesian basis fe1; e2; e3g to the local

orthonormal basis di ¼ diðs; tÞ; i ¼ 1; 2; 3; attached to each point of the rod. The
direction of e3 is chosen to be the direction of the constant force F: d3 is chosen to be
tangent to the curve xðsÞ that defines the axis of the filament, and d1 and d2 are in the
direction of the principal moments of inertia of the cross section (perpendicular to
d3). The momentum Pc is the e3-component of the angular momentum with respect
to the axis of the rod and Pf is the torsional moment, i.e., the momentum with
respect to d3 [29]. They remain constant along the rod even if E and m depend on the
arc length s. The Hamiltonian, Eq. (1), will depend on s through EðsÞ and mðsÞ:

The parameters E ¼ EðsÞ and m ¼ mðsÞ are the scaled Young’s and shear moduli,
respectively. F is the intensity of the total contact force (constant) exerted on the
cross section at s. The units used here are the same of Refs. [26,27,35]. G0 varies
between 2=3 (incompressible material) and 1 (hyper-elastic material), and it should
be remarked that G0 has no influence in the equilibrium solutions. The momenta are
defined by

Py � EðsÞy0 ,

Pf � G0mðsÞðf
0
þ c0 cos yÞ ,

Pc � EðsÞc0 sin2 yþ Pf cos y , ð2Þ

where the prime indicates the derivative with respect to s.
In the case of a homogeneous filament, EðsÞ � 1 and mðsÞ � 1 in Eq. (1), and the

Hamiltonian is written as

H ¼
P2
y

2
þ

P2
f

2G0
þ V ðyÞ , (3)

where the potential V ðyÞ is

V ðyÞ ¼
ðPc � Pf cos yÞ2

2 sin2 y
þ F cos y . (4)

If Pc ¼ Pf; then y ¼ 0 (straight rod) is an equilibrium solution, and if Fa0 there is a
second equilibrium solution (ya0) corresponding to a helix [37]. If Pc ¼ �Pf; the
equilibrium solution is y ¼ p; and if Fa0 there is a second equilibrium solution as
above. If jPcjajPfj then V ðyÞ (4) has a single minimum corresponding to the well
known helix solution. Denoting by y0 the point of minimum of the potential (4), the
frequency o0 of small oscillations around y0 is given by

o0 ¼ P2
f þ 2V ðy0Þ � 6F cos y0. (5)

In the Appendix we show that the potential V ðyÞ (4) cannot be well approximated
by a second-order expansion in the neighborhood of its minimum (it is expanded up
to order 6).
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We shall consider the following periodic variation of the scaled Young’s modulus

EðsÞ ¼ 1þ a cos os . (6)

The parameter a is the amplitude of the Young’s modulus periodic variation, and o
is the frequency of the oscillation. We are concerned only with the tridimensional
shape of the rod and it should be stressed that the shear modulus mðsÞ does not affect
the tridimensional configuration.

To obtain the equilibrium configurations we first solve Hamilton’s equations for y
and Py: Then, we solve Eq. (2) for c and reconstruct the filament by integrating d3
along s

xðsÞ ¼

Z s

0

½ðsin y cos cÞe1 þ ðsin y sin cÞe2 þ ðcos yÞe3�ds0 . (7)

Notice that xðsÞ is a function of the initial conditions yðs ¼ 0Þ � y0 and Pyðs ¼ 0Þ �
P0: Without lack of generality, P0 can be set equal to 0 so that y0 will be a
conformation parameter. In solving the equation for c we set its initial value c0 ¼ 0:

In what follows we present numerical calculations performed with the following
fixed mechanical parameters: a ¼ 0:1; Pc ¼ 0:086; Pf ¼ 0:043 and F ¼ 20 pN: These
parameters, excepting the force F, are written in properly scaled units. The maximum
value for a is 0:66; in accordance with the table of the DNA Young’s modulus
presented in Ref. [23]. The value of Pf used corresponds to an excess of 5% of the
linking number [22] due to thermal fluctuations. The value of the force corresponds
to a compressing force consistent with the values in the literature [38].

Fig. 1 displays nine stroboscopic maps on the y–Py plane for different values of
frequency o: We start with o ¼ 0:60o0 (Fig. 1a) where a larger stability island
encloses the main equilibrium point at y ’ 2:08 rad and Py ¼ 0; and a smaller island
is seen on the left, at y ’ 0:5 rad: The frequency goes up to o ¼ 2:00o0: We recall
that spatial chaos has been observed before in the Kirchhoff equations [24,39].

As we go through the sequence of stroboscopic maps displayed in the Fig. 1, the
large island in the plate (a) slowly shrinks and eventually disappears at o � o0 (Figs.
1e and f). A second important island appears at o � 0:82o0 (Fig. 1b). This new
island increases in size and moves towards the right as o is increased. Besides these
two main islands, a number of smaller and short-lived islands pop up and disappear
as o changes, a phenomenon typical of chaotic maps. We shall concentrate our study
on the two main islands described above, since they dominate the stroboscopic maps
and last for large intervals of o:

We shall now investigate the differences in the shape of the tridimensional
configurations corresponding to the two equilibrium points lying at the center of
these islands. In order to construct the rods we solved the Hamiltonian equations
using the values of the equilibrium point for y and Py as initial conditions y0 and P0

and used Eq. (7) to construct the filament.
The tridimensional configuration corresponding to the equilibrium point changes

as the frequency is varied. The shape evolution is displayed in Figs. 2 and 3 for the
two main equilibrium points mentioned above.
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Fig. 1. Stroboscopic maps for Pc ¼ 0:086; Pf ¼ 0:043 and F ¼ 20 pN: The frequency of the Young’s

modulus oscillation in each map is: (a) o ¼ 0:60o0; (b) o ¼ 0:82o0; (c) o ¼ 0:85o0; (d) o ¼ 0:90o0; (e)
o ¼ 0:92o0; (f) o ¼ 1:00o0; (g) o ¼ 1:20o0; (h) o ¼ 1:60o0; (i) o ¼ 2:00o0:

A.F. da Fonseca et al. / Physica A 352 (2005) 547–557552
In Fig. 2, panels (a)–(d), we show the shape evolution of the configuration
corresponding to the first main equilibrium point which lies in the center of the main
island appearing in Fig. 1a, and in the center of the island on the right in Figs. 1b, c
and e, respectively. We can see that the shape of the rod deviates more and more
from the helix pattern as o is increased, becoming rather twisted for o ¼ 0:92o0:

In Fig. 3, panels (a)–(d), we show the shape evolution of the configuration
corresponding to the other main equilibrium point which lies in the center of the ‘left
island’ (born in Fig. 1b). The configurations shown in Figs. 3a–d correspond to the
frequency values used in the Figs. 1b, c, f and h, respectively. The behavior of this
sequence of rod shapes is the reverse of that corresponding to the first equilibrium
point (Fig. 2). As o increases, the shape becomes less coiled and eventually recovers
the near-helix shape, similar to the rod in Fig. 2a, corresponding to the first
equilibrium point (Fig. 1a).
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Fig. 2. Shape evolution of the conformations corresponding to the center of the main island seen in Fig.

1a. (a) o ¼ 0:60o0 (Fig. 1a); (b) o ¼ 0:82o0 (Fig. 1b); (c) o ¼ 0:85o0 (Fig. 1c); (d) o ¼ 0:92o0 (Fig. 1e).
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Fig. 3. Shape evolution of the conformations corresponding to the center of the left island that appears

when o40:81o0 (Fig. 1b). (a) o ¼ 0:82o0 (Fig. 1b); (b) o ¼ 0:85o0 (Fig. 1c); (c) o ¼ o0 (Fig. 1f); (d)

o ¼ 1:60o0 (Fig. 1h).
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Finally, when o ¼ 2o0; Fig. 1i, a period-doubling bifurcation occurs. The orbit at
the center of the island becomes unstable and a new stable equilibrium, with twice
the original period, appears.

The sensitivity of the shape of the nonhomogeneous rods to the amplitude of the
nonhomogeneity can also be tested. Fig. 4 shows, for the same mechanical
parameters of the previous figures, the helix solution of the homogeneous case (left),
the solution for a ¼ 0:001 (middle) and the solution for a ¼ 0:01 (right), in the
resonant case o ¼ o0: Also, these solutions can be compared to that in the Fig. 3c.
We can see that even for very small values of the amplitude a; the tridimensional
configuration deviates fast from the helix solution at the resonance.

It is interesting to notice that, as the frequency increases, the position of the
equilibrium points move in the direction of increasing y: Fig. 5 displays the value of y
corresponding to the equilibrium point related to the main (circles) and to the left
(square) islands as function of o: The dotted line indicates y0 which is the position of
the equilibrium point of the potential V ðyÞ related to the homogeneous case. As we
can see in the Figs. 2a and 3d, the shape of the corresponding tridimensional
configuration becomes similar to the helix when the position of the equilibrium
position gets close to y0 (homogeneous case equilibrium point position).

The main result of this numerical experiment is that the tridimensional
conformations of long filaments may depend critically on sequence-dependent
properties if these are in resonance with other natural periods of the filament. As
expected, in the limit of very low or very high frequencies, as compared to o0; the
shape of the solutions remain very close to that of the homogeneous case. In the case
of biomolecules, it is well known that various other elements, besides sequence-
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Fig. 4. Tridimensional shape of the configurations corresponding to the center island that appears in the

stroboscopic maps for o ¼ o0 and different a (stroboscopic maps not shown). From left to right,

homogeneous case, a ¼ 0:001 and 0.01.
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dependent effects, combine to determine their conformation, like self-contact, salt
concentration, thermal fluctuations, anisotropy and interaction with proteins. Our
results show that sequence-dependent effects alone may have a significant influence
on the shape of these molecules, including DNA.

This work was partially supported by the Brazilian agencies FAPESP, CNPq and
FINEP.
Appendix A

Here we show that the potential V ðyÞ of Eq. (4) cannot be well approximated by
an expansion up to order 2 or 3 around its minimum at ðy ¼ y0Þ: This is due to the
presence of sin2 y in the denominator of one of the terms of the V ðyÞ: To illustrate
this, we expand V ðyÞ; up to order 6 in ðy� y0Þ; for the same numerical parameters
used in this paper,

V ðyÞ ¼ V ðy0Þ þ 0:0205ðy� y0Þ
2
þ 0:0227ðy� y0Þ

3
þ 0:0235ðy� y0Þ

4

þ 0:0257ðy� y0Þ
5
þ 0:0275ðy� y0Þ

6
þ O½ðy� y0Þ

7
� , ðA:1Þ

where y0 ’ 2:043 for this case.
Since the coefficients of the terms ðy� y0Þ

n have the same order of magnitude, it is
necessary to check if ðy� y0Þ51 for all yðsÞ; i.e., along the rod. We found that for the
frequency o of the Young’s modulus far from the resonance (jo� o0jb0), the
solutions corresponding to the equilibrium points have ðyðsÞ � y0ÞMAX ’ 0:03; where
the subscript MAX means ‘‘maximum value for all s’’. But at the resonance, o ¼ o0;
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the solution corresponding to the equilibrium point has ðyðsÞ � y0ÞMAX ’ 0:5: ðyðsÞ �
y0ÞMAX becomes even larger than 0.5 if we consider the solution related to the new
equilibrium point (the new island that appeared in the map displayed in Fig. 1b).

Therefore, the perturbative method of the dynamical systems theory is not
applicable to analyzing this case.
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