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Abstract. A careful discussion of the interaction of the inner electron with the nucleus of the
helium atom allows for the reduction to a one-dimensional Hamiltonian describing thefrozen
planetary atomconfiguration. This is obtained by cancelling the angular momentum of each
electron, even though it is only their sum which is guaranteed to be constant. The true oscillatory
nature of the angular momenta in the full two-dimensional Hamiltonian can be included in a
time-periodic model that correctly accounts for the finite lifetime of the frozen planetary atom.
This system can be further simplified by averaging over the motion of the inner electron so as
to define an oscillatory Hamiltonian with a single degree of freedom.

1. Introduction

There has been increasing interest in new configurations for classical motion of the helium
atom. It is known that chaotic and regular motion coexist in this quintessential three-
body problem. Detailed knowledge of this system is necessary for the understanding of
the semiclassical limit of the quantum helium atom. In spite of the inherent difficulties
the balance of electronic charges obviously favours collinear configurations for the nucleus
and the two electrons. This opens the possibility of approximate models in one spatial
dimension. The purpose of this paper is to discuss the general derivation of such existing
models and the way that they can be refined.

Taking ri as the position vector of theith electron in Cartesian coordinates andpi as
the corresponding momentum, we obtain the Hamiltonian

H = 1

2
(p2

1 + p2
2) − 2

|r1| − 2

|r2| + 1

|r1 − r2| (1)

in the approximation where the nucleus has infinite mass. This system with six freedoms,
would decouple into two three-freedom hydrogenic atoms in the absence of the last term in
(1). So it shares with the hydrogen atom the problems of a singular Hamiltonian, to which
it adds non-integrability due to the non-perturbative interelectronic repulsion.

The most delicate task is to find realistic ways in which to reduce the dimension of the
phase space. Conservation of energy and total angular momentum bring this down from
12D (twelve dimensions, fixing the nucleus at the origin) to8D. If the initial positions and
velocities are in the same plane, it will remain invariant. In this special case of a spatially
2D system we have an8D system in phase space that is reduced to6D by conservation
of energy and total angular momentum. There is no generala priori justification for the
further drastic reduction to one spatial dimension with which we are concerned here, i.e. of
a 4D system restricted to3D by energy conservation. However, the simplification is so great
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198 A López-Castillo et al

that it is worth pursuing as a pointer to regimes of motion that can then be investigated in
higher dimensions. Indeed, an approximate spatial1D regime known as thefrozen planetary
atom (FPA) has been observed experimentally [1] and numerically [2]. This motion is
characterized by the outer electron remaining at an approximately fixed distance from the
nucleus while the inner electron oscillates.

Here we do not have the ambition of explaining why theFPA is stable as opposed to
other possible configurations. Our purpose is to establish, given that this approximately
linear motion was found numerically, what is the most realistic effective1D Hamiltonian to
use.

2. Theory and numerical results

In the 1D version of (1) there is nothing that prevents the inner electron from colliding
with the Coulomb singularity at the origin. Traditionally the hydrogenic singularities can
be dealt with by regularizing the Hamiltonian [3] or by smoothing. Regularization was
originally developed for planetary motion [4]. The idea is to divide the Hamiltonian by the
divergent function and then to make an appropriate canonical transformation. Smoothing
merely substitutes|ri | by (r2

i + δ2)1/2 in the second and third terms in (1). We need not
worry about the singularity in the last term, since orbits of finite energy cannot access it,
except for the triple collision [4].

Let us consider the helium Hamiltonian (1) in polar coordinates|ri|, θi, with conjugate
momentaΠi , li

H = 1

2
(52

1 + 52
2) − 2

|r1| − 2

|r2| + l2
1

2r2
1

+ l2
2

2r2
2

+ 1

|r1 − r2| . (2)

Approximate1D motion will occur if both the angular momenta remain small throughout
the motion. However, this will allow very close collisions of the inner electronr1 with
the nucleus at the origin, because of the small strength of the centrifugal barrierl1

2/2r1
2.

During the short time in which the collision takes place, we may neglect the interelectronic
interaction. The orbit of the inner electron will then be the segment of a very eccentric
ellipse as shown in figure 1.

Projecting the2D motion onto theZe2 line in figure 1, we see that there will inevitably
be a transition from theZee configuration toeZe and back again. Though this is allowed
for in the 1D version of (1) if the singularity at the origin is smoothed, this procedure would
not force the configuration back toZee. Conversely, regularization at the origin can only
be achieved separately for theZee and theeZe configurations as sketched in figure 2.

2.1. One-dimensional models

The best way to justify the1D model depends on the fact that close to theZee configuration

|r1 − r2| ' ||r2| − |r1|| (3)

Figure 1. Inner electron going around the nucleus in an almost elliptic and very eccentric orbit:
during a short time interval theZee configuration changes toeZe.
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Figure 2. Schematic representation of theZeeandeZeconfigurations for the regularized model
(a) and (b), and smoothed model (c) and (d).

whereas for theeZe we may approximate

|r1 − r2| ' |r2| + |r1| . (4)

If the nearly collinear motion starts asZee, there will only be a very short time for which
(3) is not valid. Moreover, this only happens at the collision, when the inter-electronic term
is relatively small. Furthermore, the difference between (3) and (4) can be neglected when
|r1| � |r2|, so by all accounts we can approximate (2) by

HZee = 1
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||r2| − |r1|| (5)

when both the angular momenta are small and the motion starts in theZee configuration.
The error in approximating the interelectronic term can be estimated as

1

|r2 − r1| ≈ 1

||r2| − |r1|| − |r1||r2|(1 − cosθ12)

||r2| − |r1||3 . (6)

The last term of equation (6) was evaluated in2D simulations for several typical trajectories
near the frozen planetary orbit and it was found to be always smaller than 1/||r2| − |r1||.
By ‘typical’ we mean trajectories belonging to theFPA stability island [3] in6D phase space.

Evidently, it is the full angular momentuml1 + l2 that is constant in this problem
and can, in particular, be taken as zero. Even so, if theli remain small, we obtain an
approximate1D model by taking them as constant, where it is not necessary to regularize
because of the repulsive centrifugal barriers. It is important to emphasize that the adoption
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of (5) as a1D model does not contradict theZee → eZe → Zee transition, since here|ri | is
just the distance from the nucleus, whereas the transition occurs through the small but finite
angular momentum. In the limit where bothli → 0, we obtain a sharp barrier at the origin
with the dynamics very similar to that of the regularized model [5]. There is no impediment
to precessions of the inner ellipse, the only constraint being that the outer electron moves
along with the major axis. This description is confirmed by2D numerical calculation, where
it can be seen thatθ12 in equation (6) is almost always close to zero, except when the
inner electron is close to the perihelion of the ellipse. In this case, however,||r2| − |r1||
is maximum and also the passage through the perihelion is very fast. Therefore, it turns
out that we can safely discard the last term in equation (6), as has indeed been checked by
direct numerical computations.

If the motion starts in theeZe configuration, we should instead use the Hamiltonian

HeZe = 1
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If the angular momenta remain small, this1D motion will approximate the full2D motion
in which there occur shorteZe → Zee → eZe transitions. In the limit whereli → 0, we
again obtain close correspondence with the motion of the regularized model. However, in
agreement with [5] we find that the motion described by Hamiltonian (7) leads to rapid self-
ionization of the helium atom. Conversely, the motion in (5) is surprisingly stable, in view
of the fact that this two-freedom Hamiltonian does not possess any obvious approximate
constant of the motion. The invariant tori of this nearly integrable system are centred on a
stable periodic orbit where the outer electron barely moves; hence the namefrozen planetary
atom. The inner electron, on the other hand, describes an approximately Kepler orbit. The
frequency of this Kepler orbit increases slowly withli , in agreement with the2D simulation.

Full 2D calculations reveal that the frozen planetary atom is long lived in comparison
with the period of the orbit, but eventually decays. In figures 3 and 4 we present2D

simulations close to the frozen planetary atom configuration. When the maximum value
of the electron angular momentum (lmax) is large, i.e. near to

√
2 for energyE = −1, the

system becomes unstable as shown in figure 5. Onead hoc way of accounting for the
finite life of the frozen planetary configuration could be based on the argument that theeZe

configuration is sampled for short intervals, so that we could mix

H = RHZee + T HeZe (8)

with R + T = 1 andT small. It is clear that, asT increases from 0, the motion gets more
and more unstable, becoming completely chaotic asT → 1.

The value ofR (or T ) would be evaluated in2D simulation by

R = trhs/ttot = (ttot − tlhs)/ttot = 1 − tlhs/ttot = 1 − T (9)

wheretrhs is the average time that electron 1 spends on the right-hand side of the nucleus
as in figure 1 (Zee configuration),tlhs is the time it spends on the left-hand side (eZe

configuration) andttot = trhs + tlhs is the total orbital period. The value ofT (or R) can be
calculated in an analytical form considering the two-body problem withE = −1 and the
result is

T = (arccos
√

1 − l2/2 −
√

l2/2(1 − l2/2))/π (10)

where
√

l2 is the angular moment for the two-body problem or, approximately, the square
root of the average square angular momentum considered in2D simulation. However,
the motion under the Hamiltonian (8) autoionizes only whenT is very large (T ≈ 0.6), in
contrast to the initial expectations. For the cases presented in figures 3 and 4 (see figure 3(c)
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Figure 3. 2D helium atom simulation with total angular momentumL = 0.0 andlmax ≈ 0.25.
(a) Trajectories of the electrons; (b) individual angular momentali for each electron as a function
of time: (c) cosine of the angle(cosθ12) between the electron position vectors as a function
of time (trhs can be evaluated for cosθ12 > 0 and tlhs for cosθ12 < 0). The initial conditions
of the trajectories are:xin = 0.000 1350,yin = −0.000 01,py in = −12.698 0597,E = −1.0,
xout = 5.7999,yout = −0.0001,pxout = 0.0001 andpyout = 0.0.
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Figure 4. 2D helium atom simulation with total angular momentumL = 0.0 andlmax ≈ 1.00.
(a) Trajectories of the electrons; (b) individual angular momentali for each electron as a
function of time: (c) cosine between the electron position vectors as a function of time. The
initial conditions of the trajectories are the same as figure 3, except forxin = 0.000 03 and
py in = −112.467 8292.
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Figure 5. Trajectory of the2D helium atom simulation with total angular momentumL = 0.0
and lmax ≈ 1.28. The initial conditions of the trajectory are the same as figure 3, but with
xin = 0.000 022 andpy in = −168.352 3413.

and 4(c), in particular) we obtainedT = 0.000 48 andT = 0.041, respectively, which is
much too small.

2.2. Time-dependent models

It is necessary, therefore, to attribute the finite lifetime of the frozen planetary atom to
the variation of the individual angular momenta. Figures 3(b) and 4(b) display typical
oscillations of the angular momenta for which

L = l1(t) + l2(t) = 0 . (11)

Estimating the varianceli2 = l2 and the average frequencyω of these oscillations supplies
the parameters for an approximate model where

l1(t) = −l2(t) =
√

2l sinωt ≡ lmaxsinωt . (12)

At the cost of adding a periodic time dependence, we thus obtain a realistic1D model

HZee(t) = 1

2
(52

1 + 52
2) − 2

|r1| − 2

|r2| + l2sin2 ωt

(
1

r2
1

+ 1

r2
2

)
+ 1

||r2| − |r1|| . (13)

Fixing the energy asE = −1.0 au restricts−√
2 6 li(t) 6

√
2 , wherel = ±1 would

describe the circular orbit limit.
The Kepler periodsτk for the inner electron in the2D and1D models are approximately

4.69 au (l small) and 4.67 au, respectively. The precession frequency of the inner electron
(or the orbital frequency of the outer electron) obtained from the average of the2D numerical
simulations isω = 0.07 au and we have used this value for the angular momentum oscillation
frequency in the1D model. This value ofω can be extracted from figures 3(b) and 4(b). The
valueω = 0.07 was obtained considering averages overFPA trajectories that were close to
the autoionization limit. The variation ofω with lmax is in fact very small, beingω = 0.053
for lmax ≈ 0 and increasing slowly untilω = 0.07 nearlmax ≈ 1. Figure 6 shows the
stroboscopic map of a trajectory with initial conditions on the frozen planetary atom orbit
of equation (13) forl = 0.200 (or lmax = 0.283). Note that the outer electron oscillates for
some time before the self-ionization.
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Figure 6. Poincaŕe map of the outer electron obtained via Hamiltonian (13) showing the self-
ionization. The initial conditions of the trajectory arer1 = 0.000 001,r2 = 5.80, 52 = 0.0,
E = −1.0, l1 = −l2 = 0.200 (lmax = 0.283) andω = 0.07.

Our careful heuristic derivation of the frozen planetary atom model (5) from the full
2D Hamiltonian has pointed the way to two possible modifications that account for its
finite lifetime. Model (8) has the advantage of being strictly1D, which will be helpful
for subsequent discussion of semiclassical quantization, but is otherwise hard to justify.
The time-periodic Hamiltonian (13) reduces the study of the frozen planetary atom regime
to 21

2 freedoms, which is probably the simplest system in which the two electrons are
considered explicitly, that we can realistically hope to deal with. In practice, the integration
of Hamilton’s equations under the Hamiltonian (13) presents some numerical difficulties,
since the centrifugal term cannot be regularized. This is particularly cumbersome for small
values ofl, where numerical imprecision can lead to a false ionization. Our calculations
show that forl > 0.20 the outer electron does ionize, although it is not easy to determine
the precise value ofl, saylc, such that forl < lc the atom is stable.

2.3. Effective potential

There is yet the possibility for simplifying the description of the frozen planetary
configuration if one is willing to discard the precise knowledge about the inner electron.
This is the sort of treatment considered in the recent work by Shepelyansky [6] in which
the effect of the inner electron is substituted by a time-averaged effective potential. This
reduces the problem to just 11

2 freedoms. Following [6], we assume that the inner electron
obeys the virial theorem

E = 〈V 〉/2 = −〈T 〉 = −1/a (14)

where the energy is equal to half the potential energy average(〈V 〉), T includes the linear
momentum and the centrifugal term anda is the semi-major axis of the ellipse.

The time average of the interelectronic term 1/||r2| − |r1|| that appears in equation (13)
is

|r2|
a

√
r2

2 − 2a|r2|
− 1

a
. (15)
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Equation (13) can then be replaced by the effective (11
2 freedoms) Hamiltonian

HZee(t) = 1

2
52

2 − 2

|r2| + l2 sin2 ωt

r2
2

− 2

a
+ |r2|

a

√
r2

2 − 2a|r2|
. (16)

In equation (16) we consider only very slow motions (precession), since the very fast
movement has been integrated out.

Figure 7. Poincaŕe map of the electron obtained via Hamiltonian (16) showing the self-
ionization. The initial conditions of the trajectory are:r2 = 6.00, 52 = 0.0, E = −1.0,
l1 = −l2 = 0.804 221(lmax = 1.1373), a = 1.110 118 andω = 0.07.

The stroboscopic map of equation (16) is presented in figure 7, showing the system
for lmax = 1.1373, the lowest angular momentum for autoionization. This value forlmax

is approximately the same as that found in2D calculation. The goodness of this results
shows that the frozen planetary atom configuration in one dimension is better described by
an average potential produced by the nuclei inner-electron subsystem acting on the outer
electron than by the approximation (3) which is equivalent to aZee configuration.

3. Conclusion

The models analysed in this paper confirm the importance of the angular momentum
variation for the instability of the frozen planetary atom. The model given by equation (8)
also reinforces this conclusion, since, in that case,l is constant, and we obtain autoionization
only for very high values ofT . In these models there will still be a periodic orbit
corresponding to the frozen planetary orbit for sufficiently weak perturbations (T in the
case of (8) orl in (13) or (16)). This is guaranteed by the implicit function theorem (see,
e.g., [7]). However, increasing the perturbations compromises the stability surrounding this
orbit.
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