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We derive a semiclassical approximation to the Husimi functions of stationary states of spin systems. We
rederive the Bohr-Sommerfeld quantization for spin by locating the poles of the corresponding local Green
function. The residues correspond to the Husimi functions, which are seen to agree very well with exact
calculations.
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Rigorous derivation of semiclassical approximations in
phase space via path integralsf1g for systems with one de-
gree of freedom has recently received considerable attention,
for both continuous variables and spin systems. Barangeret
al. f2g, for example, have discussed the canonical coherent
state path integral and its semiclassical approximation in
some detail, including an initial-value representation and the
Green function. The study of semiclassical propagation of
wave packets, using complexf3g or nearly realf4g trajecto-
ries, for regular and chaoticf5g systems, has developed con-
siderably over the last few years. The spin path integral and
its semiclassical approximation have found important appli-
cations in the study of spin tunneling and topological effects
f6g. Stoneet al. have derived the spin coherent state semi-
classical propagator in detailf7g, paying particular attention
to the so-called Solari-Kochetovf8g correction. This correc-
tion is related to the difference between the average value of
the Hamiltonian in coherent states and its Weyl symbolf9g,
and has a counterpart in the canonical casef2g.

To obtain semiclassical approximations for the energy
levels En and stationary stateskxunl=cnsxd of one-
dimensional bound systems, on the other hand, one normally
resorts to the usual Bohr-SommerfeldsBSd and WKB theo-
ries f10g. A coherent state version of these theories, which
works in phase space, is also availablef2g and produces a BS
formula and a semiclassical approximation to the Husimi
functions Hnszd= ukzunlu2. Recently, Garg and Stonef11g
have derived a semiclassicalsBS-liked quantization condition
for spin systems, including the first quantum correctionsssee
also f12gd. By taking the trace of the semiclassical Green
function, they obtained the energy levels as the locations of
its poles. In the present work we have obtained the semiclas-
sical Husimi functions for spin systems.

The non-normalized spin coherent states are defined by
uzl=exphzJ+ju j ,−jl, and the semiclassical approximation to

the propagatorK=kzfue−iĤt/"uzil is f7g

Ksclsz̄f,zi,td = S i
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where the phase is the classical action plus an extra term
known as the Solari-KochetovsSKd correction:

F = S+ ISK= S+E
0

t

Ast8ddt8. s2d

The classical spin action is given by

S=E
0

t Fi" j
z̄ż− ż̄z

1 + z̄z
− Hsz,z̄dGdt8 + B, s3d

where the integral is done along the classical trajectory de-
termined by the Hamilton equations of motion
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and the classical HamiltonianHsz, z̄d is the average value of

the quantum Hamiltonian,Hsz, z̄d=kzuĤuzl / kzuzl. This action
obeys the Hamilton-Jacobi relations
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The functiongsz, z̄d, which is unity in the canonical case, is
given by

gsz,z̄d =
]2

] z] z̄
ln kzuzl =

2j

s1 + zz̄d2. s6d

Note thatB=−i" j lnhf1+z̄fzstdgf1+z̄s0dzigj is a boundary
term that takes into account the fact that in generalz̄ is not
the complex conjugate ofz sthe discrete-time formulation of
the path integral indicates that the variablesz and z̄ must be
considered as independent, so we denote the actual complex
conjugate ofz by z*d. That means that if one defines the usual
canonicalsq,pd variables according to

z

Î1 + zz̄
=

q + ip
Î4" j

,
z̄

Î1 + zz̄
=

q − ip
Î4" j

, s7d

thenq andp will in general be complex numbers.
The semiclassical limit for spin systems consists in letting

"→0 and j →`, but keeping" j =1. If the Hamiltonian is
Os" jd, thenS is Os" jd, but the SK correction*Electronic address: mnovaes@ifi.unicamp.br
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is Os"d, and therefore can be considered small. Note that
since z̄Þz* the HamiltonianHsz, z̄d, the action, and the SK
correction can all be complex.

The semiclassical Green function

Gsclsz,Ed =
1

i"
E

0

`

Ksclsz̄,z,tdeiEt/"dt s9d

can be calculated by making a stationary exponent approxi-
mation to the integral. Note that we are interested only in its
diagonal elements. This implieszi =z, z̄f =z* , but in general
zstdÞz and z̄s0dÞz* , so that we do not have a real periodic
orbit sby real orbit we mean one in whichq andp are reald.
The stationary timet0 is determined by the condition

UdsF + Etd
dt

U
t0

= U ] S

] t
U

t0

+ U ] ISK

] t
U

t0

+ E = 0. s10d

As usual in semiclassical calculations, we do not consider
derivatives ofA, because including such terms would be in-
consistent with the Gaussian approximation involved in the
derivation of Eq.s1d. Therefore Eq.s10d can be also written
as

E − Esz,t0d + Asz,t0d = 0, s11d

where

UEsz,t0d = −
] S

] t
U

t0

s12d

is the energy of the classical trajectory, not to be confused
with E, the argument of the Green function. In order to pro-
ceed with the integration, we need to expand the exponent to
second order in time. We define

U ]2S

] t2
U

t0

ª asz,t0d, s13d

and neglect the second derivative ofISK, in order to obtain

Gsz,Ed =
1
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S−

peiB/" j
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where

w = Sst0d + ISKst0d + Et0. s15d

We can find a more convenient way of expressinga in order
to transform the prefactor. The formsseef2gd

a = − żż̄
]2S

] z̄f ] zi

s16d

leads to

Gsz,Ed =
1

i"SpeiB/" j

żż̄j
D1/2

expH i

"
wJ . s17d

Even with this simplification it is hard to find the poles of
Gsz,Ed. Garg and Stonef11g have done this by calculating

its trace under another stationary phase approximation,
which leads tozstd=z, z̄s0d=z* , and thus to real periodic
orbits. We take a different route, which will allow us to ob-
tain not only the energy levels but also the Husimi distribu-
tions. Even though the classical orbits involved in the calcu-
lation of Eqs.s1d and s9d are complex, we argue that the
largest contributions to the functionGsz,Ed sand not only to
its traced must come from the vicinity of the real periodic
orbit throughz, and its repetitions. The accuracy of the final
results supports this idea.

Let us denote the period of the orbit throughz by Tszd and
expand the stationary timet0 as

t0 . nT+ T0, s18d

wheren counts the repetitions of the real periodic orbit and
T0, assumed small, has to be determined. Expanding the sta-
tionary exponent conditions10d we find

T0 = −
E − E + A

asnd , s19d

where

Uasnd
ª asz,nTd = −

] E
] t
U

nT

= U ]2S

] t2
U

nT

. s20d

FIG. 1. Exact and semiclassical Husimi distributions for the
simple HamiltonianH=v"Jz.
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Now we must expandw to second order inT0. Note that
SsnTd=nS−nET+BsnTd, where

S = i" jE
0

T z̄ż− ż̄z

1 + z̄z
dt. s21d

Note also thatISKsnTd=nISKsTd. It can also be shownf2g
that

1

asnd =
1

i"gsz,z̄dużu2
− n

d2S
dE2 . s22d

After n repetitions of a periodic orbit the prefactor acquires a
phase ofs−1dn. Therefore, the result of this expansion is

w . nfS − ET + ET+ ISK− p"g + BsnTd − ET0 +
asnd

2
T0

2

+ ET0 + AT0. s23d

If we add and subtractnAT, definex=E−E+A, and useT
=dS /dE together with Eq.s22d we obtain

w . nFS + ISK− p" +
dS
dEx −

dS
dEA +

1

2

d2S
dE2x2G

−
1

gsz,z̄d
x2

2i"użu2
+ BsnTd. s24d

We recognize inside the brackets the expression for the
expansion ofSsE+Ad aroundE. SinceA,Os"d we further
expand

SsE + Ad . SsEd +
dS
dEA s25d

and we end up with

w . nfSsEd + ISKsEd − p"g −
1

gsz,z̄d
x2

2i"użu2
+ BsnTd.

s26d

Summing overn we obtain

FIG. 2. Exactstopd and semiclassicalsbottomd Husimi distribu-
tions for the 200th state of the LMG model, withj =200, v=1, and
"a=1000.

FIG. 3. Exactstopd and semiclassicalsbottomd Husimi distribu-
tions for the 270th state of the LMG model. The parameters are the
same as in the previous figure.
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Gsz,Ed .
Îps1 + uzu2d2j+1

i" j użu
eifS+ISK−p"g/"

1 − eifS+ISK−p"g/"

3expH−
1

gsz,z̄d

sE − E + Ad2

2"2użu2 J , s27d

where we have usedBsnTd=−2i" j lns1+uzu2d. The poles of
this function are determined by the condition

sS + ISKdsEnd = s2n + 1dp", s28d

which is exactly the Bohr-Sommerfeld quantization rule ob-
tained recently inf11g. The residues at each pole give the
Husimi functions

Hnszd =
Îp

j

1 + uzu2

użu
1

fTsEnd + sdISK/dEduEng

3expH−
1

gsz,z̄d

fEn − Eszd + Aszdg2

2"2użu2 J . s29d

Here we have multiplied by the coherent states normalization
factor s1+uzu2d−2j. These functions are our main result. They
are in general not normalized, and have a strong resemblance
with the canonical semiclassical Husimi functions presented
in f2g.

As a first example, we calculate the Husimi function for

the simple caseĤ="vJz. The Hamilton equations can easily
be solved and givezstd=e−ivtzi andz̄std=eivst−Tdz̄f, which im-
plies użu=vuzu. The SK correction is also very simple, with
Aszd="v /2 anddISK/dE=0. The final result is

Hmsrd =
1 + r

2jÎpr
expS−

f js1 − rd + s1 + rdsm+ 1/2dg2

4jr
D ,

s30d

wherem goes from −j to j and r = uzu2. When properly nor-
malized, this approximates the exact distribution

Hm
Esrd =

s2jd!
s j + md ! s j − md!

r j+m

s1 + rd2j , s31d

quite well for large values ofj , as we can see in Fig. 1.
Now let us turn our attention to a less trivial system. In

f11g the authors have shown that the semiclassical quantiza-
tion conditions28d works very well for the Lipkin-Meshkov-
Glick sLMGd model

Ĥ = "vJz + a"2fJx
2 − Jy

2g s32d

already at moderate values ofj . We now consider the accu-
racy of the semiclassical approximations29d for its station-
ary states. For small values ofa the results are very similar
to the previous case, so we consider onlyj =200, v=1, and
"a=1000. In order to display the results, we use the canoni-
cal coordinatessq,pd given in Eq.s7d, in terms of which the
phase space is compact,q2+p2ø4" j . We show the exact and
the semiclassicalsnormalizedd Husimi functions for two dif-
ferent states in Figs. 2 and 3. The agreement is excellent.

Summarizing, we have obtained a semiclassical approxi-
mation for the phase-space representation of stationary states
of spin systems. This was done by investigating the semiclas-
sical Green function in the vicinity of real periodic trajecto-
ries. The accuracy of the result was verified by comparing it

with exact calculations for the simple caseĤ="vJz and for
the Lipkin-Meshkov-Glick model. Husimi functions are
known to be good tools to study quantum chaosf13g, and an
extension of this theory to more degrees of freedom would
be interesting in order to approach chaotic systemssa trace
formula for chaotic spin systems was recently obtainedf14g
but, as already noted, taking the trace obliterates the infor-
mation about the residuesd. Work in this direction is in
progress.
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