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Near equilibrium dynamics of nonhomogeneous Kirchhoff filaments in viscous media
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We study the near equilibrium dynamics of nonhomogeneous elastic filaments in viscous media using the
Kirchhoff model of rods. Viscosity is incorporated in the model as an external force, which we approximate by
the resistance felt by an infinite cylinder immersed in a slowly moving fluid. We use the recently developed
method of Goriely and TabdPhys. Rev. Lett77, 3537(1996); Physica D105, 20(1997); 105 45(1997)] to
study the dynamics in the vicinity of the simplest equilibrium solution for a closed rod with nonhomogeneous
distribution of mass, namely, the planar ring configuration. We show that small variations of the mass density
along the rod are sufficient to couple the symmetric modes of the homogeneous rod problem, producing
asymmetric deformations that modify substantially the dynamical coiling, even at quite low Reynolds number.
The higher-density segments of the rod tend to become more rigid and less coiled. We comment on possible
applications to DNA.
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[. INTRODUCTION mities is that they can be included directly into the differen-
tial equations describing the dynamics, allowing for the mod-
A rod, or filament, is a tridimensional object with two of eling of long nonhomogeneous filaments. In this paper we
its dimensions much smaller than the third, i.e., with itsshall restrict ourselves to the study ofosedrods whose
length much larger than its cross section. The study of thenass densityary periodically, simulating either fine scale
mechanical properties of rods is of interest in many fields ofproperties that have survived the large scale average or the
science. Examples are the motion of vortex tubes in hydrobinding of external particles to the filament. More specifi-
dynamics[3] and the shapes and dynamics of biomoleculesally, we study the dynamics of closed rods near their sim-
[4—6] and bacterial fiberf7,8]. In engineering, the theory of plest equilibrium configuration, the so-called planar ring so-
rods has been applied to the study of suboceanic cabldation.
[9-11] and has lead to important applications in the installa- Nonuniformities in the distribution of mass changes the
tion process and stability of optical fibers2,13. local inertial forces. The effective role of these forces, how-
The dynamics of inextensible rods is governed by theever, depends crucially on the medium where the rod is im-
Kirchhoff equations. These equations, to be described in danersed. In the case of biomolecules, for instance, inertial
tail in Sec. Il, form a set of nine partial differential equations forces are not usually considered due to the very small values
in the time and arclength of the rod, involving the force, attained by the Reynolds number in typical biological media.
torque, and a triad of vectors describing the rod itself. Thes&oldstein and Langdi6] developed a formalism to treat the
equations are the result of Newton’s second law for the lineacase where inertial forces are totally discarded. In fact, iner-
and angular momentum applied to the thin body plus a lineatial forces are irrelevant when compared to external forces
constitutive relation between torque and twist. The Kirchhofflike gravity or electromagnetic forces if the body is im-
model holds true in the approximation of small curvatures ofmersed in a very viscous fluid 8]. In this paper, however,
the rod, as compared to the radius of the local cross sectiomwe are concerned with internal forces. In particular we wish
In most of the cases found in the literature, thin elasticto answer the question of how a flexible polymer reacts when
structures are modeled by uniform filaments. In some probsubmitted to a large torsion if its mass distribution is nonuni-
lems, however, it is important to take into account the nonform. In order to answer this question we generalize the
uniformities of the structure, like its mass density or its bendKirchhoff’'s equations to model rods immersed in viscous
ing and twisting stiffness. Going down to microscopic fluids. With these new equations we are able to study the
details, some authofd4—164 have applied the so-called se- balance between inertial forces, partly due to internal elastic
guence dependent anisotropic bendability models to studforces, and viscous forces.
local bending of DNA. In these models, the rod is divided The dynamics in the vicinity of a homogeneous planar
into small disks, each corresponding to a DNA base pairring was first studied by Zajakd 1], who showed the exis-
The mechanical properties of the disks are assigned accortence of perturbed solutions for the planar ring with total
ing to the base pair it is supposed to represent. This procewist larger than a certain critical value. The Zajac solutions
dure, however, is computationally applicable only to smallare similar to the(symmetri¢ normal modes of a string or
molecules. membrane. In this paper we show that the introduction of
In this paper we give a step towards incorporating fine-small periodic honhomogeneities into an initially uniform
structure properties into the continuous rod mddé,1,2. rod may produce important changes in the shape and sym-
The main advantage of a continuous treatment of nonuniformetry of its near equilibrium dynamics, depending on the
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periodicity of the perturbation as compared to the linear in- We want to apply these equations to the particular case of
stability modes(the Zajac modeésof the uniform rod. We arod. For that, we consider the rod as a thin tube whose axis
also show that, if the total twist of the rod is relatively large,is a smooth curvex in the 3D space parametrized by ar-
than, even at quite low Reynolds numbers, a nonhomogezlengths, and whose position depends on time: x(s,t). A
neous distribution of mass can change qualitatively the dylocal orthonormal basis (or director basig d,=d;(s,t),
namics. i=1,2,3, is defined at each point of the curve, wdthcho-
This paper is organized as follow. In Sec. Il, we extendsen as the tangent vectaly=x’. In this paper we shall use
the Kirchhoff model to include mass nonuniformities andprimes to denote differentiation with respectstand dots to
viscous forces. Nonuniformities in the mass density can belenote differentiation with respect to time. The two ortho-
easily included in the Kirchhoff equations, although it com-normal vectorsd, andd,, lie in the plane normal tds, for
plicates the analysis of the near equilibrium dynamics. Visexample along the principal axes of the cross section of the
cous forces are incorporated as external forces. These ared. We choose these vectors in such a way thatl,,d;
modeled by the resistance felt by an infinite cylinder in aform a right-handed orthonormal basis for each values of
slowly moving fluid (creeping motion[19,20. Nonuniform  andt. The space and time evolution of the director basis
bending or twisting stiffness can also be introduced in thealong the curve are controlled Ispin andtwist equations
model, but that will be the subject of a future publication. In
Sec. Il we describe the famouisted planar ring equilib- d =kxd: d=wxd i=1,23 (3
rium solution of the Kirchhoff equations. In Sec. IV, we ! v ' v ”
apply the method of Goriely and Tabf#] to study the dy- which follow from the orthonormality relationd; - d;= &;; .

Eﬁml)cselr?e?js\gﬁ;ggﬁ (r);oﬁﬁ ;aggg:;n?ngggﬁumtggcﬂi; 3V"Ia'he components df andw in the director basis are defined
g ' 0 ask=33_kd andw=3> ,w;d;. k; andk, are the com-

consider the nonhomogeneous rod and compare its dynami- i=1

cal evolution with the case of zero viscosity, for the samePonents of th? curvature "f‘ndv‘ IS th? twist d.e”s'ty of th?
parameters used in Sec. IV. In Sec. VI, we apply this modede' The solution of the spin and twist equations determines

to a closed DNA with 168 basepairs. At typical linking num- dy(s,1), WhiCh. can be integrated to give the space curve
ber deficit of 5%][21] this closed DNA is stable. But for a X(.S't)' The K|rchhoff.mod.el assumes Fhat th? f"‘?‘me”t IS
total twist deficit(or excess of the order of 100% the near thin l?nd hweqklyl benﬂ.e.,dlts cross-section rl?dlu's IS rr]nuch

equilibrium dynamics of the DNA does feel the effects of theST1@ler than its length and its curvature at all poinks this

mass distribution even at realistic Reynolds numbers. In Se@PProximation it is possible to derive a one-dimensional
VIl we summarize our conclusions theory where forces and moments are averaged over the

cross sections perpendicular to the central éie curvex)
of the filament.

Il. KIRCHHOFF MODEL FOR RODS Let the material points on the rod be labeled by
IN A VISCOUS MEDIUM

The Kirchhoff model describes the dynamics of thin elas- X(s,t)=x(s,) +r(s,1), (4)
tic filaments within the approximation of linear elasticity
theory[17]. The Kirchhoff's equations result from the appli- Where
cation of Newton’s laws of mechanics to the thin rod, and
consist of two equations describing the balance of force and r(s,t)=x1dy(s,t) +x2dx(s,t) (5)
angular momentum, and a third equation containing a con-
stitutive relationship of linear elasticity theory, relating mo- gives the position of the point on the cross seciinper-
ments to strains. pendicular tox’, with respect to the central axis. The total
We introduce the Kirchhoff's model following closely the force F=F(s,t) and the total momenM =M(s,t) on the
presentation of Ref17]. The classical conservation laws of cross section are defined by
linear and angular momentum for a tridimensional body of

volumeV and enclosed area are
F= s )pst (6)
S,

f pdS+ f fdv= f pXdV, )
A V Vv
M= f rxXpsdsS, (7)
S(s)

f(x><pn)ds+j(x><f)dv:fp(x><>"<)dv. 2 , ,
A v \ where pg is the contact force per unit area exerted on the

cross sectionS. In terms of the director basis we write
wherep, is the contact force per unit area exerted on the=3?_,f;d; andM=3>_,M;d;.
oriented surface elemertS=ndS, p is the mass density, In order to derive a set of equations describing the rod as
andX is the position with respect to a fixed origin. External a one-dimensional object, the rod is divided into thin disks of
forces per unit volume acting on the body are represented bligngthds and cross sectios(s), and Egs.(1) and (2) are
the vectorf. applied to each of these disks. The result is
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. term with p’, one has to differentiate this equation once
F’+J de:J pXdS, (8 more. We shall get back to this point later on.
8 8 In order to close the system of equations we needra
stitutive relation relating the local forces and moments
rxfdS= f prxXds, (9)  (stressersto the elastic deformations of the bogstraing. In
S(s) linear theory of elasticity, for a homogeneous elastic mate-
) rial, the stress is proportional to the deformation if this de-
where we have writtedV=ds dSand used the fact th@,  formation is small. The Young’s modulg) and the Shear
is nonzero only at the sectiods) andS(s+ds). modulus ) characterize the elastic properties of the mate-
In this article we are interested in the dynamics of rodsyjg| Therefore, it is possible to obtain, for small deformation,

immersed in viscous fluids. We therefore incorporate the visy constitutive relation for the moment. In the director basis
cous friction through the external foréeAssuming that the  ne relation ig[17]

rod moves slowly in the fluid we approximate the resistance
felt by the rod by that felt by an infinite cylinder in a viscous ~ M=EI(k,—k})d;+EI(k,—k5)d,+2ul(ks—k3)d3,
fluid flow. This is a well known resulf19,20 and gives the (16)

resistance force per unit length in the direction of the flow as )
wherek; are the components of the twist vector addare

—4my the components of the twist vector in the unstressed configu-
v~ 0.5—c— In(Uap/47) U, (10 ration. The cas&'=0 corresponds to the case of a naturally
straight and untwisted rod. We shall assukie-0.
where 7 is the viscosity of the mediung, is the radius of the Equations(13), (14) and(16) can be further simplified by
cylinder, p,,, is the density of the mediunt) is the velocity  the introduction of scaled variables. We first write the mass
of the fluid with respect to the cylinder, amds the Euler's  density in the form
number. The ratio

M'+X'XF+f
S(s)

f

p=po(1+dp), (17)

Ua
Pm (1)  where py is constant anddp carries the fluctuations of
K along the rod. Following Ref.l] we make the changes:

is the Reynolds numbeR, of the system. \/% \ﬁ \/m
Since viscous forces act only on the external surface of t—-t\/—, s—s\/—-, F—AEF, b— b,

the rod, we impose that the total external force integrated on AE A I 18

the volume to be the same as the force per unit length inte- (18)

grated onds, i.e., [ fdV= [ f,ds. We find that the external A AE
force in Egs.(8) and(9) has to be written as M—MEVAI, K_,K\[I_, O— ©\ /I_’ p—plpo.
Po
_f o(r—a)
U 2

(12 In the new variables the Kirchhoff equations become

p'(s)
p(s)

Using Egs.(4) and (5) and assuming that the rod has a F’—bd,= (F' —bx)+ p(s)ds, (19
uniform circular cross section of aréa Eqgs.(8) and(9) can
be simplified to yield: . )
M ! + d3>< F_ Zb(dlx d1+ dzx dz)
p'(s)

59 (F' —bAX)+ p(s)Ads, (13) =p(s)(dyxd;+d,xd,), (20)

F'— bAd,—

. . M = k1d1+ k2d2+ Fk3d3 y (21)
M ! +d3>< F—2b|(dl>< d1+ d2>< dz)
) ) where p=1+6p is now a dimensionless function of ar-
=p(s)l(d;Xd;+dyXdy), (14)  clengths and I'=2u/E varies betweer§ (incompressible
materia) and 1 (hyperelastic material From our assumption
wherel is the principal moment of inertia of the cross sectiongf g circular cross section it follows that wa%/4 and A

andb is obtained from Eq(10): = a2, wherea is the radius of the rod. Therefore/A/l
1 4 =2/a, which means that the radius of the rod is fixed to 2 in
e e A the scaled variables.
b . (15 ) . . . .
A10.5-c—In(R/4) These nine equations form a set of nonlinear, partial dif-

] ) ) . ferential equations of second order in time and in arclength
Notice that Eq(8) was differentiated with respect ®In  for nine unknows: force, moment, and director basis vectors.
the case of constant mass density=0, this has the effect The simple stationary solution is the well-known twisted pla-
of removingx from the system of equations, leaving only the nar ring[1], that we discuss briefly in the next section. In
director basis vectors as variables. To get rid ofstia the  Secs. IV to VI we shall analyze the dynamics of rods near
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this equilibrium configuration following the proposition of M’ =[k;+ (T —1)koks]d,+[ks— (T — 1)k;ks]dp+ T'kjds.
Goriely and Tabor in Ref.1]. In Sec. IV and V we study the (24)
casesi(i) p=1 andb=0, (ii)) p=1 andb#0, (iii) p=p(s)

andb=0, and(iv) p=p(s) andb+#0. Before we do that we Replacing Eq(24) in Eq. (23) and recalling that=Xf;d;

briefly review the twisted planar ring solution. gives
Ill. PLANAR RING CONFIGURATION ki+(I'=1)kokg=",,
The stationary solutions of Eq&l9)—(21) are obtained by ky— (T —1)kkg= —fq, (25)

setting the time derivatives equal to zero in the first two of
these equations:

k;=0.
(s . :
S ( )F’zo, (22) These equations can be solved in terms of Euler angles.
p(s) Let ¢ be a set of orthonormal Cartesian basis vectors and
M’ +d;XF=0. (23 3
. . di= i € 26
The only acceptable solution of E2) is F=const[see the ! 121 S € (26)
original Eq. (8)]. Differentiating Eq.(21) with respect tos
and usingd/ =k X d; gives with
|
C0Sf COS¢ coSy—sing sinys C0sf cosg siny+sing cosyy  —cos¢ sing
S=| —cosé#sing cosy—cosd sinygs  —coshsing sing+cos¢ cosyy  sing sing (27)
sin @ cosys sin@d siny cosé
|
In terms of the Euler angle®, ¢, and ¢, Egs. (25 —CoSyssinks sinyssinks
become .
d,=| cosyscosks |, d,=| —sinyscosks
0" — (' )?sin@cosf+T ¢’ (¢’ + ' cosh)sing sinys COSYS
=—(F, cosy+F, sinyg)cosf+F3 sing, COSKS
d;=| sinks (30)
" sinf+2¢' 6'cosd—T"60' (' + ' cosh) 0
=Fu sing—F, cosy, (28) and the central curve is
7z — 0 0 < —an 1
Y cosf=46'sin6—¢", X(S):;(SinKsel—COSKsez). (31

where we have definel=Xf;d,=XF;g and used the rela-
tion k=3=d;xd/ .
The most simple solution to these equations is

This solution is the famous planar ring configuration. The
meaning of the integration constanisand « is clear: R
=1/k is the radius of the ring andy/ k is the total twist,
i.e., the number of turns of the vectads andd, about the

F=Iyxe;, tangent vectods.
The twist and spin vectors can be readly computed and
0=l2, are given below, together with the expression for the force in

(29) the d; basis:
p=rys+ml2, k=« sinysd;+k cosysd,+ yd;

s =1y COoSkSe;+ysSinkse,+ k ez,
e _ (32)
F=T yk(sinysd;+cosysd,) =Ty« €3,

for 0=s<2x/k. The director basis vectors in the Cartesian

basis are given by w=0.
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We remark that all stationary solutions of the Kirchhoff
equationg19)—(21) are independent df or any fluctuation
that might exist in the distribution of mass along the rod. The
dynamics, however, does depend on these elements. This |n this section we consider only the case of constant den-
means, for instance, that the rod may be driven to differensity, o’ =0 andp=1. Applying this perturbation expansion
equilibria if immersed in different media or had different to the Kirchhoff equations we obtain a system of six equa-
mass distribution. We investigate the effects of viscosity anqmns of second order is andt for the six independent vari-

GW=2 [gM+ (@xG@)1d© . (39)

mass distribution in the next sections. ablesay, ay, as,f), £ and f{). The form of these
equations is not particularly enlightening and, therefore, we
IV. EFFECT OF VISCOSITY IN THE shall not write them down. They involve the variabi®,
HOMOGENEOUS ROD which are the termg(® of Eq. (38) for G=F, andf{®) and

As we mentioned in the Introduction, the effects of non-Ki _» which are théth component of the force and the twist

homogeneities in the mass distribution along a rod can pyector, respecively, in the equilibrium configuration. These

drastically reduced if the Reynolds number of the system jgquations can be formally written as

too small. In this section we shall study the effects of viscos- Le(k(©,§0). =0 (39)

ity alone in the rod dynamics. Nonuniformities in the mass E ' '

density will be treated in the next section. Here we shallypere pn=(ay, a3, 19 1) and Lg is a linear,

adopt the analysis proposed by Goriely and Talirand  socond-order differential operator sand t whose coeffi-

focus on the time-dependent behavior of homogeneous rocfs,ems depend osthrough the stationary solutioik{, ().

in the vicinity of the planar fing equmbnum._ For the planar ring solution, the vectdts o, andF are
Goriely and Tabor present in great detail the method Ofgiven in thed® basis, byk(©®=(« sinys,«c0s5,7), ®

linear analysis of Eqg19)—(21). Here we briefly summarize ~0 a'nd F(O)ZI(F KS""I’}/SF x C0S75,0) ' where' is the

the main steps of the procedure. The basic idea is to expaqgvist density and<y= 1R aﬁdjée is the ,raciius of thg rofisee

the director basisand all dynamical quantities related to the Eq. (32)] Thé equations for: andf: can be further simoli-

system in terms of the director basis of the equilibrium po- ﬁg('j With.the he? of new valriable{Ql] P

sition, theunperturbed basis P

Letd®, i=1,2,3 be the solution of the stationary Kirch- B=R.-a (40)
hoff equations for the twisted planar ring, E0). The per- 7
turbed basig; is written as: and
d=d®+edM+0(e?), =123, (33 g=R,-f1), (41)
where

where e is a small parameter. The correctiods’ are ob-
tained from the Kirchhoff equations and from the require-

. . cosys —sinys O
ment that the perturbed basis remains orthonormal to order _ Y ny
€, i.e.,d;-d;j=&;+O(€?). This implies that the vector") R,=| —sinys —cosys 0 (42)
can be written as 0 0 1
dP=axd®, (34)  This transformation leads to an autonomous set of differen-

tial equations forB andg:
wherea is a vector to be determined. The perturbed rod can

be reconstructed by integrating the tangent vector: B+ b,31=g§,
X(5) = fsd3d3= fs[dg0)+ (2,00~ a,d®)]ds. Bo+bBy+ gy +2kg;—TyxBs+ 2kl yB;
(35) =K1~ kT yBs,
All dynamical quantities are likewise expanded to first order I yxB1+ 03+ 2«°T yB5—2k9;= k?gs+ «°T yf1,
in the perturbation parameter For any such quantit we (43
write Bit+2bB— B1+TyB;—TkBs=(1-T)k*B1+y,
() (1) 2y—(@g? 1y d. . - Y ,
G=GD+eGM+0(e)=(G+eGi)d;  (36) B2t 2bBo—Bo—TyB1=—01+I'ykBs,
H 0 . .
and, in terms ofl;, 2B3+4bB3=TB;—T'kp;.
cO=3 g(©@d(© (37) The general form of periodic solutions f@ and g can be
= | | '
I

obtained in terms of a Fourier analysis:
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Bj:evt(ajeinKS+ c.c), j=1,2,3, (44) pressior_ns into the differential equations @randg leads to
_ a 6X6 linear system
g;=e""(a;.+3€"+c.c), =123, (45)
where c.c. stands faomplex conjugaten is an integer that L-a=0, (46)
defines the mode of the fundamental solutions, and the
characteristic exponent of each mode. Substituting these exthere
|
2i kT yn a?+bo «°T y(1+n?) — k%(1+n?) 0 2ink?
—o’—Dbo 0 0 0 —n?x? 0
—Ty(1+n?) 0 2i kT yn —2ink? 0 —k%(1+n?
L= —k?(T+n?—1)—0?—2bo —iklyn iTk%n 0 1 0 ’
ix['yn —n?k?—0?—2bo kTy -1 0 0
—il«k?n 0 —I'n?,k?—20%+4bo 0 0 0
(47)

The eigenvector corresponding to the null eigenvalue determines the coeffejientae imposition that =detL is zero
determinesr. The determinant can be computed analyically and gives

A=—2k%(n*k?—2n%k?+ %+ 1+ k?)(N?k%+ 1) 0% — 2bk?[6k*N?(— 1+ Nn?)?+ 4(1+n?) +5k%(1—n?+2n%)]o®
— k2[207[12*?(— 1+ n?)2+5(1+n?) +8k3(1—n2+ 2n*) |+ k?n?(2T k*+2n*T k2 — 2k*+T'n?— 10n*k*+ 3T k2
=3I k*n?—4n2k%+ 4n8k*+ 8k*N?+ T+ I'n?k2+ 4n* k2 + T'nbk*) 0% — bk?{4b?[ 1+ n?+ 4k*n?(— 14+ n?)?
+k2(2-2n%+4n*) ]+ k2N [4k%(— 14+ n?)(2k%+ 3n%— 6k°n%+ 4k?n*) + T (24 92+ 8k*+ 2n?+ 3k?n?— 12«*n?
+ 620+ 4xn®) V0P — kN2 k(= 1+ n?)[2k2— T k>+ 2I'n?— 4k*n?—T k?n?+ 2k?n*+ 2I" k?n*
—29T2(—1+n?)]+ b 8k*(— 1+ n?)(k?+n?—3k?n?+2k2n*) + ' (1+ 6%+ 8k*+ N+ 2k%n%— 12«*n°+ 4k%n*
+4kn® 0?4+ 2bkBnt(— 14+ n?)[ —I'n?+29°T%(— 14+ n?) — k?(—1+n?)(—2+T'+2n2+2I'n?)]o

+T k08— 1+ n2)2[ 42T 2— k(- 1+n?)]. (48)

Solutions with real positiver identify the unstable modes. I'=0.9. In all cases we see that the maximum valuedor
These are the most relevant modes, since they grow expaorresponds to the mode=5. This mode, for the above
nentially even for small perturbations. Although the generalparameters is, then, tigincipal mode For largen all modes
solution of the equations of motion is a linear combination ofare damped. Notice that(n=>5) decreases with. Figure 2
these modes, the one with the largest exponent dominates tehows on the left the principal mode=5 for b=0. In this
dynamics and we call ithe principal mode figure the rod has been slightly moved from its unstable

If we setb=0 we recover thelispersion relationthat is  equilibrium position and evolved according to the linearized
presented in Ref[2]. We see that the viscosity does not equations for gscaled time t=130. Forb+ 0, the shape of
change the critical value of the twiStw for which the sta-

tionary solution first becomes unstable. Setting 0 in the c
above relation we obtain 0.05
0.04
0% n’—1 0.03
= - =+ e TN
Tw « I 7 (49) 0.02 ihd )
4 \
0.01 o4
which is independent ab. The lowest mode for which we o .
have an unstable solution is=2 and this leads to Zajac'’s oz o3 4 s 6 78
critical twist: Tw,=/3/T" [11]. FIG. 1. o versusn for a homogeneous rod with= 0 (full line),

In Fig. 1 we see typical plots of versusn for b=0,  b=0.01 (dotted lin@ and b=0.02 (dashed ling In all casesx
0.01, and 0.02 with the parameters-0.05, y=0.375, and =0.05, y=0.375, and’ =0.9.
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<377 FIG. 2. Left: homogeneous rod withc

-376 =0.05, y=0.375,I'=0.9, andb=0 evolved for
.375 t=130. Right: twist densityy,(s) for the same
.374 rod.
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the evolved rod is identical to that shown in this figure for We now can calculate the total twist of the perturbed con-
b=0. The only effect of the viscous medium is to slow figuration through the Eq51). Since theg;(s) are oscilla-
down the dynamics. Ab=0.01, for instance, it takes tory functions of the arclength[see Eqs(44) and(45)] the
=150 to reach the same configuration and fer0.02 it  integral in Eq.(53) is null for the term in orde©(¢€) and the
takest=180. The shape is symmetric with respect to rota-total twist of the perturbed rod is the same of the planar ring:
tions of 277/5 about thez axis for all values ob.
The componenks of the twist vector is the twist density 1 [2wlk 1 (2wlk
¥p(s), along the closed rod in the perturbed configuration. Tw=>— o Yp(S)ds= ﬁfo yds= pr (57)
The expression foty,(s) is
B , ) ©0) The writhing number of the perturbed rod is
Yp(8)= v+ e(az+ aki”—aky”’). (50
) i _ W=Lk—-Tw=0. (58
Using Eqgs.(40), (41), and(42) this can be written as
, Therefore, we choose the twist density, as a function of arc
Yp(S)=y+ e(B3— kpB1). (51 lengths, as the main quantity to show how each cross section

o ) o deforms along the closed rod. Figure 2 also shows, on the
It is interesting to calculate the so-callédking number Lk right, the twist densityy,(s) for the moden=>5.

of the perturbed closed rod. The White's formula defines

[22,23 the Lk as
V. EFFECT OF VISCOSITY IN THE

) . After having studied how the viscosity affects the near
whereTw is thetotal twistof the rod, equilibrium dynamics of the twisted planar ring we introduce
1 (L nonuniformities in the rod, allowing for small variations in

Tw= _f ks(s)ds, (53 the mass dens_ity;, simulating either.fir?e—scale pr'opt_erties

2 Jo that have survived the large scale limit or the binding of

external particles to the filament. For closed rpdsust be a
and W is the writhing numberof a closed space curve. De- periodic function ofs. Here we consider only the simplest
spite the existence of an explicit formula for the writhing type of periodic dependence, namely,
number[22] of any space curve, we calculate it using the
White’s formula(52) because of the topological invariance p(s)=1+cosQ«ks, (59
of the linking number, i.e., the linking number is a constant
for closed rods. Thus, the linking number of the unperturbedvhere / is the perturbation amplitude/&1) andQ is an
configuration(planar ring is the sum of its total twist and its integer parameter that fixes the number of complete oscilla-
writhing number. The writhing number of a planar ring is tions of the density along the rod length=27/xk=27R

zero[23]: [see Eq(17)].
o We start from Eqs(19—(21). Sincep(s)+#0, we multi-
w=0. (54 ply Eq. (19) by p(s):
The total twist is calculated using E¢53) and fork{®= y pF"— pbdg=p' (F' — bX) + pils. (60)

andL=2#/k. We obtain

We rewrite the other two Kirchhoff equations for the sake of
TW(O):%. (55) clarity:
M’ +dsX F—2b(d; X d;+dyxd,)
Then, the linking number is : ) S ) 2
=p(S)(d1><d1+d2><d2), (61)
Y

W (ONRYY ()N
Lk=Tw¥+W PR (56) M =k, d; +k,d,+T'ksds. (62)
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Let us first study the case=0. Equationg60) and(61) into the differential equations fg8 andg leads to an infinite

become dimensional linear system whose matrix is composed of
o 66 blocks labeled by. Once again, the imposition that the
pF"=p'F'+p=ds, (63 determinant of this matrix is zero determines and the
) ) eigenvector corresponding to the null eigenvalue determines
M’ +dsXF=p(s)(dyxd;+d,xd,). (64)  the coefficientsa; ,. If we set the density perturbation pa-

) ) rameter{ to zero, these blocks decouple from each other and
Following the same steps of Sec. Ill we obtain the equane results of Refl2] are recovered. For nonzetahe block

tions forg; and g; for this case n couples to the blocks+Q, n+2Q, ..., etc.[see Eqs(59)
5 y and(63)]. Each previously decoupled modechanges into a

p°B1—pYs+p'9,=0, new, modified mode. In order to find this new moadeu-

. ) , . ) ) merically we have considered only the two nearest blocks to

p B2t p91+2pkg3— T ykpB3+2xT yppBy n, namely,n—Q andn+ Q, reducing the system to a set of
A ;o 18 linear equations. In this approximation all termg fnare
+lykp'B3=p' G neglected.q PP
=k2pgy— k3T ypBa+T yx?p’ By+ kp'Us, Before we show the numerical results for this case, let us

consider the general situation, whér& 0. In this case, Eq.
IykpBy+pgs+ 22T ypBs—2kpgi—Tykp' Bi—p' 05 (60) presents a technical problem, since it has a term propor-
tional tox. The vectorx is the space curve of the rod, with

= k%pGa+ kT ypBr+ T yi’p’ B3—Kp'ga, the property thak’ =d;. One possible approach to treat this
. , (65  equation is to differentiate it once more with respecs tmd
pB1—B1+TYB;—TkB3=(1-T)k“B1+0z, write it entirely in terms of thed; vectors. This, however,
B leads to third-order derivatives &f and introduces spurious
pBa—Bo—TyB1=—01+ 1 ykps, solutions that are hard to control. To avoid these complica-
tions, we opt for writing Eq(60) in the fixed Cartesian basis
2pB3=TB4—T kp;. {e,,e,,e3}. For that, we use the relation between the vectors

d® ande given by Eqs(26), (27), and(29).
For the case of constant density this constitutes a set of To calculatex we consider Eq(35):
autonomous differential equations f8randg. In the present '
case these equations are still nonautonomous, spce
=p(s). However, the general form of periodic solutions for
B and g can still be obtained as a linear combination of
Fourier components: =x%(s)+x(s), (68)

S S
X(s)= f dsds= J [dQP+ e(,dV— ad) ]ds

% A whereq; is written in terms ofg3; using Eq.(40):
ﬁj:eff‘( nzo aj€™+cc, j=1,23, (66 wr— — B, COSyS— B Sinys, 69)
o ay,= 31 COSys— B, sinvys. (70
9j :egt< n§=:0 aj 30" HCe), j=123. (67) Using the series expansion fgrandg, Egs.(66) and (67),

we can perform the integral in E€68) explicitly. We obtain
where c.c. stands faromplex conjugatend o is character-  the following result forx("), considering only the two nearest
istic exponent of the solution. Substituting these expressionsxponents ta, namely,n—Q andn+Q:

e”! an-Q i An-Q i an an
X(l)(s): D , el(n—Q+l)KS+ ’ e|(n—Q—1):<s_ , el(n+1):<s+ ’ el(n—l)xs
2 (n—Q+1)k (n—Q—-1)k (n+1)x (n—1)k
ot

_ 2n+Q i(N+Q+1)xs 4 a2n+Q el +Q-1)ks | ¢ o e — e_[ 82n-Q el (n=Q+1)ks
(n+Q+1)k (n+Q—-1)« 2 |[i(h—Q+1)«

+- 42n-Q ei(n=Q-1)ksy _ &2n el(n+1)rs _ 82n el(n—1)ks _ 42n+Q i(n+Q+1)«s
iNn—Q—-1)« i(n+1)x i(n—1)k i(n+Q+1)k

A2n+Q i _ Ap-Q Ain A1n+Q

+—= T @Mt Q-Drsy e cte,+ el —— =@t Qnrsy _—Tainksy 07X Qi(NHQkS Lo che,.

i(n+Q—1)« € i(n—Q)k ink i(n+Q)« €

(71)
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Then,xM= ox). To write the other terms of E@60) in the
{e1,e,,63} basis we define the following quantities:

A=p®B1+pbB1—pds+p’ds, (72)
B=p?B,+pbB,+pgi+2pkgs—T yrpBs+2k°T ypBy
+Tykp' By—p'91— k*pg1+ °T ypPBs
~Tyk?p’ B1—kp' U3, (73
C=TykpBi+pgs+2cT ypBs—2xpg;—Tyxp' By
—p' 93— 1*pg3— T ypB1—T yx®p' Bs+ kp'gy
(74)
The new three equations for the case~0 andb+ 0 are the
three components of the following vector equation:
—B sinks+ C cosks
B cosks+Csinks | =—gp'bx®. (75)
A

To complete the set of equations we add the last three o
Egs. (65), modified by the addition of terms proportional to
b:

pB1+2bB1— B+TyBs—TkBi=(1-T)k?B1+0y,
pBat2bB—By—TyBi=—01+TykBs,  (76)

2pB3+4bB,=T B5—T ;.

Since we only consider terms with exponentsn—Q,

andn+Q in Egs.(66) and(67), we again have a system of (d) (h)
18 equations for 18 variables , with j=1 to 6 andp=n
—-Q,n,n+Q.

Figure 3 shows the principal mode=5 for the param-
etersk=0.05,y=0.375,I'=0.9,Q=1, andb=0, 0.01, and
0.02. For each value di we show the effect of nonunifor-
mities in the mass density far=0.03, 0.07, and 0.10. The
time necessary for the unstable rod wiik O to attain the
same amplitude as fdr=0 with t=130 is obtained through
the numerical relatiowt=o(b=0)t(b=0)=4.7. Asb in-
creasesp decreases ant] therefore, also increases. In all o )
figures showing rods with nonhomogeneous distribution of F!G: 3. Principal moden=5 for a rod with x=0.05, y
mass, we use a grayscale along the rod to indicate the dep-0-37%: I'=0.9, andQ=1. The viscous coefficienb is 0 for
sity; black represents places where the density is smaléa)_(c)‘ b=0.01 for(d)—(f), and 0.02 for(g)—(i). For each of these
whereas white indicates regions of high density. EerO ets of figures the nonuniformity paramefeis equal to 0'031 0.07,
the shape is symmetric with respect to rotations af/® and 0.10. The evolution time in each case 130 forb=0, t

. - =150 for b=0.01, andt=180 for b=0.02. The grayscale tones
about th? z aX|s_for "?‘” values dfas shown in S(_EC' IlI. As indicate the mass gradient along the rod, which is large when white
the density gradient increases the/2 symmetry is broken .4 small when black.
and the more massive regions of the rod tend to restore the
original planar circular shape, decreasing the writhing. No- Figure 4 shows the time evolution of the ring wibk=0
tice that the substantial difference in the shapes of the figuresnd {=0.1. It is clear from this figure that, as time passes,
from left to right is caused by a change of just 10% in thethe part of ring with lower mass density pops out of the plane
local density. Nevertheless, whdnbecomes much larger and bends while the more massive part stays almost static. In
than o, this effect is strongly damped. Fdr=0.05 (not this case, as in Sec. lll, the writhing number of these curves
shown) the effect of the nonuniform density is negligible. is null. Figure 5 shows the plot of the twist densipy(s)
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FIG. 6. Rod twice as twisted as those in previous figures. Here
xk=0.05, y=0.75,Q=1, t=45, andb=0.05. The density param-
eterZ, from top right to bottom left, is 0, 0.03, 0.07, and 0.10. The
inertial effects would be invisible foyy=0.375.

density parts coil in large loops. Figure 8 shows the effect for
b=0.01 andb=0.02.
(c) ) We have also considered the case where the frequency of
the density oscillation®, is much higher than the frequency
FIG. 4. Time evolution of the principal moda=5 for x  of the last unstable mode/1+1T y?/«2. In this case the ring
=0.05, y=0.375,I'=0.9, Q=1, and{=0.1[see rod in(€)]: (8  pehaves as if the density were constant. This is an interesting
t=0, (b) t=40, (c) t=80, (d) t=105, (¢) t=120, and(f) t=130.  resylt that might be used as a quantitative criterion for ne-
The grayscale tones are the same as in Fig. 3. glecting the structural details of the filament and treat it as a
uniform rod approach.

versus arclengtls for {=0.1 andb=0, 0.01, and 0.02. In
these plots we see the variation of the local twist density with
the arclengtts. The variation is smaller where the mass den- VI. APPLICATION TO DNA
sity is larger, but this effect decreaseshasicreases.

Figure 6 shows a rod with=0.05 andy=0.75, twice as
twisted as before. We see that, now, the symmetry brea
occurs even at high viscosity, showing that the asymmetric
deformation does not depend only on the medium but also or
the applied stresses on the rod.

Figure 7 shows a much larger ring, with radiRs= 1/«
=200. Here,y=0.375,I'=0.9, andb=0. In this case the
principal mode is1=50 and we show the effect of a periodic
oscillation of the density witlQ=10. For the sake of clarity,
only the central curve of the rod is drawn. The c&se 10
replicates the effect shown in Fig. 3; each high-density seg-(a)
ment of the ring tends to a more flat position while the small

In this section, we apply the theory described above to a
gircular DNA with 168 base pairdbps immersed in water.

Risd
0.385

0.375

0.365

20 40 60 80 100 120 °

FIG. 7. Rings ten times larger than those in previous figures.
FIG. 5. Twist densityy,(s) for {=0.1 andb equal 0, 0.01, and Here x=0.005, y=0.375,Q=10, t=185, b=0, and{, from top
0.02 (full, dotted, and dashed lines, respectiyely right to bottom left, is 0, 0.03, 0.07, and 0.10.
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DNA of order 0.1 As?, the Reynolds number becomes
R.=10 1 Using Eq.(15) we can calculate the constant
and we obtairb=1.12< 10" Nm™!s.

The next step is to apply EqéL8) to obtain scaled vari-
ables. The scaleg andb are given by

A AEp,
":"GSC\[T and b=\/|—besc.

For a DNA of length 168 bps we haue=168x1,, where
lo0=3.3 A is the length of a basepdi26]. Then k=2x/L
=113x10° m™L. Since the ratio

\/K ma? 2 1
1 N za%s a 5A
FIG. 8. Same as in Fig. 7 with=0.1 and(a) b=0.01,t=215

and (b) b=0.02,t=250. we find kes=0.057. The mass density of the DNA jg
=Myp/Vgisc= 929 kg m 2 [26] and the Young’s modulug
The choice of this system is motivated by a recent experi=4X10° Nm~2 [14], so thatbes=0.098. The dimension-
ment by Haret al. in short DNA rings 24], where sequences less elastic parameter of the DNA can be takerl'as2/3
of base pairs with intrinsic bending tendency were synthef27]. Finally the twist densityy can be calculated from
tized. The rings were immersed in a solution containingYesc= TW Kesc-
Zn?* and/or Mg ". The authors found that the DNA rings Most plasmids have linking humbers that are about 5%
were always stable in a pure F¥ig solution, but exhibited away from elastic equilibriuni21]. Since theB form of
kinks above a critical concentration of Zh ions (either ~ DNA has an approximate twist of 10.5 bps per turn when
alone or in combination with Mg). This experiment was relaxed, we havé k=16 for the DNA with 168 bps. From
analyzed theoretically by Haijun and Zhong-c5] who  EQ. (49) we see that, even fdr =1, the minimum value of
showed that a possible explanation for these results is thatw for which the ring is unstable i§3=1.73 for the mode
the Zr*" ions enhance the intrinsic curvature of the ring byn=2. On the other hand, 5% afw=16 is 0.8<./3 and,
binding directly to the base pairs, destabilizing the ring. Thetherefore, this DNA minicircle is stable. Indeed, Haijun and
Mg?* ions, on the other hand, have the opposite effect due tZhong-car(25] showed that the kink deformations observed
their binding to the phosphate backbone. in this DNA are caused by bending, and not by twisting.
Although the instabilities observed in these rings appar- The effects of inertial forces, however, are better visual-
ently originate from an excess of bending, and not from arized on unstable rings. We therefore consider here an artifi-
excess of twist, we notice that the atomic mass of Zn is of theial excess of linking number equal to 16, corresponding to
order of 10% of the total base pair masluding the phos- 100% of the natural twist, and a zero spontaneous curvature.
phate$, while that of Mg is only about 4%. Therefore, the Such a ring does not represent those in the experiment of
binding of Zrf* ions to the DNA provides a neat example of Ref.[24], but is just inspired by it.
the type of situation our model may describe. In what fol- Figure 9 shows on the left the plot of versusn for the
lows we wish to show that even at low Reynolds number, aabove parameters. We see that the principal mode=i§.
sufficiently large stress, like a large twist, can enhance th&igure 10 shows the principal mode of the perturbed DNA
effects of the inertial forces derived from such a nonhomo-minicircle for various values of the perturbation amplitude
geneous distribution of mass. £(0, 0.03, 0.07, and 0)1We see that, despite the very low
The Reynolds number for DNA rings in water can bevalue of Reynolds number, the effects produced by the iner-
calculated from Eq.(11). The ratio /p,, for water is tial forces are the same as in Sec. V. The regions with larger
102 cn? s™! [18]. The radius of the cross section of the mass density deform less than those with smaller densities.
DNA is a=10 A. Assuming an average velocity for the ~ Figure 9 also shows on the right the twist density of

c i
0.06 0.93 FIG. 9. Right:o versusn for a DNA ring with
0.04 0.92 x=0.057, y=16k, andI'=2/3. Left: twist den-
0.02 sity yp(s) for this ring after a timet=70 with
0.91 Q=1, {=0.1, andb=0.098 (see next figure,
3 ) 3 § 10 \ \fo s bottom righ}.
-0.02 U
0.89
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The main effect of viscosity on a homogeneous rod, in the
vicinity of the planar ring configuration, is to slow down
motion. The unstable modes of the near equilibrium dynam-
ics keep the same symmetry for all values of the viscous
parameteb studied and the dynamics are almost identical to
that without viscosity, only in slow motion.

This effect is also important for rods with varying mass
density. In this case, however, the unstable modes of the
homogeneous rod problem couple to each other and the
shape of the rod changes qualitatively, breaking the symme-
try of the individual modes. We observe that the higher-
density segments of the rod coil less than the lower-density
parts.

The inertial effects generated by the varying mass distri-
bution competes, however, with those of the viscous forces.
When the viscous parametéris larger than the unstable

FIG. 10. DNA ring withb=0.098 evolved fot=70 and mass exponento the symmetry break is negligible and the rod
non-uniformities of 0, 0.03, 0.07, and 0.10. behaves just like a uniform filament in a very viscous me-

) ) o dium. We found, however, that even at very low Reynolds
the perturbed rod/,(s). Again, the amplitude of variation of nymbper, a large value of the twist density of the rod tends to
vp(s) is of the same order as in the examples considered iBnhance the effect of the inertial forces, reviving the cou-
Sec. V-_ ] ] pling between modes and the symmetry breaking. We there-

We finally notice that, although the theory in Ré25]  fore conclude thathe asymmetric deformations resulting
does account for the onset of instability of the DNA rings in from inertial forces induced by a nonuniform distribution of
the experiment of Hawt al,, it does not explain the asym- mass do not depend exclusively on the Reynolds number, but
metric shapes exhibited by most of the kinked rings shown irj|sg on the applied stresses on the rod
Ref.[24]. Our results suggest that this asymmetry is due to As an interesting example, we applied our model to a
nonuniformities in the rings, either intrinsic or induced by DNA minicircle of 168 basepairﬁbpg with zero intrinsic

the binding of ions. curvature and 100% of twisting excess. In DNA molecules,
the difference in mass between the basepairs is always less
VII. CONCLUSIONS than 0.5%. The DNA, therefore, has an approximate uniform

The Kirchhoff model of rods is a very powerful frame- mass density. Nonuniform mass distribution may, however,

work to study the dynamics of elastic filaments. It allows onereSUIt from the binding of proteind4,28,29 or ions[25] to

to treat a large variety of situations where the rod might bethe DNA'. Since the'|nteract|on Of.DNA S W'th these parpclgs
e very important in processes like transcription, replication

: o r
subjected to external forces and nonhomogeneities. In ma %6] and in the action of the repressdo], our approach

cases of interest, including biological molecules, the fila-mi ht brina new insiahts to the dvnamics of these processes
ments are immersed in a viscous medium with small Rey- g 9 . g y P
when the DNA is subjected to large stresses.

nolds number. In this paper, we start from the general form In macroscopic svstems. like those found in endineerin
of the Kirchhoff equations and we incorporate external vis- pic sy ’ g 9

cous forces explicitly. In this framework, we have studiedthe Reynolds number is much larger than those found in

: : L : Eiological systems. The results described here are then di-
the balance between viscosity and the inertial forces induce L otlv aoplicable withh~0 . We finallv notice that. when the
by a nonhomogeneous distribution of mass along the ro Y app I " y Lo
requency of oscillations in the mass density is larger than

We showed that the equations determining the equilibriu
configurations are independent of both the viscosity and thi'€ 1ast unstable modey=y1+1I'y"/x ~\Tylx, the rod
mass distribution, although the dynamics does usually de_ehaves as if the density was constant.

pend on these elements. Instead of solving the full nonlinear
partial equations of the model, we restricted ourselves to the
study of the dynamics in the vicinity of the simplest equilib-  This work was partially supported by the Brazilian agen-
rium configuration of the system, the so-called twisted planacies FAPESP, CNPq, and FINEP. It is a pleasure to thank
ring. This was done using the method developed by GorielfProfessor O. Teschke for his suggestions and critical reading
and Tabor. The results we obtained are summarized belowof our manuscript.

ACKNOWLEDGMENTS

[1] A. Goriely and M. Tabor, Phys. Rev. Left7, 3537(1996. A.R. Chouduri, Astron. Astrophy72, 621 (1993.

[2] A. Goriely and M. Tabor, Physica @05, 20 (1997); 105, 45 [4] M.D. Barkley and B.H. Zimm, J. Chem. Phy§0, 2991
(1997. (1979; Y. Yang, |. Tobias, and W.K. Olsoribid. 98, 1673

[3] J.P. Keener, J. Fluid Mecl211, 629 (1990; S. Da Silva and (1993; Y. Shi and J.E. Hearsibid. 101, 5186 (19949; J.F.

016611-12



NEAR EQUILIBRIUM DYNAMICS OF NONHOMOGENEOLS . .. PHYSICAL REVIEW E 63 016611

Marko and E.D. Siggia, Phys. Rev.32, 2912(1995. [19] L. Landau and E. LifchitzMécanique des Fluide$Editions

[5] T. Schlick, Curr. Opin. Struct. Biol5, 245 (1999; W.K. OI- Mir, Moscow, 197).

son, ibid. 6, 242(1996. [20] R. Kh. ZeytounianLes Modées Asymptotiques de la da-
[6] R.E. Goldstein and S.A. Langer, Phys. Rev. L&, 1094 nigue des Fluides ]I Lecture Notes in Physics Vol. 276
(1995; (Springer-Verlag, Berlin, 1987
[7] C.W. Wolgemuth, T.R. Powers, and R.E. Goldstein, Phys[21] J.F. Marko and E.D. Siggia, Phys. Rev5g, 2912(1995.
Rev. Lett.84, 1623(2000. [22] J.H. White, Am. J. Math91, 693(1969.

[8] I. Klapper, J. Compute Phy425 325 (1996. [23] F.B. Fuller, Proc. Natl. Acad. Sci. U.S.A5, 3557 (1978.

[9] J. Coyne, IEEE J. Ocean Engb, 72 (1990. [24] W. Han, S.M. Lindsay, M. Dlakic, and R.E. Harrington, Na-
[10] E.E. Zajac, Bell Syst. Tech. 36, 1129(1957). ture (London 386, 563(1997; W. Han, M. Dlakic, Y.-J. Zhu,
[11] E. E. Zajac, J. Appl. Mech29, 136 (1962. S.M. Lindsay, and R.E. Harrington, Proc. Natl. Acad. Sci.
[12] Y. Sun and J.W. Leonard, Ocean. Er2, 443(1997). U.S.A. 94, 10 565(1997.

[13] M.A. Vaz and M.H. Patel, Appl. Ocean Re2Z2, 45 (2000. [25] Zhou Haijun and Ou-Yang Zhong-can, J. Chem. PHyK),
[14] M.M. Gromiha, M.G. Munteanu, I. Simon, and S. Pongor, 1247(1999.
Biophys. Chem69, 153 (1997. [26] T. Lipniacki, Phys. Rev. B0, 7253(1999.
[15] M.G. Munteanuet al,, TIBS 23, 341(1998. [27] M.E. Hogan and H. Austin, Natur@.ondon 329 263(1987).
[16] R.S. Manning, J.H. Maddocks, and J.D. Kahn, J. Chem. Phyd.28] R.A. Grayling, K. Sandman, and J. Reeve, FEMS Microbiol.
105 5626(1996. Rev. 18, 203(1996.
[17] E.H. Dill, Arch. Hist. Exact. Sci44, 2 (1992; B.D. Coleman [29] H. Robinsonet al, Nature(London 392, 202 (1998.
et al, Arch. Ration. Mech. Anal121, 339(1993. [30] A. Balaeff, L. Mahadevan, and K. Schulten, Phys. Rev. Lett.
[18] E.M. Purcell, Am. J. Phys45, 3 (1977. 83, 4900(1999.

016611-13



