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Rio de Janeiro, Brazil

Received 22 June 1999

Abstract. A model is investigated where a monochromatic, spatially homogeneous laser field interacts
with an electron in a one-dimensional periodic lattice. The classical Hamiltonian is presented and the
technique of stroboscopic maps is used to study the dynamical behavior of the model. The electron motion
is found to be completely regular only for small field amplitudes, developing a larger chaotic region as the
amplitude increases. The quantum counterpart of the classical Hamiltonian is derived. Exact numerical
diagonalizations show the existence of universal, random-matrix fluctuations in the electronic energy bands
dressed by the laser field. A detailed analysis of the classical phase space is compatible with the statistical
spectral analysis of the quantum model. The application of this model to describe transport and optical
absorption in semiconductor superlattices submitted to intense infrared laser radiation is proposed.

PACS. 78.90.+t Other topics in optical properties, condensed matter spectroscopy and other interactions
of particles and radiation with condensed matter – 05.45.-a Nonlinear dynamics and nonlinear dynamical
systems

1 Introduction

The search for systems whose dynamical behavior can
be fine tuned by one or more external parameters has
been an important activity in the field of chaos in the
last decades [1]. The kicked rotor [2] has emerged as the
paradigm model of a periodically driven system whose mo-
tion depends strongly on the strength of the external per-
turbation. The study of this particular model allowed us
to understand phenomena such as the dynamical localiza-
tion of atoms interacting with microwave radiation in an
optical trap [3].

For time-independent, Hamiltonian systems, one has
also extensively searched for situations where the dynam-
ics is a sensitive function of a single parameter. Common
situations occur when two integrable potentials are cou-
pled to form a nonintegrable system. One case of par-
ticular interest, both theoretically and experimentally, is
the hydrogen atom in the presence of a uniform magnetic
field [4], since the limiting cases of zero magnetic field and
zero Coulomb force are exactly solvable.

In this work we study a model describing the mo-
tion of an electron in a one-dimensional periodic poten-
tial in the presence of an external monochromatic laser
field. The most accessible experimental realization of this
model occurs in semiconductor superlattices (multiple
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quantum-well structures) irradiated with intense infrared
laser pulses.

We have considered a one-dimensional time-periodic
effective classical Hamiltonian describing the interaction
of an intense laser field with an electron in a 1-D periodic
lattice. We show that the effective Hamiltonian is inte-
grable in the limiting case of zero field strength. As the
field strength becomes larger, the behavior of the classical
orbits become increasingly chaotic. For strong fields the
Hamiltonian is invariant under a scaling transformation
involving the electron momentum, the average energy of
the Hamiltonian, and the field strength. Therefore, to un-
derstand the whole range of laser intensities it is necessary
only to study the weak and intermediate field regimes.

In order to propose a physical realization of this model
situation we have studied the quantum counterpart of the
classical Hamiltonian. Through numerical simulations, we
found that typical signatures of quantum chaos, such as
level repulsion and spectral rigidity, are present for inter-
mediate and large values of field strengths. Based on the
energy level statistics observed, it was possible to iden-
tify a weak (Poisson) and a strong (Wigner-Dyson) level
correlation regime as the laser intensity increases. The sta-
tistical spectral analysis approach, which provides strong
evidence of chaotic and regular behaviors, can be com-
pletely understood in the light of the classical model.

This paper is organized as follows. In Section 2 we
present the classical model and study the dynamics of
the system as a function of the laser field strength using
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the technique of stroboscopic maps. In Section 3 we derive
the quantum model and compare the classical results. A
discussion on possible experimental observations is given
in Section 4. Finally, Section 5 is dedicated to the conclu-
sions.

2 The classical model

Consider the Hamiltonian describing an electron in a 1-
D periodic potential under the action of an applied ho-
mogeneous monochromatic laser field. The laser field can
be represented by a time-dependent vector potential (in
the dipole approximation) minimally coupled to the elec-
tron. In this limit, the laser field is not affected by the
electron motion and the vector potential acts as a time-
periodic external force. The lattice potential is periodic
and can be written in terms of a sum over reciprocal vec-
tors G` = 2π`/d, with d denoting the lattice constant and
` = 0,±1,±2, . . . . Explicitly,

H(p, q) =
1

2m

[
p− e

c
A0 cos(ωt)

]2
− 2

∞∑
`=1

σ` cos (`G1q) .

(1)

The term proportional to A2
0 in H yields a pure time-

dependent factor that does not affect the equations of
motion of the electron. Therefore, this term can be elim-
inated and the classical motion can be obtained from the
effective Hamiltonian

Heff(p, q) =
p2

2m
− 2

∞∑
`=1

σ` cos (`G1q)

+
eA0p

mc
cos(ωt). (2)

In order to compare the results of the classical calcula-
tions with the quantum analysis shown bellow, we first
introduce suitable energy and frequency scales into the
problem: ε ≡ ~2G2

1/2m and ~ω = εω0, such that the di-
mensionless lattice potential strength becomes σ0

` ≡ σ`/ε.
This naturally leads to a new pair of canonically conjugate
variables

P =
~√
mε

p

and

Q =
√
mε

~
q

and a new time scale τ ≡ εt/~. The resulting equations of
motion for P (τ) and Q(τ) can be derived from the rescaled
Hamiltonian

H(P,Q) =
(P/~)2

2
− 2

∞∑
`=1

σ0
` cos

(
`
√

2Q
)

+
xω0(P/~)√

2
cos(ω0τ), (3)

where x ≡ eA0G1/ωmc. The total energy associated to
the effective Hamiltonian in equation (2) is related to
the rescaled (dimensionless) energy E(τ) by Eeff(t) =
ε E(εt/~). The dimensionless parameter x characterizes
the laser intensity. For numerical estimates, it can be ex-
pressed in the more appropriate form

x =
(
λ

d

)√
nrI

IC
, (4)

with I = nrω
2A2

0/8πc and nr denoting the refraction in-
dex of the medium. The quantity IC = m2ω2c3/8πe2 is the
Compton intensity, i.e., IC = 1.37× 1018 × λ−2 [W/cm2],
with the laser wavelength λ given in µm.

Since the potential is a periodic function of Q,Q and P
are angle and action variables, respectively, with P having
units of ~. Thus, hereafter, we shall drop the ~ in equa-
tion (3) and understand that P is measured in units of
~. We shall also restrict Q to the primitive cell interval
−π/
√

2 to π/
√

2.
In order to carry out our analysis, we will consider only

the first three reciprocal components of the periodic lattice
potential in equation (3). There is nothing special about
this choice and it just represents a possible truncation of
the well-known Kronig-Pennig potential. The number of
components is taken to be relatively small in order to facil-
itate the numerical simulations; at the same time, it is also
sufficiently large to allow for the existence of a nontrivial
classical dynamics. For similar reasons, in all numerical
calculations (classical and quantum) in this work we shall
adopt σ0

` = σ0 = 0.25 (for −3 ≤ ` ≤ 3) and ω0 = 0.3.
Figure 1 displays stroboscopic maps for the classical

system defined by equation (3) at different laser intensi-
ties. These maps are generated by plotting the coordinates
Q and P at discrete times τn = 2πn/ω0, n = 0, 1, 2, . . . ,
producing a sequence of points (Qn,Pn). Each initial con-
dition (Q0,P0) gives rise to a different sequence. If these
points fall on a one-dimensional curve, the trajectory lies
on a cylinder in the extended (Q,P, τ) phase space and is
said to be regular. If, on the other hand, the points cover
a two-dimensional area of the QP plane, the trajectory
is said to be irregular or chaotic. Figure 2 shows contour
levels of the Hamiltonian for x = 0.

Let us now discuss the classical motion arising from
equation (3) in terms of stroboscopic maps for different
laser intensities. For x = 0, Figure 1a, the map is inte-
grable and all points lie on 1-D curves. The wells centered
at Q = P = 0 and P = 0, Q ' ±1.5, trap low-energy elec-
trons, whereas those with higher energies, above or bellow
these trapping islands, move along the lattice from left to
right (positive P ) or from right to left (negative P ). These
trajectories are clearly related to the conduction proper-
ties of the material. In Figure 2 the numbers close to the
curves indicate the value of E . For x 6= 0, only average en-
ergies can be defined: above the islands, they are roughly
equal to the kinetic term alone, since the other terms have
an oscillatory behavior.

For slightly larger intensities, a small amount of chaos
begins to permeate the region where the separatrices
involving the islands used to be. This effect is clearly
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Fig. 1. Stroboscopic maps of the Hamiltonian in equation (3) for (a) x = 0, (b) x = 1, (c) x = 10, and (d) x = 100. See main
text for a discussion.
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Fig. 2. Contour plots of the Hamiltonian in equation (3) for
x = 0.

visible in Figure 1b, where x = 1. In the new chaotic
zone, the electromagnetic field shakes the electron, forcing
it to move in opposite directions intermittently, inhibit-
ing charge transport through the crystal. Figure 3 shows
typical electron trajectories for chaotic (lower curve) and
regular (upper curve) regimes when x = 1. These trajec-
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Fig. 3. Classical electron trajectories for x = 1. The upper
curve is a regular trajectory for the initial conditions Q =
0, P = 3 and propagation time = 50. The lower curve is a
chaotic trajectory for the initial conditions Q = 0, P = 1.9
and propagation time = 500.

tories are related to different initial conditions. Note that
the chaotic trajectory is restricted to a narrower range of
Q-values in comparison to the regular trajectory, which
extends over a much wider Q region.
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For x = 10, Figure 1c, a rather large chaotic zone
develops at |P | ≤ 3.5. Figure 1d shows that for x = 100,
the region close to |P | = 0 becomes dominated by chaotic
trajectories. Notice that the maps for x = 10 and x =
100 are almost identical at large |P |. This is due to the
existence of a quasi scaling law in the classical motion:
For x � 1, one can discard the periodic potential and
change P → αP and x → αx, rescaling E → α2E . As
a consequence, it is possible to infer that for very strong
field intensities the regime will be predominantly chaotic,
even at (relatively) low energies.

From the figures and the equations of motion, for any
given value of x, it is easy to see that P tends to a constant,
provided its initial value is sufficiently large. Moreover, at
x = 0 the average energy also becomes equal to a constant
since the average of the coupling term becomes negligible.
The small P region, on the other hand, is largely affected
by the electromagnetic field and the lattice potential if x
is not too small.

3 The quantum model

The quantum Hamiltonian corresponding to the classical
model of Section 2 can be written in the form

H = Hk +Hint, (5)

where

Hk =
p2

2m
− 2

3∑
`=1

σ` cos (`G1q)

= − ~
2

2m

(
d

dq
+ ik

)2

− 2
3∑
`=1

σ` cos (`G1q) (6)

and

Hint =
e

mc
A(t)p+

e2

2mc2
A(t)2, (7)

with

A(t) = A0 cosωt (8)

(notice that m here is the free electron mass). In these
equations we have used Bloch’s theorem to decouple the
Hamiltonian into reduced components, which we denote
by the label k. We can transform H into a Floquet Hamil-
tonian HF by using as a basis the eigenstates |`, n〉 ≡
|G` + k, n〉. The Bloch-Floquet states fully incorporate
the symmetries of the original Hamiltonian: G and n are
associate to the discrete space translations of the lattice
vectors and time translations of the vector potential, re-
spectively. One can then show [5,6] that the spectrum of
H follows from the diagonalization of the Bloch-Floquet
matrix

〈`′, n′|HF|`, n〉 =
[
n~ω +

~2(G` + k)2

2m

]
δ`,`′δn,n′

+ Jn′−n

(
eA0

ωmc
(G` −G`′)

)
σ`−`′ , (9)

where Jn is the Bessel function of order n and σ` = σ for
−3 ≤ ` ≤ 3, and zero otherwise. The eigenvalues of the
Floquet Hamiltonian are quasi-energies but, for simplicity,
will be referred to as energies. The units and conventions
are the same as those defined in Section 3.

We carry out quantum calculations considering a
plane-wave basis set with a finite number of G`: −`max ≤
` ≤ `max, which leads to a (2`max + 1)–band model in the
absence of the laser field. We take `max = 3 in most cal-
culations presented below, which corresponds to a seven-
band model. The choice of a finite number of bands to de-
scribe a real crystal is justified, since highly excited bands
(differing from the Fermi level by an amount larger that
the work function of the material) can never be accessed
due to the photoelectric effect. In the absence of the laser
field, the electronic energy levels of (5) consist essentially
of the free-electron parabola folded into the first Brillouin
zone, plus gaps opening at the crossing points (k = 0
and ±G1/2). Inclusion of the laser field produces a dress-
ing effect in the bands, which may be described by replica
bands translated by nω0 for integer values of n. The values
adopted for σ0 and ω0 are such as to strongly mix the repli-
cas forming the dressed bands. The interactionHint causes
an anticrossing whenever two noninteracting replica bands
cross. Our calculations also involve truncation of the basis
set into a finite number of n-values: |n| ≤ nmax. The value
of nmax is chosen such as to guarantee the completeness
of the replica-bands within the energy range of interest,
and consequently convergence in the calculation of spec-
tral properties (see discussion below).

Figure 4 shows the dressed bands spectrum for the en-
ergy range 1 < E < 5 at x = 0, x = 1, and x = 10
(as mentioned before, in a real situation the appropriate
range of energy would be defined by the Fermi energy and
the work function of the material). For this energy range,
nmax = 40 is sufficient to achieve saturation in the repli-
cas. For x = 0 no level repulsion is observed while for
x = 1 some structure in the energy bands is clearly iden-
tified. For x = 10 the spectrum reveals an intricate level
repulsion structure which resembles those characteristic of
quantum chaotic regimes in other systems [1]. All the main
features of the classical stroboscopic map can be inferred
from these spectra. For all energies we can observe that, as
x increases, the anticrossing and enhanced level repulsion
among the electronic bands leads to narrower minibands.
From elementary band theory, narrow bands are always
associated to poor transport properties. For example, in
a standard tight-binding scenario, the band width is pro-
portional to the hopping matrix element between atomic
orbitals (equivalent to Wannier functions in the present
plane-waves description) centered at neighboring lattice
sites. Smaller values of this hopping element indicate a
tendency towards localization, which, in the correspond-
ing classical motion, appears as trajectories confined to
a narrower range of Q values (recall similar discussion in
Sect. 3 with respect to Fig. 3).

These trends are confirmed by a quantitative analy-
sis of the spectral fluctuations. We recall [1] that weak
and strong interlevel correlations have been associated
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Fig. 4. Energy bands for (a) x = 0, (b) x = 1, and (c) x = 10 calculated with parameters `max = 3 and nmax = 40.
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Fig. 5. Nearest neighbors statistics (NNS) for (a) x = 0, (b) x = 1, and (c) x = 10 for `max = 3 and nmax = 40. The dashed
lines are Poissonian distributions while the solid lines correspond to GOE distributions of level spacings.

with classically regular and chaotic behaviors, respec-
tively. The latter is usually described at the quantum level
by the Gaussian ensembles of random matrix theory [7].

In Figure 5 we present the distribution of nearest-
neighbor level spacings (NNS) obtained for increasing val-
ues of the field intensity parameter x, with bands con-
fined to the energy interval 1 to 5. For x = 0 (Fig. 5a)
the NNS distribution is very close to an exponential (the
Poisson law), demonstrating the lack of short-range corre-
lation between levels. The corresponding classical momen-
tum varies roughly from −3 to 3 for this energy interval.
For x = 1 (Fig. 5b) a crossover regime appears in which
the NNS is neither Poissonian nor GOE-like [8]. However,
for x = 10 (Fig. 5c) the Wigner surmise provides a very

accurate fit, as expected from the classical analysis. The
curves obtained for the least square deviation ∆3 [7] (not
shown) lead to a similar interpretation with respect to
large-range correlations.

We now discuss the robustness of our results with
respect to the basis set truncation, i.e., the influence of
the cutoff parameters defining the range of ` and n val-
ues in the calculations presented above. Figure 6 presents
the NNS for x = 10. Figure 6a is obtained considering a
plane-waves basis cutoff for `max = 1, while Figure 6b
refers to `max = 5. Note that the results in (a) and (b) are
essentially the same, and also very similar to Figure 5c, il-
lustrating that the plane-wave basis cutoff is not a relevant
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Fig. 6. Dependence of the nearest neighbors statistics (NNS)
for x = 10 on the number of plane waves `max. The histograms
correspond to (a) `max = 1, nmax = 40, and (b) `max = 5,
nmax = 60, i.e., 3 and 11 electronic bands models, respectively.
These results, together with Figure 5c, illustrate the robustness
of our results with respect to the basis set truncation parame-
ters.

parameter. This fact supports that the conclusions drawn
from our model, where only a finite number of bands is
incorporated, should be applicable to real experiments.
For a given energy range, nmax must be taken sufficiently
large to guarantee convergence. Since, in the absence of
the laser field, the full spectrum associated to larger values
of `max covers a wider range of energies, the adopted value
of nmax increases with `max. Thus nmax = 60 is required
if we consider `max = 5, while for `max = 3, nmax = 40
already leads to converged results. The results presented
in Figure 6 show that the choice of the basis set cutoff
parameters must take into account the energy range of
physical interest. Our main conclusions about the system
dynamics inferred from the quantum simulations are well
understood from the classical analysis. Therefore, quan-
tum and classical results are completely compatible.

4 Experimental aspects

The scheme proposed here is suitable to model the physics
of high-quality semiconductor vertical superlattices in the
presence of intense monochromatic light radiation [10].
In order to make the connection we replace the one-
dimensional potential by the superlattice potential. It
would not be computationally harder to introduce a few
more reciprocal components to obtain a V (q) in closer

resemblance to that of a superlattice. We found, how-
ever, that increasing the number of components did not
change our results qualitatively. Thus, the only necessary
(and crucial) modification is to replace the free electron
mass in equations (6, 7) by the effective mass associated
to the material m∗. This requires a redefinition of the
parameter x as well, namely,

x =
(
λ

d

)( m
m∗

)√ I

nrIC
· (10)

For a specific application, let us assume a CO2 laser with
λ = 10.6 µm (~ω = 117 meV) and a GaAs–AlxGa1−xAs
(x ≈ 0.3) heterostructure of lattice constant d = 76 Å.
This choice leads to ~ω = 0.3ε. The other parameters
take the values m∗ ≈ 0.067m, nr ≈ 3.4, ε ≈ 390 meV,
σ ≈ 97 meV, and IC ≈ 1.2× 1016 W/cm2. We thus find
the relation

x2 ≈ I

9.4× 107 W/cm2
· (11)

Under these conditions, the laser intensity necessary to
produce strong coupling, namely, x ≈ 10, is of the order
of 1010 W/cm2. Such intensity is experimentally accessible
and does not cause irreversible damage to the heterostruc-
ture [11]. Nevertheless, one should have in mind that not
all parameters are fixed by the choice of lattice constant
and laser frequency. The well width can still be chosen in-
dependently (implying in a modification of the ratio σ/ε).
The values chosen above only represent the strong mixing
(chaotic) situation compatible with our numerical simula-
tions. Of course, decreasing the intensity would make the
system no longer chaotic.

We believe that the transition between regular and
chaotic behaviors can manifest itself in at least two ways.
As previously discussed, the onset of chaos is related to
a narrowing of the electronic bands, causing a decrease
in the mobility along the superlattice direction. As a re-
sult, transport measurements should reveal a maximum
of the transverse conductivity when the laser intensity is
small. Another effect of chaos appears in the strong mix-
ing between energy bands. Optical transitions which were
initially forbidden when no light is shone into the het-
erostructure should become observable at high laser field
intensities. One could, in principle, irradiate the super-
lattice with a pump laser and measure the intensity of
a large set of these new absorption lines using a second
(much weaker) probe laser [11]. The histogram of oscil-
lator strengths thus generated should fall into a univer-
sal curve predicted by random matrix theory [12] when
x ≈ 10.

5 Conclusions

We have studied the interaction of a quantized laser field
with an electron in a 1-D lattice. The classical dynamics
of Hamiltonian which describes the problem was analyzed
through the stroboscopic map technique. We found that a
transition from regular to chaotic motion can be obtained
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by increasing the laser field intensity. The main signature
of such transition would be a large change in the electron
mobility, leading to a suppression of charge conductance
in the irradiated material. An experimental realization of
the model is a laser interacting with a superlattice. The
conditions which must be fulfilled for the laser and the
lattice parameters are compatible with the experimental
possibilities. This implies the use of infrared lasers and
superlattices of periodicity around 100 Å.

This work was partially supported by the Brazilian agen-
cies Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico (CNPq), Financiadora de Estudos e Projetos
(FINEP), and Fundação Universitária José Bonifácio (FUJB-
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