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Abstract
Semiclassical approximations for tunnelling processes usually involve complex trajectories
or complex times. In this paper, we use a previously derived approximation involving only
real trajectories propagating in real time to describe the scattering of a Gaussian wavepacket
by a finite square potential barrier. We show that the approximation describes both tunnelling
and interferences very accurately in the limit of small Planck’s constant. We use these
results to estimate the tunnelling time of the wavepacket and find that, for high energies,
the barrier slows down the wavepacket but that it speeds it up at energies comparable to
the barrier height.

PACS numbers: 03.65.Sq, 31.15.Gy

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The success of semiclassical approximations in molecular and
atomic physics or theoretical chemistry is largely due to its
capacity to reconcile the advantages of classical physics and
quantum mechanics. It manages to retain important features
which escape the classical methods, such as interference and
tunnelling, while providing an intuitive approach to quantum
mechanical problems whose exact solution could be very
difficult to find. Moreover, the study of semiclassical limit
of quantum mechanics has a theoretical interest of its own,
shedding light into the fuzzy boundary between the classical
and quantum perspectives.

In this paper, we will apply the semiclassical formalism
to study the scattering of a one-dimensional (1D) wavepacket
by a finite potential barrier. In the case of plane waves, the
tunnelling and reflection coefficients can be easily calculated
in the semiclassical limit, giving the well-known WKB
expressions [1]. For wavepackets, however, the problem is
more complicated and few studies have addressed the question
from a dynamical point of view [2–4]. The time evolution of a
general wavefunction with initial conditionψ(x,0)= ψ0(x)

can be written as

ψ(x, T)= 〈x|K (T)|ψ0〉 =

∫
〈x|K (T)|xi 〉 dxi 〈xi |ψ0〉, (1)

where K (T)= e−iHT/h̄ is the evolution operator andH is
the (time independent) Hamiltonian. The extra integration
on the second equality reveals the Feynman propagator
〈x|K (T)|xi 〉, whose semiclassical limit is known as the Van
Vleck formula [5] (see next section). When the Van Vleck
propagator is inserted in equation (1), we obtain a general
semiclassical formula which involves the integration over the
‘initial points’ xi :

ψsc(x, T)=

∫
〈x|K (T)|xi 〉Van−Vleck dxi 〈xi |ψ0〉. (2)

If this integral is performed numerically one obtains very good
results, specially as ¯h goes to zero. However, doing the integral
is more complicated than it might look, because for eachxi

one has to compute a full classical trajectory that starts atxi

and ends atx after a timeT , which may not be a simple task.
Alternative methods involving integrals over initial conditions
(instead of initial and final coordinates) in phase space have
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also been developed and shown to be very accurate [6–8]. All
these approaches sum an infinite number of contributions and
hide the important information of what classical trajectories
really matter for the process.

In a previous paper [9], several further approximations for
this integral were derived and applied to a number of problems
such as the free particle, the hard wall, the quartic oscillator
and the scattering by an attractive potential. The most accurate
(and also the most complicated) of these approximations
involves complex trajectories and was first obtained by Heller
and collaborators [10, 11]. The least accurate (and the simplest
to implement) is known as the thawed gaussian approximation
(TGA), and was also obtained by Heller [12]. It involves
a single classical trajectory starting from the centre of the
wavepacket. However, other approximations involving real
trajectories can be obtained [4, 9, 13]. These are usually not
as accurate as the complex trajectory formula, but are much
better than the TGA and can be very good in several situations.
Moreover, it singles out real classical trajectories from the
infinite set in equation (2) that can be directly interpreted as
contributing to the propagation.

In this paper, we apply these real trajectory approxima-
tions to study the tunnel effect. Since this is a purely quantum
phenomena, it is a very interesting case to test the semiclassi-
cal approximation and to understand what are the real trajec-
tories that contribute when the wavepacket is moving ‘inside’
the barrier. More specifically, we will consider the propaga-
tion of a Gaussian wavepacket through a finite square barrier.
We shall see that the semiclassical results are very accurate,
although some important features of the wavepacket propaga-
tion cannot be completely described.

This paper is organized as follows: in the next section, we
review the semiclassical results derived in [9], which are the
starting point of this study. Next, we describe the evolution
of a Gaussian through a square potential barrier in its three
separate regions: before, inside and after the barrier. Finally
in section 4, we discuss the calculation of tunnelling times,
as proposed in [2]. We find that the barrier slows down the
wavepacket at high energies, but that it speeds it up at energies
comparable to the barrier height. Finally, in section 5, we
present our conclusions.

2. Approximation with complex and
real trajectories

One important class of initial wavefunctions is that of
coherent states, which are minimum uncertainty Gaussian
wavepackets. In this paper, we shall consider the initial
wavepacket|ψ0〉 as the coherent state of a harmonic oscillator
of massm and frequencyω defined by

|z〉 = e−1/2|z|2ezâ†
|0〉, (3)

where |0〉 is the harmonic oscillator ground state,â† is the
creation operator andz is the complex eigenvalue of the
annihilation operatorâ with respect to the eigenfunction
|z〉. Using the position and momentum operators,q̂ and p̂
respectively, we can write

â†
=

1
√

2

(
q̂

b
− i

p̂

c

)
, z =

1
√

2

(q

b
+ i

p

c

)
, (4)

where q and p are real numbers. The parametersb =

(h̄/mω)1/2 andc = (h̄mω)1/2 are the position and momentum
scales respectively, and their product is ¯h.

In order to write the Van Vleck formula of the Feynman
propagator, we need to introduce the tangent matrix. LetS≡

S(x f , T; xi ,0) be the action of a classical trajectory in the
phase space(X, P), with xi = X(0) andx f = X(T). A small
initial displacement(δxi , δpi ) modifies the whole trajectory
and leads to another displacement(δx f , δp f ) at time T . In
the linearized approximation, the tangent matrixM connects
these two vectors of the phase space

δx f

b
δp f

c

 =

 −
Si i

Si f
−

c

b

1

Si f

b

c

(
Si f − Sf f

Si i

Si f

)
−

Sf f

Si f



δxi

b
δpi

c



≡

(
mqq mqp

mpq mpp

) 
δxi

b
δpi

c

 , (5)

where Si i ≡ ∂2S/∂x2
i , Si f ≡ ∂2S/∂xi ∂x f ≡ Sf i and Sf f ≡

∂2S/∂x2
f . In terms of the coefficients of the tangent matrix,

the Van Vleck propagator is [5]

〈x f |K (T)|xi 〉Van−Vleck =
1

b
√

2πmqp

× exp

[
i

h̄
S(x f , T; xi ,0)− i

π

4

]
. (6)

For short timesmqp is positive and the square root is well
defined. For longer timesmqp may become negative by going
through zero. At these ‘focal points’ the Van Vleck formula
diverges. However, sufficiently away from these points the
approximation becomes good again, as long as one replaces
mqp by its modulus and subtracts a phaseπ/2 for every focus
encountered along the trajectory. We shall not write these
so-called Morse phases explicitly.

Assuming some converging conditions, the stationary
phase approximation allows us to perform the integral over
xi in equation (2) (for more details, see [9]). We obtain

ψ(z, x f , T)sc =
b−1/2π−1/4√
mqq + imqp

exp

[
i

h̄
S(x f , T; x0,0)

+
i

h̄
p(x0 − q/2)−

(x0 − q)2

2b2

]
, (7)

where x0 is the value of the initial coordinatexi when the
phase of the propagator is stationary. It is given by the relation

x0

b
+ i

p0

c
=

q

b
+ i

p

c
where p0 = −

(
∂S

∂xi

)
x0

. (8)

The end point of the trajectory is still given byX(T)= x f .
In spite of q and p being real,x0 and p0 are usually com-
plex. This implies that the classical trajectories with initial
positionx0 and momentump0 are complex as well, even with
x f ∈ R. Equation (7) was first obtained by Heller [10, 11]
and it is not an initial value representation (IVR). There are
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a priori several complex trajectories satisfying the boundary
conditions. Thanks to the stationary phase approximation, we
were able to replace an integral over a continuum of real
trajectories (2) by a finite number of complex ones (7). The
problem is now solvable, but still quite difficult to compute.
However, it turns out that, in many situations, these complex
trajectories can be replaced by real ones, which are much
easier to calculate [4, 9].

Therefore, we look for real trajectories that are as close
as possible to the complex ones. Let(X(t), P(t)) ∈ C×C be
the coordinates of a complex trajectory, and(u(t), v(t)) a new
set of variables defined by

u =
1

√
2

(
X

b
+ i

P

c

)
, v =

1
√

2

(
X

b
− i

P

c

)
. (9)

According to equation (8), the boundary conditions become

u(0)=
1

√
2

(x0

b
+ i

p0

c

)
=

1
√

2

(q

b
+ i

p

c

)
= z and X(T)= x f . (10)

The initial condition is then the complex coordinatez and the
final condition is the real positionx f . The real and imaginary
parts ofz are related to the central positionq and the central
momentum p of the initial wavepacket respectively. This
gives us three real parameters that we may use as boundary
conditions to determine the real trajectory. But a particle
whose initial conditions areq and p will not a priori reach
x f after a timeT . Although it is possible to satisfy such final
condition, it will not usually happen becauseX(T) is imposed
by q and p. Likewise, fixing the initial and final positionsq
and x f will not generally lead toP(0)= p. Therefore, we
need to choose only two boundary conditions among the three
parameters, and use the Hamiltonian of the system to calculate
analytically or numerically the third one. This means that the
relation (8) will not be generally fulfilled and the hope is
that it will be fulfilled approximately. For a discussion about
the validity of this approximation, see the beginning of the
third section in [9]. If we fix (q, p), we obtain the TGA of
Heller [12]. This is an IVR that involves a single trajectory
and is unable to describe interferences or tunnelling, which are
the aim of this paper. However, we can fixX(0)= q, X(T)=

x f and calculateP(0)= pi . When the complex quantities
in equation (7) are expanded about this real trajectory we
obtain [9]

ψ(z, x f , T)sc =
b−1/2π−1/4√
mqq + imqp

exp

[
i

h̄
S(x f , T; q,0)

+
i

2h̄
pq−

1

2

imqp

mqq + imqp

(
p− pi

c

)2
]
.

(11)

Equation (11) is the semiclassical formula we are going to use
in this paper. We shall show that, although still very simple, it
can describe tunnelling and interferences quite well.

q x3x1 +ax2–a

V0

Figure 1. Direct and reflected trajectories fromq to x1 <−a. For
−a< x2 < a or x3 > a only the direct trajectory exists.

3. The 1D square barrier

Consider the specific case of a particle of unit mass scattered
by the 1D square barrier defined by (see figure1)

V(x)=

{
V0 if x ∈ [−a,a] wherea ∈ R+

0 otherwise.
(12)

The initial state of the particle is a coherent stateψ(z, x,0)=

〈x|z〉 with average positionq <−a and average momentum
p> 0, i.e., the wavepacket is at the left of the barrier and
moves to the right. In all our numerical calculations we
have fixedV0 = 0.5 and defined the critical momentum̃p =
√

2V0 = 1.
The application of the semiclassical formula equation

(11) requires the calculation of classical trajectories fromq
to x f in the timeT . For the case of a potential barrier, the
number of such trajectories depends on the final positionx f .
This dependence, in turn, causes certain discontinuities in the
semiclassical wavefunction.

Since the initial wavepacket starts fromq <−a, it is clear
that for x f > a (at the right side of the barrier) there is only
one trajectory satisfyingx(0)= q andx(T)= x f . This direct
‘trajectory’ haspi >

√
2V0 andx(t) increases monotonically

from q to x f .
For x f <−a, on the other hand, in addition to the direct

trajectory there might also be a reflected trajectory, that passes
throughx f , bounces off the barrier and returns tox f in the
time T . The initial momentum of such a reflected trajectory
must be greater than that of the direct one, since it has to
travel a larger distance. However, if this distance is too big,
i.e. if x f � −a, the initial momentum needed to traverse
the distance in the fixed timeT becomes larger than

√
2V0

and the reflected trajectory suddenly ceases to exist (see next
subsection for explicit details for the case of the square barrier
and figure 2 for examples).

This qualitative discussion shows that reflected trajecto-
ries exist only ifx f is sufficiently close to the barrier. The
points where these trajectories suddenly disappear represents
the discontinuities of the semiclassical calculation. Fortu-
nately, this drawback of the approximation becomes less crit-
ical ash̄ goes to zero, since the contribution of the reflected
trajectory at those points become exponentially small as
compared to the direct one (see for instance figure2(g)).
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Figure 2. (Colour online) Exact (blue thin lines) and semiclassical (red thick lines) wavepacket at timeT = 50, except for panel (h) where
T = 10. We fixedh̄ = 1 for (a), (b) and (c), whereas ¯h = 1/4 for (d), (e), (f), (h) and ¯h = 1/10 for (g).

In the remaining of this paper, we are going to obtain
explicit expressions forψ(z, x f , T)sc before, inside and after
the barrier. For fixedq, we will calculate the classical
trajectories for eachx f , extracting the initial momentumpi ,
the actionS≡ S(x f , T; q,0) and its derivatives (in order to
obtainmqq andmqp).

3.1. Before the barrier: xf <−a

The specificity of this region is that there may exist two
different paths connectingq to x during the time T : a
direct trajectory and a reflected one (figure1) whose initial

momenta, action and tangent matrix elements are given by

pi d =
x − q

T
; Sd =

(x − q)2

2T
;

(13)
mqq d = 1; mqp d =

T

λ
,

pi r = −
x + q + 2a

T
; Sr =

(x + q + 2a)2

2T
;

(14)
mqq r = − 1; mqp r = −

T

λ
,
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where λ= b/c. The contribution of each trajectory to the
wavefunction atx f , ψd andψr , is

ψd =
b−1/2π−1/4

√
1 + iT/λ

exp

[
i

h̄

(x f − q)2

2T
+

i

2h̄
pq

−
1

2

iT

λ+ iT

(
pT − x f + q

cT

)2
]
,

ψr =
b−1/2π−1/4

√
1 + iT/λ

exp

[
iθ +

i

h̄

(x f + q + 2a)2

2T
+

i

2h̄
pq

−
1

2

iT

λ+ iT

(
pT + x f + q + 2a

cT

)2
]
. (15)

Notice that we have added an extra phaseθ in ψr . Without
this extra phase (that includes the minus sign coming from
the tangent matrix elements in equation (14)), the wavepacket
would not be continuous as it goes through the barrier. For
a hard wall, for instance, we imposeθ = π to guarantee that
the wavefunction is zero at the wall. For smooth barriers this
phase would come out of the approximation automatically,
but for discontinuous potentials we need to add it by
hand. To calculateθ , we rewrite the previous expressions
in complex polar representation,ψd = D(x f )eiϕd(x f ), ψr =

R(x f )eiϕr (x f )+iθ , and letW(x f )eiϕw(x f )+iξ be the wavefunction
inside the barrier, whereξ is the corresponding phase
correction. The continuity of the wavefunction atx f = −a
imposes

D(−a)eiϕd(−a) + R(−a)eiϕr (−a)+iθ
= W(−a)eiϕw(−a)+iξ . (16)

Equations (15) show that R(−a)= D(−a) and ϕd(−a)=

ϕr (−a). Denoting ϕ = ϕw(−a)−ϕd(−a), equation (16)
becomes 1 + eiθ = Aei(ϕ+ξ) where A = [W(−a)/D(−a)].
This complex relation represents in fact two real equations
for the unknown variablesθ andξ . The solutions consistent
with the boundary conditions are cos(θ)= A2/2− 1 and
cos(ϕ + ξ)= A/2. In the limit where p goes to zero (or
the potential heightV0 goes to infinity) we obtainθ = π as
expected. Finally, the full wavefunction before the barrier is
ψ(z, x f , T)sc = ψd +ψr and the probability density can be
written as

|ψ(z, x f , T)sc|
2
=

1

b
√
π

1√
1 +(T2/λ2)

×

{
exp

[
−

λ2

λ2 + T2

(
x f − q − pT

b

)2
]

+ exp

[
−

λ2

λ2 + T2

(
x f + q + pT + 2a

b

)2
]

+ 2 cos

[
2(x f + a)

h̄(λ2 + T2)

(
λ2 p− (q + a)T

)
− θ

]
× exp

[
−

λ2

λ2 + T2

(pT + q + a)2 + (x f + a)2

b2

]}
. (17)

This is the same result as obtained in [9] for a completely
repulsive barrier(V0 → ∞), except for the phase, because of
the different boundary condition atx f = −a (|ψ(−a)sc|

2
= 0

for the hard wall). However, as discussed in the beginning of

this section, an additional difficulty appears when the wall is
finite: the reflected trajectory does not always exist. From the
classical point of view, there is no reflected part if the energy
E = p2

i r /2> V0. The maximum initial momentum allowed
is then

√
2V0 and a particle with such momentum takes the

time Tc = −
a+q

√
2V0

to reach the barrier. Furthermore, forT >

Tc the reflected trajectory only exists ifpi r = −
x f +q+2a

T 6
√

2V0, i.e. if |x f | = −x f 6 xc = q + 2a +
√

2V0T . Therefore,
if T > Tc and |x f |6 xc, the probability density is given by
equation (17), otherwise we only have the contribution of the
directψd and

|ψ(z, x f , T)sc|
2
=

1

b
√
π

1√
1 +(T2/λ2)

× exp

[
−

λ2

λ2 + T2

(
x f − q − pT

b

)2
]
.

(18)

As a final remark, we note that the calculation ofθ might
involve a technical difficulty depending on the values of ¯h, p
andT . For some values of these parameters the contribution
of the direct and reflected trajectories might become very
small atx = −a (see for instance figure2(f), which shows the
reflected wavepacket in a case of large transmission). In these
cases the probability density becomes very small atx = −a
and the value of the phaseθ is irrelevant. In some of these
situations, where the value ofθ does not affect the results,
we actually found that cosθ)= A2/2− 1> 1, which cannot
be solved for realθ . For the sake of numerical calculations,
we have setθ = 0 in these cases.

The semiclassical wavepacket is now completely
described forx f <−a. The probability density|ψsc|

2 is a
function of q, p, xf, T and depends on several parameters,
a,b, h̄ andV0. In our numerical calculations, we fixeda = 50.
This makes the barrier large enough so that we study in detail
what is happening inside (see subsection3.2). The height of
the barrier intervenes only inTc andxc to establish the limits
of the reflected trajectory. Its numerical value is not important,
but its comparison withp is fundamental: since we have fixed
V0 = 0.5 this givespi r 6 p̃ =

√
2V0 = 1. Finally, to simplify

matters we fixedb = c, i.e. the same scale for position and
momentum. This imposesλ= b/c = 1. Quantum phenomena
such as interference and tunnelling should be more important
for high values of ¯h. Sinceh̄ = bc= b2, b becomes in fact
the only free parameter of the approximation. We have also
fixed q = −60, which guarantees that the initial wavepacket
is completely outside the barrier for all values ofb used.

Figure2 shows snapshots of the wavepacket as a function
of x f at time T = 50. Consider first the panels (a)–(c)
with h̄ = 1. The agreement between the exact and the
semiclassical curves is qualitatively good forp6

√
2V0 = 1.

The interference peaks occurs at about the same positions,
but the height of the peaks are not exactly the same. Also the
intervals between peaks are a little bigger for the semiclassical
curve than for the exact one. On the other hand, whenp is
increased, the comparison gets worst and the approximation
is not really accurate forp = 2. However, we see that the
value of|ψsc|

2 at p = 2 is only a tenth of its value atp = 0.5:
the most important part of the wavepacket is in fact inside
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and after the barrier. It is then really important to consider
x f >−a for high p and we need to wait until subsections 3.2
and 3.3 to look at the whole picture.

Whenh̄ = 0.25, figures2(d)–(f) and (h), the approxima-
tion improves substantially, especially close to the barrier; this
shows that the extra phaseθ works well. Whenp is increased,
the contribution of the direct trajectory becomes irrelevant
and the interference oscillations are lost in the semiclassical
calculation, although it still shows good qualitative agree-
ment in the average. The cut-off of the semiclassical curve
at x f = −xc is also clearly visible, whereas the exact one
is decreasing continuously. On the one hand this means that
the approximation is not perfect but, on the other hand, the
semiclassical approximation explains that the fast rundown of
the exact quantum wavepacket comes from the progressive
disappearance of the reflected classical trajectory due to the
finite size of the barrier. Finally, for ¯h = 0.1, figure 2(g),
the approximation becomes nearly perfect. As expected, the
semiclassical approximation works better and better when ¯h
is decreasing, i.e. when the quantum rules give way to the
classical ones.

To end this subsection, we mention that the quality of the
approximation is independent of the timeT , except for times
slightly smaller thanTc. In this time interval only the direct
trajectory contributes but the exact wavepacket already shows
interferences that can not be described by|ψsc|

2 (figure 2,
T = 10). We now enter the heart of the matter, and consider
what’s happening inside and after the barrier.

3.2. Inside the barrier:−a6 x f 6 a

From the classical point of view there is only the direct
trajectory in this region (see figure1), since a reflection on
the other side of the barrier (atx = a) can not be considered
without quantum mechanics. Callingp1 = pi >

√
2V0 andp2

the momentum of this trajectory before and inside the barrier
respectively, energy conservation givesp2

1/2 = p2
2/2 +V0.

This is the first equation connectingp1 to p2, but we need
a second one which is imposed by the propagation timeT =

t1 + t2 where:

t1 = −
a + q

p1
is the time to go fromq to

− a with momentump1;

t2 =
x f + a

p2
is the time to go from− a to

x f with momentump2.

The combination of these two equations gives

T = −
a + q

p1
+

x f + a√
p2

1 − 2V0

, (19)

which can be rewritten as

(p2
1 − 2V0)(p1T + a + q)2 = (x f + a)2 p2

1. (20)

This is a quartic polynomial, which we solve numerically.
We obtain four solutions: one is always negative, which we
discard since we fixed the initial positionq on the left side of
the barrier; two are sometimes complex and, when real, have

p1 < 1; finally, one of the roots is always real, larger than 1
and tends tox f −q

T when V0 is negligible (the limit of a free
particle). We take this last root as the initial momentump1.

The actionS is also a function ofp1 given by

S(z, x f , T)=

∫ t1

0

p2
1

2
dt +

∫ T

t1

(
p2

2

2
− V0

)
dt

=
p2

1

2
t1 +

(
p2

2

2
− V0

)
t2

= −
1
2(a + q)p1 + 1

2(x f + a)

×

√
p2

1 − 2V0 −
V0(x f + a)√

p2
1 − 2V0

. (21)

We calculate the derivatives ofS numerically by computing
p1 and S for the initial conditions(q, x f ), (q + dq, x f ),
(q, xf + dx f ) . . . and approximate∂S

∂x f
(z, x f , T) by [S(z, x f +

dx f , T)− S(z, x f , T)]/dx f , etc. Finally, the propagator
inside the barrier is given by equation(11) plus the phase
correction ξ calculated in the previous subsection. The
probability density, which is independent ofξ , becomes

|ψ(z, x f , T)sc|
2
=

1

b
√
π

1√
m2

qq + m2
qp

× exp

[
−

m2
qp

m2
qq + m2

qp

(
p− p1

c

)2
]
. (22)

Figure3 shows|ψsc|
2 as a function ofx f for the same

parameters as in subsection 3.1. Although the semiclassical
approximation also improves for small ¯h, here we shall fix
h̄ = 1. This is because the behaviour of the propagator
becomes trivial for small ¯h: if p< 1 the wavepacket bounces
off the barrier almost completely, and otherwise it simply
passes over the barrier barely noticing the presence of the
potential.

The first remark is that the wavepacket is continuous at
x f = −a: the extra phaseθ does play its role correctly. As in
the case before the barrier, the comparison between exact and
semiclassical calculations is always at least qualitatively good,
and sometimes even quantitatively so. However, there are two
main effects that the semiclassical approximation cannot take
into account.

1. There is a gap between the exact and semiclassical
curves, which decreases progressively asx f increases,
and is bridged near the local maximum of the probability
density. The reason may come from the fact it is not
possible to impose the continuity of thederivativeof ψsc

with respect tox f at−a.
2. There are oscillations on the exact curve (especially for

p = 2 andT = 50) close to the right side of the barrier,
that are not present in the semiclassical approximation.
This is a purely quantum effect, because classical
mechanics cannot take into account a reflected trajectory
which would interfere with the direct one in this case.
|ψsc|

2 is in fact the mean-value of the oscillations, and
that is why there is a discontinuity of the wavepacket at
x f = a, since the exact curve is beginning at the bottom
of an oscillation.
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Figure 3. (Colour online) Exact (blue thin lines) and semiclassical (red thick lines) wavepacket inside the barrier for various values ofp
andT andh̄ = 1.

If we want to stay strictly in the semiclassical limit, there
is nothing we can do about the lack of interferences in the
barrier region: this is the limit of our approximation. But if
we want to use the semiclassical point of view in order to
provide a more intuitive picture of the quantum world, we can
add a ‘ghost’ trajectory that reflects atx f = a and see if it can
account for the interferences. Similar ideas have been applied
to the frequency spectrum of microwave cavities with sharp
dielectric interfaces [14] and, more recently, to the spectrum
of step potentials confined by hard walls [15]. The argument
will be the same as in subsection 3.1, except of course that the
reflected trajectory will now bounce on the right side of the

barrier. The equation forpi = p1 is again a quartic polynomial
given by

(p2
1 − 2V0)(p1T + a + q)2 = (3a − x f )

2 p2
1. (23)

We know thatp1 direct is the same asp1 reflectedatx f = a and we
choose the only solution of (23) which satisfies this condition.
The expression of the new action is:

Sr (z, x f , T)= −
1

2
(a + q)p1 +

(
p2

1

2
− 2V0

)
3a − x f√
p2

1 − 2V0

.

(24)
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The expressions ofψd and ψr are the same as
equation (11) but with pi , S,mqq andmqp indexed byd or r .
After some calculations, the new expression of the probability
density inside the barrier becomes

|ψ(z, x f , T)sc|
2
=

1

b
√
π

1√
m2

qq d + m2
qp d

× exp

[
−

m2
qq d

m2
qq d + m2

qp d

(
p− p1d

c

)2
]

+
1

b
√
π

1√
m2

qq r + m2
qp r

× exp

[
−

m2
qq r

m2
qq r + m2

qp r

(
p− p1r

c

)2
]

+
2

b
√
π

cos(ϕr −ϕd + θ ′)

×
1

4

√(
m2

qq r + m2
qp r

)
(m2

qq d + m2
qp d)

× exp

[
−

1

2

m2
qq d

m2
qq d + m2

qp d

(
p− p1d

c

)2

× −
1

2

m2
qq r

m2
qq r + m2

qp r

(
p− p1r

c

)2
]
, (25)

whereθ ′ is the new extra phase (that absorbs the previously
computedξ ) and

ϕr −ϕd =
Sr − Sd

h̄
+

1

2
arctan

(
mqp d

mqq d

)
−

1

2
arctan

(
mqp r

mqq r

)
+

1

2

mqq d mqp d

m2
qq d + m2

qp d

(
p− p1d

c

)2

−
1

2

mqq r mqp r

m2
qq r + m2

qp r

(
p− p1r

c

)2

. (26)

The results of such an expression, however, are not good:
the oscillations become too big, which means that the reflected
trajectory needs to be attenuated by a reflection coefficientρ.
To calculateρ we use the following reasoning: for each point
x f inside the barrier there corresponds a reflected trajectory
from q to x f with a certain value ofp1 > 1 computed with
Eq. (23). We take forρ the same attenuation coefficient a
plane wave with momentump1 would have. Let(F eiκx f +
G e−iκx f ) and C eikx f be such a plane wave inside and
after the barrier respectively, whereκ =

√
2(E − V0)/h̄ =√

p2
1 − p̃2/h̄ andk =

√
2E/h̄ = p1/h̄. The continuity of this

function and its derivative atx f = a give us the relative weight
of the reflected trajectory with respect to the direct one:

ρ(p1,V0)=

∣∣∣∣G

F

∣∣∣∣ =
1− κ/k

1 +κ/k
=

1−

√
1− p̃2/p2

1

1 +
√

1− p̃2/p2
1

. (27)

The expression for the total propagator becomes(ψscd +
ρ ψscr eiθ ′

). We use the same argument as in subsection 3.1 to
compute the extra phaseθ ′, adding another correctionξ ′ to the

wavefunction on the right side of the barrier. Because there is
always a single trajectory on the right side,ξ ′ does not affect
the probability density there. We find that cosθ ′

= A2
+/2− 1

whereA+ = W(a)/D(a).
The new results are displayed in figure4. The gap is still

present, but the agreement between exact and semiclassical
on the right-hand side is nearly perfect. The interferences are
indeed coming from a real ‘ghost’ trajectory that bounces off
at the end of the barrier like a quantum plane wave. Since
the left-hand side of the figure has not changed much,
the reflected trajectory has no effect on this part of the
wavepacket and we don’t need to consider additional
reflections. Furthermore, we don’t have to takeρ ψscr into
account when we calculateθ in subsection 3.1. We finish
this subsection with two comments: firstly, the approximation
with the ghost trajectory is accurate even for larger values
of h̄. Secondly, the wavepacket becomes continuous at
x f = a. That is very interesting because continuity comes
only when we include the reflected trajectory, whereas the
part of the wavepacket which goes through the barrier is
calculated independently with a single direct trajectory (see
next subsection). This means that the semiclassical propagator
after the barrier somehowknowsthere is a reflected part.

In the next subsection, we will briefly present the
computation of the wavefunction at the right side of the
barrier.

3.3. After the barrier: a< x f

Following the same arguments as in subsection 3.2, we use
the energy conservationp2

1/2 = p2
2/2 +V0 = p2

3/2 (the index
3 refers to the right of the barrier) and the different timest1 =

−
a+q
p1

, t2 =
2a
p2

andt3 =
x f −a

p3
to calculate the initial momentum

of the direct trajectory. We obtain

(p2
1 − 2V0)(p1T + 2a + q − x f )

2
= (2a)2 p2

1, (28)

whereas the action becomes

S(z, x, T)=

∫ t1

0

p2
1

2
dt +

∫ t1+t2

t1

(
p2

2

2
− V0

)
dt +

∫ T

t1+t2

p2
3

2
dt

=
1

2
(x f − q − 2a)p1 + a

√
p2

1 − 2V0 −
2a V0√
p2

1 − 2V0

.

(29)

In this region, no reflection is possible and the probability
density |ψsc|

2 is simply given by equation (22). The results
are presented in figure5. For any values ofp, T or h̄,
there is still a very small difference between the exact and
semiclassical curves for the ascending part of the wavepacket,
whereas the agreement is perfect when the function is
decreasing.

The conclusion of this section is that the semiclassical
approximation with real trajectories gives very good results
and is indeed able to describe some important quantum
effects. Interference on the left side of the barrier appears
naturally when the wavepacket hits the barrier and the
comparison with the exact solution gets better as ¯h gets
smaller. However, these interferences cannot be obtained in
the barrier region, since there are no reflected trajectories in
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Figure 4. (Colour online) Exact (blue thin lines) and semiclassical with ghost reflected trajectory (red thick lines) wavepacket inside the
barrier. The panels on the right are magnifications of the left ones, showing the perfect match between the approximation and the exact
solution.
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Figure 5. (Colour online) Exact (blue thin lines) and semiclassical (red thick lines) wavepacket after the barrier forp = 2 andT = 50
and 100.

the classical dynamics. We showed that these interferences
can be recovered if a ‘ghost’ trajectory that reflects atx = a
is added and assumed to contribute with the same coefficient
of a plane wave of initial momentumpi . With this addition
the semiclassical approximation becomes again very accurate
inside the barrier. In the next section, we shall briefly discuss
the possibility of using our results to calculate the tunnelling
time as defined in [2].

4. Semiclassical tunnelling times

The question of how much time a particle spends in the
classically forbidden region during the tunnelling process has
been attracting the attention of physicists for a long time
[2, 16–22]. The very concept of a ‘tunnelling time’ is,
however, debatable [18]. Nevertheless, in a semiclassical
formulation where real trajectories play crucial roles in the
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tunnelling process, the temptation to estimate such a time is
irresistible.

Since, we are considering a wavepacket, and not a
classical state localized by a point in the phase space, we
can only define a mean value of the tunnelling time. Let us
fix the initial conditionsq, p (such thatp< 1) andx f > a.
The probability of finding the initial Gaussian state atx f

after a timeT is given by |〈x f |K (T)|z〉|2. Therefore, the
particle can reachx f from (q, p) in several different time
intervalsT . For each value of the timeT there corresponds a
single real trajectory whose initial momentump1(T) > p̃ =
√

2V0 is given by eq. (28). This trajectory spends a time
τ(T)=

2a
p2(T)

=
2a√

p2
1(T)− p̃2

in the region−a< x < a. Notice

that the average energy of the wavepacket is below the barrier
but the contributing trajectory always has energy above the
barrier. Therefore, for fixedq, p, x f , the probability that the
wavepacket crosses the barrier in a timeτ(T) is proportional
to |〈x f |K (T)|z〉|2. Following [2], we can define the mean
value of the tunnelling time as

〈τ 〉 =N−1
∫ +∞

0
τ(T) |〈x|K (T)|z〉|2 dT, (30)

where

N=

∫ +∞

0
|〈x|K (T)|z〉|2 dT (31)

is the normalization factor. It is not equal to one because
only the part of the wavepacket which goes through the
barrier is considered. This is important in our case, since the
semiclassical approximation is better forx f > a.

We calculated these integrals numerically, performing a
discrete sum overTn = nδT , with n = 1,2, . . . , N andδT =

Tmax/N. If an observer is placed at a fixed positionx f > a, as
the timeT slips by, he/she sees the wavepacket arriving from
the barrier, becoming bigger and bigger, reaching a maximum
and then decreasing and disappearing. We ended the sum at
Tmax such that|〈x|K (T)|z〉|2 < 10−4

∀T > Tmax.
An important remark is that〈τ 〉 is independent of the

observer’s positionx f (except for small fluctuations due to
the numerical computation), since eq. (30) measures only the
time inside the barrier. The three different times we are going
to use for comparison are:

• 〈τbarr〉 is the tunnelling time computed according to
eq. (30).

• 〈τfree〉 is obtained from the same way as〈τbarr〉, but in a
system without barrier;〈τfree〉 is simply the time for afree
wavepacket to go from−a to a.

• τclass=
2a√
p2− p̃2

is the time required by a classical particle

to cross the barrier.

Figure6 shows the dependence of these functions with
respect top. The curves become very similar asp increases,
because the barrier becomes more and more negligible.
The wavepacket spreads but stays centred aroundp, which
explains why it behaves like a particle of momentump. When
the influence of the barrier is more important, the wavepacket
gets trapped by the barrier and slows down (〈τbarr〉 is above
〈τfree〉), but for p< 1.8, 〈τfree〉 andτclassstart to increase very
fast (τclass actually diverges atp = 1), whereas〈τbarr〉 stays
finite until p is very close to 0: thanks to the tunnel effect
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Figure 6. (Colour online) Tunnelling time as a function ofp. The
red thick line and the green curve show the semiclassical result
according to equation (30) for the square barrier and the free
particle respectively. The thin black line is the classical time
for the square barrier potential.

the wavepacket is accelerated by the barrier, which acts like
a filter for the wavepacket and cuts off the contributions
of its slowest components (see figure7(a)). On the other
hand whenp increases, the fraction of the trajectories with
p<

√
2V0 = 1 becomes negligible and the barrier simply

restrains the propagation of the wavepacket (figure7(b)).

5. Conclusion

In this paper, we used the semiclassical approximation
eq. (11), derived in [9], to study the propagation of a
wavepacket through a finite square potential barrier. One
of the main purposes of this study was to test the validity
and accuracy of the approximation, which involves only real
trajectories, in the description of tunnelling. Surprisingly,
we have shown that the approximation is very good to
describe the wavepacketafter the barrier, even when the
average energy of the wavepacket is below the barrier
height. The region before the barrier is also well described
by the approximation, although discontinuities are always
observed because of the sudden disappearance of the reflected
trajectory. The continuity of the wavefunction between this
region and the region inside the barrier also depends on the
calculation of an extra phaseθ . Finally, inside the barrier the
semiclassical formula is not able to describe interferences.
These, however, can be recovered when a ghost trajectory,
that reflects on the right side of the barrier, is included
and attenuated with the proper coefficient. In all regions
the approximation becomes more accurate as ¯h becomes
smaller.

The semiclassical approximation (11) is particularly
relevant because the propagated wavepacket is not constrained
to remain gaussian at all times, as in the case of Heller’s
thawed gaussian approximation [12], and also because it
uses only a small number of real trajectories. These are
much easier to calculate than complex ones, especially in
multi-dimensional problems. The demonstration of its ability
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Figure 7. (Colour online) Exact (blue thin lines) and semiclassical (red thick lines) wavepacket after going through the barrier. The green
curve (above the other two in both figures) shows the corresponding free particle wavepacket. Forp = 0.5 the barrier acts like a filter and
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slightly behind the free particle wavepacket, showing that the barrier slows the trajectories because the momentum is reduced to
p2 =
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1 − 2V0 < p1 between−a anda.

to describe tunnelling and interferences is important to
establish its generality and also to provide a more intuitive
understanding of the processes themselves. In particular,
using the underlying classical picture, we have computed
a tunnelling time which shows that the wavepacket can be
accelerated or restrained by the barrier depending on the value
of the initial central momentump.

Some interesting perspectives of this semiclassical theory
are the study of propagations through smooth potential
barriers (which are more realist and more adapted to
semiclassical calculations), the study of time dependent
barriers and the extension of the method to higher dimensions
and to chaotic systems.
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