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Abstract

Semiclassical approximations for tunnelling processes usually involve complex trajectories
or complex times. In this paper, we use a previously derived approximation involving only
real trajectories propagating in real time to describe the scattering of a Gaussian wavepacket
by a finite square potential barrier. We show that the approximation describes both tunnelling
and interferences very accurately in the limit of small Planck’s constant. We use these
results to estimate the tunnelling time of the wavepacket and find that, for high energies,

the barrier slows down the wavepacket but that it speeds it up at energies comparable to

the barrier height.

PACS numbers: 03.65.Sq, 31.15.Gy

(Some figures in this article are in colour only in the electronic version.)

1. Introduction can be written as

The success of semiclassical approximations in molecular ar(X, T) = (X|K(T)|¥o) = /(X|K(T)|Xi) dxi (X [¥o), (1)
atomic physics or theoretical chemistry is largely due to its
capacity to reconcile the advantages of classical physics amldere K (T) = e HT/" is the evolution operator anti is
guantum mechanics. It manages to retain important featuthe (time independent) Hamiltonian. The extra integration
which escape the classical methods, such as interference andthe second equality reveals the Feynman propagator
tunnelling, while providing an intuitive approach to quantunix|K (T)|x;), whose semiclassical limit is known as the Van
mechanical problems whose exact solution could be veweck formula B] (see next section). When the Van Vleck
difficult to find. Moreover, the study of semiclassical limitpropagator is inserted in equatioh),( we obtain a general
of quantum mechanics has a theoretical interest of its owsgmiclassical formula which involves the integration over the
shedding light into the fuzzy boundary between the classicalitial points’ x;:
and quantum perspectives.

In this paper, we will apply the semiclassical formalism Yse(X, T) = /(X|K(T)|xi)\,an,v|eck ax (X [vo). (2)
to study the scattering of a one-dimensional (1D) wavepacket
by a finite potential barrier. In the case of plane waves, thithis integral is performed numerically one obtains very good
tunnelling and reflection coefficients can be easily calculatedsults, specially dsgoes to zero. However, doing the integral
in the semiclassical limit, giving the well-known WKBis more complicated than it might look, because for each
expressions1]. For wavepackets, however, the problem isne has to compute a full classical trajectory that starts at
more complicated and few studies have addressed the queséind ends ax after a timeT, which may not be a simple task.
from a dynamical point of viewZ-4]. The time evolution of a Alternative methods involving integrals over initial conditions
general wavefunction with initial conditiotr (x, 0) = yo(x) (instead of initial and final coordinates) in phase space have
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also been developed and shown to be very accuBa8l.[All  where g and p are real numbers. The parametdys=
these approaches sum an infinite number of contributions affii mw)/2 andc = (hmw)*/? are the position and momentum
hide the important information of what classical trajectoriescales respectively, and their produdhis —
really matter for the process. In order to write the Van Vleck formula of the Feynman
In a previous pape#)], several further approximations for propagator, we need to introduce the tangent matrix 3zet
this integral were derived and applied to a number of problergsx;, T; x;, 0) be the action of a classical trajectory in the
such as the free particle, the hard wall, the quartic oscillatphase spaceX, P), with x; = X(0) andxs = X(T). A small
and the scattering by an attractive potential. The most accurpi@gial displacement(sx;, §p;) modifies the whole trajectory
(and also the most complicated) of these approximatiogad leads to another displacemefk;, sp¢) at timeT. In

involves complex trajectories and was first obtained by Hellgte linearized approximation, the tangent mafixconnects
and collaboratorsl[0, 11]. The least accurate (and the simpleshese two vectors of the phase space
to implement) is known as the thawed gaussian approximation

(TGA), and was also obtained by Hellet?. It involves OX¢ _Si c1 8Xi

a single classical trajectory starting from the centre of the | p St b St b
wavepacket. However, other approximations involving real Sps ) Si St 5pi
trajectories can be obtained, [9, 13]. These are usually not Y c (Sf — Sir §> "5/ \'¢

as accurate as the complex trajectory formula, but are much 85X

better than the TGA and can be very good in several situations. m m o

Moreover, it singles out real classical trajectories from the = ( aa qp) e 5)
S . . . . m m Spi

infinite set in equation2) that can be directly interpreted as pa PR -

contributing to the propagation.
In this paper, we apply these real trajectory approximghere S; = 92S/0x2, St = 82S/0%9x; = Sy and Syr =

tions to study the tunnel effect. Since this is a purely quantugAs;x2. In terms of the coefficients of the tangent matrix,
phenomena, it is a very interesting case to test the semiclaggis \ian Vieck propagator i]

cal approximation and to understand what are the real trajec-
tories that contribute when the wavepacket is moving ‘inside’
the barrier. More specifically, we will consider the propaga-
tion of a Gaussian wavepacket through a finite square barrier.

(Xt K(T) [Xi )van—vieck =

1
b,/2rmyp

i T
We shall see that the semiclassical results are very accurate, X exp[ﬁS(xf, T; %,0) — IZ} . (6)
although some important features of the wavepacket propaga-
tion cannot be completely described. For short timesmy, is positive and the square root is well

This paper is organized as follows: in the next section, Wefined. For longer times);,, may become negative by going
review the semiclassical results derived &), fvhich are the hyough zero. At these ‘focal points’ the Van Vieck formula
starting point of this study. Next, we describe the evolutiogiverges_ However, sufficiently away from these points the
of a Gaussian through a square potential barrier in its thrﬁﬁproximation becomes good again, as long as one replaces
separate regions: before, inside and after the barrier. Finaﬁ%p by its modulus and subtracts a phase for every focus

in section 4, we discuss the calculation of tunnelling timegnquntered along the trajectory. We shall not write these
as proposed inZ). We find that the barrier slows down thegy_.alled Morse phases explicitly.

wavepacket at high energies, but that it speeds it up at energies Assuming some converging conditions, the stationary

comparable to tr|1e _barrler height. Finally, in section 5, W;?nase approximation allows us to perform the integral over
present our conclusions. X in equation ) (for more details, se]). We obtain

2. Approximation with complex and b-1/25-1/4 i

. . Z, X5, T)ge= ——exp| =S(X, T; Xo, 0
real trajectories V(Z, Xt, Tsc N D[HS( f 0,0)
One important class of initial wavefunctions is that of 1 (o —0/2) — (X0 —q)° 7)
coherent states, which are minimum uncertainty Gaussian ﬁp 0—d 2b2 ’

wavepackets. In this paper, we shall consider the initial ] o '
wavepacketio) as the coherent state of a harmonic oscillatd¥nere Xo is the value of the initial coordinate when the

of massm and frequency defined by phase of the propagator is stationary. It is given by the relation
2 T
|2) = e 2 e |0), (3 3S
4P _94iP where po=-— (-) (@8
where|0) is the harmonic oscillator ground sta#, is the b c b c X /

creation operator and is the complex eigenvalue of the
annihilation operatord with respect to the eigenfunction
|z). Using the position and momentum operatdjsand p
respectively, we can write

The end point of the trajectory is still given bY(T) = xs.

In spite ofq and p being real,xq and py are usually com-

plex. This implies that the classical trajectories with initial

positionxg and momentunpgy are complex as well, even with

N (d ib>, ,_ 1t (9 +i£), (4) X1 €R. Equation 7) was first obtained by Heller1D, 11]
and it is not an initial value representation (IVR). There are
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a priori several complex trajectories satisfying the boundary
conditions. Thanks to the stationary phase approximation, we
were able to replace an integral over a continuum of real
trajectories 2) by a finite number of complex one3)( The

problem is now solvable, but still quite difficult to compute.
However, it turns out that, in many situations, these complex ——
trajectories can be replaced by real ones, which are much —. |
easier to calculated] 9]. | : !
Therefore, we look for real trajectories that are as close ¢ X1 —a x +a X3

as possible to the complex ones. I&t(t), P(t)) € C x C be
the coordinates of a complex trajectory, and), v(t)) anew Figure 1. Direct and reflected trajectories frogrto x; < —a. For

set of variables defined by —a < Xz < aorxz > aonly the direct trajectory exists.
1 /X P 1 /X P )
=—|(=+i—), v=—|(>=—i—). (9) 3.The 1D square barrier
J2\b ¢ J2\b ¢

According to equationd), the boundary conditions become Consider the specific case of a particle of unit mass scattered
by the 1D square barrier defined by (see figljyre
1

b c Vo if x e [—a, a] wherea e R*
? q .p Voo =1 " (e8] (12)
= 7 <B + iE) =z and X(T)=x;. (10) 0 otherwise

I o . The initial state of the particle is a coherent staie, x, 0) =
The initial condition is then the complex coordinatand the . pa AL )
(x|z) with average positiom < —a and average momentum

final condition 'T thzrealhposnmmfi The, r.eal agdrllmagmaryll p > 0, i.e., the wavepacket is at the left of the barrier and
parts ofz are related to the central positigrand the centra moves to the right. In all our numerical calculations we

momentump of the initial wavepacket respectively. Thisy e fixedVo = 0.5 and defined the critical momentufn=
gives us three real parameters that we may use as boundm: 1.

conditions to determine the real trajectory. But a particle  the gppjication of the semiclassical formula equation
whose initial conditions arg and p will not a priori reach  (11) requires the calculation of classical trajectories frgm

Xt after a timeT. Although it is possible to satisfy such finalyg x; in the timeT. For the case of a potential barrier, the
condition, it will not usually happen becauk&T) is imposed number of such trajectories depends on the final poskion

by g and p. Likewise, fixing the initial and final positiong  This dependence, in turn, causes certain discontinuities in the
and xs will not generally lead toP(0) = p. Therefore, we semiclassical wavefunction.

need to choose only two boundary conditions among the three Since the initial wavepacket starts fram< —a, itis clear
parameters, and use the Hamiltonian of the system to calculgigt forx; > a (at the right side of the barrier) there is only
analytically or numerically the third one. This means that thene trajectory satisfying(0) = q andx(T) = x¢. This direct
relation @) will not be generally fulfilled and the hope is‘trajectory’ hasp; > +/2V, andx(t) increases monotonically
that it will be fulfilled approximately. For a discussion aboutrom g to x;.

the validity of this approximation, see the beginning of the Forx; < —a, on the other hand, in addition to the direct
third section in 9]. If we fix (g, p), we obtain the TGA of trajectory there might also be a reflected trajectory, that passes
Heller [12]. This is an IVR that involves a single trajectorythroughx¢, bounces off the barrier and returnsxe in the

and is unable to describe interferences or tunnelling, which di@e T. The initial momentum of such a reflected trajectory
the aim of this paper. However, we can #X0) =q, X(T) = Mmust be greater than that of the direct one, since it has to
x¢ and calculateP(0) = p;. When the complex quantitiestraVel a larger distance. However, if this distance is too big,

in equation 7) are expanded about this real trajectory wk€: if Xf < —a, the initial momentum needed to traverse
obtain P] the distance in the fixed tim& becomes larger thaxyy2V,

and the reflected trajectory suddenly ceases to exist (see next

b=1/27-1/4 [ subsection for explicit details for the case of the square barrier
V(Z X5, Thse= \/ﬁ eXp[ﬁS(Xf - T:0.0 and figure 2 for examples).
. . 2 This qualitative discussion shows that reflected trajecto-
+ pq— 1 'm‘{p (p— pi) :| . ries exist only ifx; is sufficiently close to the barrier. The
2n 2 Mgq +iMgp c points where these trajectories suddenly disappear represents

(11) the discontinuities of the semiclassical calculation. Fortu-

nately, this drawback of the approximation becomes less crit-

Equation (1) is the semiclassical formula we are going to usigal ash goes to zero, since the contribution of the reflected

in this paper. We shall show that, although still very simple, itajectory at those points become exponentially small as
can describe tunnelling and interferences quite well. compared to the direct one (see for instance fiQ(gg).
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Figure 2. (Colour online) Exact (blue thin lines) and semiclassical (red thick lines) wavepacket af tie0, except for panel (h) where
T = 10. We fixech = 1 for (a), (b) and (c), whereds= 1/4 for (d), (e), (f), (h) andv= 1/10 for (g).

In the remaining of this paper, we are going to obtaimomenta, action and tangent matrix elements are given by
explicit expressions for (z, X, T)sc before, inside and after )
the barrier. For fixedq, we will calculate the classical pa= =9 - x=q) :
trajectories for eaclx;, extracting the initial momenturp;, T 2T (13)
the actionS= S(x;, T; g, 0) and its derivatives (in order to

obtainmgq andmygp).

Mggd =1  Mgpd=

)

>

3.1. Before the barrier: x < —a
X+q+2a s (x+q+2a)?

The specificity of this region is that there may exist two Pir = T 2T (14)
different paths connectingl to x during the timeT: a _ 1 T
direct trajectory and a reflected one (figuewhose initial Maqr = — 4 Mapr = T
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Semiclassical tunnelling of wavepackets with real trajectories

where A = b/c. The contribution of each trajectory to thethis section, an additional difficulty appears when the wall is

wavefunction ak, ¥4 andyy, is finite: the reflected trajectory does not always exist. From the
_ _ classical point of view, there is no reflected part if the energy
Vo= b~/2g /4 oxol - (Xf — Q)2 N I—pq E = p? /2> V. The maximum initial momentum allowed
4= JIFIT/A h 2T 2h is then/2V, and a particle with such momentum takes the
) ) time T, = —29% to reach the barrier. Furthermore, for>
1 0T (pT—xi+q VP o <o +q+2a
-5 , T the reflected trajectory only exists ffi, = — X292 <
2 0+iT cT = T
V2NV, i.e. if |X;| = =Xt <X =(q+2a+/2VT. Therefore,
b=Y2g—1/4 i (xp+q+2a)? i if T> T, and|x¢| < X, the probability density is given by
Y = JI+IT/A exp|16 + h oT * >nPd equation {7), otherwise we only have the contribution of the
directyq and
1 iT [pT+x;+gq+2a\?
-z ) (15) 1 1
2AHT cr ¥z xt, T)sdl® =
by /1+(T2/52)
Notice that we have added an extra phése . Without 52 x 2
i i - i : t—q—-pT
this extra phase (that includes the minus sign coming from X exp{—)\z_ﬂ_2 < b ) :|
the tangent matrix elements in equatidd)], the wavepacket

would not be continuous as it goes through the barrier. For (18)
a hard wall, for instance, we impose= r to guarantee that
the wavefunction is zero at the wall. For smooth barriers thfss @ final remark, we note that the calculationfofnight
phase would come out of the approximation automaticalljivolve a technical difficulty depending on the valuedpp
but for discontinuous potentials we need to add it bgndT. For some values of these parameters the contribution
hand. To calculat®, we rewrite the previous expression®f the direct and reflected trajectories might become very
in complex polar representatiomq = D(x¢)e¥e*1) v, = smallatx = —a (see for instance figur&(f), which shows the
R(x¢)€¥ *)49 and letW (x;)e¥»*1)*é pe the wavefunction reflected wavepacket in a case of large transmission). In these
inside the barrier, whereé is the corresponding phasecases the probability density becomes very smak at—a
correction. The continuity of the wavefunction @t = —a and the value of the phageis irrelevant. In some of these
imposes situations, where the value éf does not affect the results,

_ _ _ _ _ we actually found that ca® = A?/2—1 > 1, which cannot
D(—a)e* = + R(—a)e” "% = W(—a)e¥* "¢ (16) be solved for reab. For the sake of numerical calculations,

we have sef = 0 in these cases.

Equations {5) show thatR(—a) = D(—a) and ¢4(—a) = The semiclassical wavepacket is now completely
¢ (—a). Denoting ¢ = ¢, (—a) —¢q(—a), equation (6) described forx; < —a. The probability densitylysd/? is a
becomes 1+€=Ae“® where A=[W(-a)/D(-a)l. function of g, p, %, T and depends on several parameters,
This complex relation represents in fact two real equatior&§ b, i andVj. In our numerical calculations, we fixed= 50.
for the unknown variableg andé. The solutions consistent Thjs makes the barrier large enough so that we study in detalil
with the boundary conditions are @63= A?>/2—1 and \hat is happening inside (see subsecBud). The height of
cody+&) = A/2. In the limit where p goes to zero (or the parrier intervenes only ifi, andx to establish the limits
the potential heigh¥/ goes to infinity) we obtai® =z as ot the reflected trajectory. Its numerical value is notimportant,
expected. Finally, the full Wavefuncuon_ pefore the barrier igyt its comparison witlp is fundamental: since we have fixed
¥ (z, X5, T)se= ¥g +¢¥r and the probability density can beV0 — 0.5 this givespi, < P = +/2Vp = 1. Finally, to simplify

written as matters we fixech = c, i.e. the same scale for position and
2 X Ted? 1 1 momentum. This imposes= b/c = 1. Quantum phenomena
s Xty Dscl™ = o such as interference and tunnelling should be more important
b7 \1+(T2/32) for high values ofh. Sinceh = bc=b? b becomes in fact
« {exp|:— 22 (Xf —q- IOT)Z} the only free parameter of the approximation. We have also
A2+T2 b fixed g = —60, which guarantees that the initial wavepacket

X ) is completely outside the barrier for all valueddised.
N exp|:— A (Xf +q+pT+ Za) } Figure2 shows snapshots of the wavepacket as a function

A2+T2 b of xs at time T =50. Consider first the panels (a)-(c)
with h=1. The agreement between the exact and the

2(xs +a
+2 cos[% (Azp —(q+ a)T) — 9} semiclassical curves is qualitatively good for +/2Vo = 1.
h(A2+T?2) : "
The interference peaks occurs at about the same positions,
« exp| — A2 (pT+g+a)?+ (xf +a)? (17) but the height of the peaks are not exactly the same. Also the
P A2+ T2 b2 ‘ intervals between peaks are a little bigger for the semiclassical

curve than for the exact one. On the other hand, wpes
This is the same result as obtained #) for a completely increased, the comparison gets worst and the approximation
repulsive barriefVo — o0), except for the phase, because af not really accurate fop = 2. However, we see that the
the different boundary condition & = —a (| (—a)s/> =0 value of|ys? at p = 2 is only a tenth of its value gt = 0.5:
for the hard wall). However, as discussed in the beginning tife most important part of the wavepacket is in fact inside
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and after the barrier. It is then really important to considgr; < 1; finally, one of the roots is always real, larger than 1

x¢ > —a for high p and we need to wait until subsections 3.2nd tends to’“T—’“I whenVy is negligible (the limit of a free

and 3.3 to look at the whole picture. particle). We take this last root as the initial momentpm
Whenh = 0.25, figures2(d)—(f) and (h), the approxima- The actionSis also a function o, given by

tion improves substantially, especially close to the barrier; this

shows that the extra phagevorks well. Whenp is increased, Sz %, Ty = t p_f i +/T E )
the contribution of the direct trajectory becomes irrelevant Y 0 ty 0
and the interference oscillations are lost in the semiclassical 2 2

. o o _ b1 [
calculation, although it still shows good qualitative agree- = 7t1+ > —Vo )tz
ment in the average. The cut-off of the semiclassical curve

i isi = —z@+q)pr+3(x; +a)
at Xy = —X. is also clearly visible, whereas the exact one 2 q) P+ 5(X¢
is decreasing continuously. On the one hand this means that Vo(Xt +a)
L2 X /P2 —2Vg — —————. (21)

the approximation is not perfect but, on the other hand, the 1 [ o oV
semiclassical approximation explains that the fast rundown of Pi 0

calculate the derivatives & numerically by computing

disappearance of the reflected classical trajectory due to €and S for the initial conditions (q, X;), (q+da, Xi),

finite size of the barrier. Finally, foh =0.1, figure 2(g), + : s +
the approximation becomes nearly perfect. As expected, t(éijé Xf_l_ dxe) - ari?l ap;proxmtatg?ﬁ:('z, )I(If ’ Tt)hby [S(z, x¢ ‘
semiclassical approximation works better and better wher <"’ ) — Sz ¢, T)]/dx;, etc. Finally, the propagator

is decreasing, i.e. when the quantum rules give way to tHES'de _the barrier is given by equatidr_m plus the_phase
classical ones. correction £ calculated in the previous subsection. The

To end this subsection, we mention that the quality of th%robability density, which is independentfbecomes

the exact quantum wavepacket comes from the progressig@
1

approximation is independent of the tirfie except for times ) 1 1
slightly smaller tharil.. In this time interval only the direct [ (Z, Xt, T)scl™ =

. . bﬁ m2 . +m?2
trajectory contributes but the exact wavepacket already shows qq " 'lap
interferences that can not be described |ty (figure 2, m2 _ 2
T = 10). We now enter the heart of the matter, and consider X expi— —1 (p p1> i . (22)
what's happening inside and after the barrier. Maq + Map ¢

Figure 3 shows|ys.|2 as a function ofx; for the same
parameters as in subsection 3.1. Although the semiclassical
From the classical point of view there is only the direcapproximation also improves for smdi] here we shall fix
trajectory in this region (see figurB, since a reflection on h=1. This is because the behaviour of the propagator
the other side of the barrier (at= a) can not be considered becomes trivial for smalh:if p < 1 the wavepacket bounces
without quantum mechanics. Calling = p > «/2Vp andp, off the barrier almost completely, and otherwise it simply
the momentum of this trajectory before and inside the barripasses over the barrier barely noticing the presence of the
respectively, energy conservation givgs/2= p3/2+V,. potential.

3.2. Inside the barrier—a < xs < a

This is the first equation connecting to p,, but we need The first remark is that the wavepacket is continuous at
a second one which is imposed by the propagation fime x; = —a: the extra phaseé does play its role correctly. As in
ty +t, where: the case before the barrier, the comparison between exact and
+q semiclassical calculations is always at least qualitatively good,
t= — is the time to go frong to and sometimes even quantitatively so. However, there are two
P1 main effects that the semiclassical approximation cannot take
— awith momentumpy; into account.
Xgt+a . .
= 0 the time to go from-arto 1. There is a gap between the exact and semiclassical

curves, which decreases progressivelyxasincreases,
and is bridged near the local maximum of the probability
density. The reason may come from the fact it is not
possible to impose the continuity of therivativeof 15

Xt with momentump,.

The combination of these two equations gives

T _a+q L X +a (19) with respect tok; at —a.
p1 /pz _ 2\/0’ 2. There are oscillations on the exact curve (especially for
! p =2 andT =50) close to the right side of the barrier,

that are not present in the semiclassical approximation.
This is a purely quantum effect, because classical
(P2 — 2Vo) (1T +a+q)2 = (X +a)2p2. (20) mechanics cannot take into account a reflected trajectory

which would interfere with the direct one in this case.

This is a quartic polynomial, which we solve numerically. |¥sdl? is in fact the mean-value of the oscillations, and
We obtain four solutions: one is always negative, which we that is Why there is a discontinuity of the Wavepacket at

discard since we fixed the initial positi@non the left side of X = a, since the exact curve is beginning at the bottom
the barrier; two are sometimes complex and, when real, have of an oscillation.

which can be rewritten as
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Figure 3. (Colour online) Exact (blue thin lines) and semiclassical (red thick lines) wavepacket inside the barrier for various values of
andT andh = 1.

If we want to stay strictly in the semiclassical limit, therébarrier. The equation fqo; = p; is again a quartic polynomial
is nothing we can do about the lack of interferences in tlggven by

barrier region: this is the limit of our approximation. But if

we want to use the semiclassical point of view in order to (Pf—2Vo)(pT +a+q)’ = (3a—x;)°pi.  (23)
provide a more intuitive picture of the quantum world, we can )

add a ‘ghost’ trajectory that reflectsxat = a and see ifit can V& KNOW thaips girectiS the Same api reflecteq@t X1 = a and we
account for the interferences. Similar ideas have been applfd¥P0Se the only solution 02g) which satisfies this condition.
to the frequency spectrum of microwave cavities with sharf!® €xpression of the new action is:

dielectric interfaces4] and, more recently, to the spectrum 1 p2 33— x

of step potentials confined by hard wall5. The argument S (z, x¢, T) =—=(@+q)pr+ <—1 - 2vo) il

will be the same as in subsection 3.1, except of course that the 2 2 J PE =2V
reflected trajectory will now bounce on the right side of the (24)
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The expressions ofyy and v, are the same aswavefunction on the right side of the barrier. Because there is
equation {1) but with p;, S, mygq andmyg, indexed byd orr.  always a single trajectory on the right sigé does not affect
After some calculations, the new expression of the probabilitige probability density there. We find that éds= A2/2 —1
density inside the barrier becomes whereA, = W(a)/D(a).

The new results are displayed in figuteThe gap is still

W (z, Xt, T)se? = 1 1 present, but the agreement between exact and semiclassical
bym /2 gtm2 g on the right-hand side is nearly perfect. The interferences are
a P indeed coming from a real ‘ghost’ trajectory that bounces off
m2 _ 2 Lo ;
x exp| — qq d <P pld) at the end of the barrier Ilke_t a quantum plane wave. Since
mqu+mgpd c the left-hand side of the figure has not changed much,
1 1 the reflected trajectory has no effect on this part of the
wavepacket and we don't need to consider additional
by Mqr * M reflections. Furthermore, we don't have to take/se into
M2 2 account when we calculat in subsection 3.1. We finish
x exp| — aqr ( S ) this subsection with two comments: firstly, the approximation
mﬁqr*'mépr c with the ghost trajectory is accurate even for larger values
2 , of h. Secondly, the wavepacket becomes continuous at
+m COS(¢r — ¢ +6°) Xi =a. That is very interesting because continuity comes
1 only when we include the reflected trajectory, whereas the
X part of the wavepacket which goes through the barrier is
\‘/(méqr +mZ,,) (MGg 4+ MGp o) calculated independently with a single direct trajectory (see
2 2 next subsection). This means that the semiclassical propagator
X exp _ 1 Mg ( P— pld) after the barrier someholnowsthere is a reflected part.
2 mqu+m§pd ¢ In the next subsection, we will briefly present the
1 m _ 2 computation of the wavefunction at the right side of the
NG — L (p p1r> ] , (25) barrier.
2Miqr*Mipr \  ©
wheref’ is the new extra phase (that absorbs the previous?f)'/3 - After the barrier: a< x;
computed) and Following the same arguments as in subsection 3.2, we use
the energy conservatiopé/2 = p3/2+V, = p3/2 (the index
O — Q4 = S S + } arctan( mqu> 3 refers to the right of the barrier) and the different times:
h 2 Mgqd —24, 1, = 2 andt; = *= to calculate the initial momentum
1 arctan( mqpr) . 1 MggdMgpd ( P — Pid )2 of the direct trajectory. We obtain
Mgqr 2mc2]qd+mc2]pd c 2 2 _ 2,2
, (p1 —2Vo)(p1T +2a+q —x1)* = (28)°py,  (28)
_1- mqqrmqpr (p_plr) (26) .
2me, +m2,, c : whereas the action becomes

t1 p2 t1+to p2 T p2
The results of such an expression, however, are not go®iz, x, T) = ?1 dt +/ (72 — Vo) dt +/ 3t
t

the oscillations become too big, which means that the reflected 0 t 1+
trajectory needs to be attenuated by a reflection coeffigient _1 (Xf —q—2a)py+a [0z — oy — 2aVp

To calculateo we use the following reasoning: for each point 2 g P1 Py 0 \/TZV
X inside the barrier there corresponds a reflected trajectory P1 0
from q to x; with a certain value ofp; > 1 computed with (29)

Eqg. 23). We take forp the same attenuation coefficient a ) ) . i -
plane wave with momentunp; would have. Let(F %1 + In this region, no reflection is possible and the probability

Ge*1) and Cé* be such a plane wave inside andjensityh/fsdz is ;imply given by equation2@). The results
after the barrier respectively, where= /2(E —Vo)/hi= &€ presented in figuré. For any values ofp, T or h,

there is still a very small difference between the exact and

/p2 — p2 = = inui i . . .
P1 ] p*/h e_mdk - _ZE/H_ pl/ﬁ' The contlnw.ty of t_h's semiclassical curves for the ascending part of the wavepacket,
function and its derivative at; = a give us the relative weight \yhereas the agreement is perfect when the function is

of the reflected trajectory with respect to the direct one: decreasing.

The conclusion of this section is that the semiclassical

G 1—k/k 1—y/1- p?/pi approximation with real trajectories gives very good results

p(P1. Vo) = ‘E‘ = 1+x/K = o (27) and is indeed able to describe some important quantum
1+/1-p%/pi effects. Interference on the left side of the barrier appears

naturally when the wavepacket hits the barrier and the

The expression for the total propagator becorfvagg + comparison with the exact solution gets better hagets
o ¥ser €7). We use the same argument as in subsection 3.1simaller. However, these interferences cannot be obtained in
compute the extra phasg adding another correctidgriito the the barrier region, since there are no reflected trajectories in

370



Semiclassical tunnelling of wavepackets with real trajectories

0.008 0.007
0.007 0.006
0.006
0.005 | 0.005
(U o
S 0.004 S 0.004
0.003 0.003
0.002
0.001 0.002
0 — 0.001
50 —40 -30 20 —10 0 10 20 30 40 50
Xr
0.010
0.010
0.008
o 0.006 o
> >
0.004 0.008
0.002
O L L L L L L L L L L 0‘006 L L L L L
-50 —40 30 =20 -10 0 10 20 30 40 50 0 10 20 30 40 50
Xf Xf

Figure 4. (Colour online) Exact (blue thin lines) and semiclassical with ghost reflected trajectory (red thick lines) wavepacket inside the
barrier. The panels on the right are magnifications of the left ones, showing the perfect match between the approximation and the exact
solution.
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Figure 5. (Colour online) Exact (blue thin lines) and semiclassical (red thick lines) wavepacket after the barper foandT = 50
and 100.

the classical dynamics. We showed that these interferendesSemiclassical tunnelling times

can be recovered if a ‘ghost’ trajectory that reflectx at a

is added and assumed to contribute with the same coefficigfe question of how much time a particle spends in the
of a plane wave of initial momenturp;. With this addition classically forbidden region during the tunnelling process has
the semiclassical approximation becomes again very accuragen attracting the attention of physicists for a long time
inside the barrier. In the next section, we shall briefly discu®, 16-22]. The very concept of a ‘tunnelling time’ is,
the possibility of using our results to calculate the tunnellingowever, debatable1B]. Nevertheless, in a semiclassical
time as defined inZ]. formulation where real trajectories play crucial roles in the
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tunnelling process, the temptation to estimate such a time isqg
irresistible.

Since, we are considering a wavepacket, and not a
classical state localized by a point in the phase space, wes, |
can only define a mean value of the tunnelling time. Let us
fix the initial conditionsq, p (such thatp < 1) andx; > a.

The probability of finding the initial Gaussian state »at

after a timeT is given by |(x{|K(T)|z)|?. Therefore, the 7 100
particle can reack; from (q, p) in several different time
intervalsT. For each value of the tim€ there corresponds a
single real trajectory whose initial momentupa(T) > p =
2V, is given by eq. 28). This trajectory spends a time
(T)= -2 = ——2___ in the region—a < x < a. Notice

p2(T) =  / p%('r)_bz

that the average energy of the wavepacket is below the barrier 0 0 ' 1 ' ’ 3 ' 4 ' 5
but the contributing trajectory always has energy above the

barrier. Therefore, for fixed, p, X, the probability that the p

wavepacket crosses the barrier in a tim@) is proportional Figure 6. (Colour online) Tunnelling time as a function pf The

to |(x¢|K(T)|2)|%. Following [2], we can define the meanyeq thick line and the green curve show the semiclassical result
value of the tunnelling time as according to equatiors() for the square barrier and the free
particle respectively. The thin black line is the classical time

oo for th barri tential.
('L’) _ ‘ﬁ*l/ ‘[(T) |(X|K(T)|Z)|2dT, (30) or the square parrier potentia
0
where . the wavepacket is accelerated by the barrier, which acts like
‘Jt:/ |(X|K (T)|2) )2 dT @31 @ ﬂlter for the wavepacket and cuts off the contributions
0 of its slowest components (see figuréa)). On the other

is the normalization factor. It is not equal to one becaus@nd whenp increases, the fraction of the trajectories with
only the part of the wavepacket which goes through tHé<+2Vo=1 becomes negligible and the barrier simply
barrier is considered. This is important in our case, since tFRStrains the propagation of the wavepacket (figighy).
semiclassical approximation is better for > a.
We calculated these integrals numerically, performing & Conclusion
discrete sum ovef, =néT,withn=1,2, ..., N andsT =
Tmax/N. If an observer is placed at a fixed position> a, as In this paper, we used the semiclassical approximation
the timeT slips by, hg¢she sees the wavepacket arriving froneq. (1), derived in P], to study the propagation of a
the barrier, becoming bigger and bigger, reaching a maximugavepacket through a finite square potential barrier. One
and then decreasing and disappearing. We ended the surofahe main purposes of this study was to test the validity
Tmax Such that(x|K (T)[2)|> < 107* VT > Trax. and accuracy of the approximation, which involves only real
An important remark is thafr) is independent of the trajectories, in the description of tunnelling. Surprisingly,
observer’s positiorxs (except for small fluctuations due towe have shown that the approximation is very good to
the numerical computation), since e§0 measures only the describe the wavepacketfter the barrier, even when the
time inside the barrier. The three different times we are goirgerage energy of the wavepacket is below the barrier

to use for comparison are: height. The region before the barrier is also well described
e (mar) is the tunnelling time computed according Y the approximation, although discontinuities are always
eq. B0). observed because of the sudden disappearance of the reflected

trajectory. The continuity of the wavefunction between this
system without barriefizree) is simply the time for dree region a_md the region inside the barr_ier_also depequ on the
wavepacket to go from-a to a. calcglatloq of an extra _pha@e Finally, inside _the .bamer the
2a__js the time required by a classical partidesemmlassmal formula is not able to describe interferences.
p-p? These, however, can be recovered when a ghost trajectory,
to cross the barrier. that reflects on the right side of the barrier, is included
Figure 6 shows the dependence of these functions wittnd attenuated with the proper coefficient. In all regions
respect top. The curves become very similar psncreases, the approximation becomes more accuratehabecomes
because the barrier becomes more and more negligildealler.
The wavepacket spreads but stays centred arqunahich The semiclassical approximatioril) is particularly
explains why it behaves like a particle of momentpnWhen relevant because the propagated wavepacket is not constrained
the influence of the barrier is more important, the wavepacket remain gaussian at all times, as in the case of Heller's
gets trapped by the barrier and slows dowmn4;) is above thawed gaussian approximatiod?], and also because it
(Tiree)), DUt fOr p < 1.8, (tiee) andtqassStart to increase very uses only a small number of real trajectories. These are
fast (rqass actually diverges ap = 1), whereas(tyay) Stays much easier to calculate than complex ones, especially in
finite until p is very close to 0: thanks to the tunnel effectmulti-dimensional problems. The demonstration of its ability

o (Tree) IS Obtained from the same way &8,y), but in a

® Tclass=—
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Figure 7. (Colour online) Exact (blue thin lines) and semiclassical (red thick lines) wavepacket after going through the barrier. The green
curve (above the other two in both figures) shows the corresponding free particle wavepacket Gérthe barrier acts like a filter and

only the fast components of the initial wavepacket go through g=er2, on the other hand, the wavepacket interacting with the barrier is
slightly behind the free particle wavepacket, showing that the barrier slows the trajectories because the momentum is reduced to

P2 = /P2 — 2V < py between—a anda.
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