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We consider the classical dynamics of two particles moving in harmonic potential wells and interacting with
the same external environment HE , consisting of N non-interacting chaotic systems. The parameters are set so
that when either particle is separately placed in contact with the environment, a dissipative behavior is observed.
When both particles are simultaneously in contact with HE an indirect coupling between them is observed only
if the particles are in near resonance. We study the equilibrium properties of the system considering ensemble
averages for the case N = 1 and single trajectory dynamics for N large. In both cases, the particles and the
environment reach an equilibrium configuration at long times, but only for large N a temperature can be assigned
to the system.

INTRODUCTION

Understanding dissipation from a microscopic point of
view has become important to several areas of physics, es-
pecially if quantum phenomena are relevant. In these cases
a globally conservative approach for the system plus its en-
vironment is highly desirable, allowing a direct quantum me-
chanical description.

The simplest, and perhaps most natural, way to model the
environment is to use an infinite set of harmonic oscillators,
representing the normal modes of a general system in equilib-
rium weakly perturbed by the system of interest [1, 2]. The
spectral function, which is related to the distribution of fre-
quencies of the normal modes, can be chosen to model sev-
eral types of thermal baths [3–5]. Other representations of the
environment have also been explored, from spin systems [6]
(or two-level atoms) to chaotic systems [7–11]. The latter is
particularly important to model coupling to small external sys-
tems where the chaotic nature of the trajectories compensates
for the small number of degrees of freedom in the decay of
correlation functions. However, chaos alone does not suffice
to simulate a thermal bath, since small numbers of degrees
of freedom always leave a strong signature in the dynamics
through large fluctuations in the observables of the system of
interest [12]. These fluctuations can be washed out by aver-
aging over several realizations of the dynamics [13].

More recently, the interest has shifted from a single parti-
cle interacting with the environment to two particles indepen-
dently connected to it [14–16], allowing the study of interac-
tions mediated by the environment. One important case is that
of two entangled particles subjected to dissipation and deco-
herence. In many cases, the total Hamiltonian is symmetric
by the exchange of the particles, although they may still be
considered distinguishable in some applications [14].

In this paper we consider the classical dynamics of two
particles moving in harmonic potentials linearly coupled to
a finite chaotic environment. We study the system behavior as
a function of the frequency of the oscillators. We find that the
behavior of the system changes radically when the oscillators
are in resonance, which is a necessary condition if the particles
are identical, and that even small deviations from this sym-
metric state changes dramatically the equilibrium properties

of the system. In particular, we show that, when in resonance,
the particles may exchange energy through the environment
while their energies dissipate. Moreover, the energy stored in
their relative motion is conserved.

We model the environment as a set of N independent quar-
tic systems (QS), each with 2 degrees of freedom. The QS
has a single parameter that controls the degree of chaos in the
dynamics. The particles are represented by two harmonic os-
cillators independently coupled to the set of QS’s. As study
cases we consider the systems with N = 1 and N = 100, for
which we study the statistical properties of the energy dis-
tributions of the environment and of the oscillators. In both
cases, these distributions reach an asymptotic equilibrium, but
attempts to define a temperature for the system using two ba-
sic definitions of entropy, applicable to small systems, suc-
ceed only in the case N = 100. The results of the simulations
are then interpreted in the light of the linear response theory.

MODEL

We consider two harmonic oscillators interacting with an
environment composed by a collection of independent quartic
systems. The Hamiltonian is

H = H1 +H2 +HE +λNHI , (1)

where λN = λ/
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N

∑
n=1

(q1 +q2)xn. (4)

The total energy is conserved and the two oscillators interact
only via the environment.

In our simulations, we used λ = 0.01. The parameter a
in HQS controls the dynamical regime of the quartic systems
in the environment, ranging from integrable (for the special
values a = 1.0 and a = 0.33 [17]) to chaotic (a → 0). In
the work, we used a = 0.01 or a = 0.1, which correspond
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to regimes where the QS is mostly chaotic. For a = 0.1 the
largest Lyapunov exponent of an isolated QS is λL = 0.166
for EQS = 0.1. For a = 0.01 we obtained λL = 0.121 for
EQS = 0.01. Because of the scaling properties of the QS, the
Lyapunov exponent at other energies can be calculated using
λL(E) = (E/E0)

1/4λL(E0).
As the number of degrees of freedom is finite, the parameter

N assumes a prominent role and we investigate its influence in
the dynamic behavior of the oscillators. It has been recently
shown [12] that, for N sufficiently large, such finite chaotic
environment can simulate the action of an infinite thermal
reservoir. Here the environment also acts as a medium con-
necting the two harmonic oscillators.

In order to highlight the interaction between the oscillators,
one of them is initialized with energy E1 > 0 while the other
is set at rest with E2 = 0. For the environment we define the
initial conditions using the pseudo canonical distribution [12]

ρ =
1
Z

N

∏
n=1

δ (H(n)
QS −E(n)

QS ), (5)

where the energy E(n)
QS of each QS is randomly chosen from the

exponential probability distribution exp(−E/ĒQS)/ĒQS. The
value of ĒQS plays the role of an initial “temperature” for the
environment. In the special case of N = 1 the energy EQS is
fixed to ĒQS.

In what follows we will study the system (1) for only two
relevant environment sizes: the “microscopic” (N = 1) and
“macroscopic” (N = 100) cases. As pointed out in [12], the
dynamical behavior of the system becomes N-independent for
N sufficiently large. For the parameters values used in this
paper, the large N limit is already reached for N = 100. The
case N = 1 is a natural extension of the work presented in
[13], where the authors considered the interaction between a
harmonic oscillator and a single quartic system using ensem-
ble averages. Thence we choose the same set of parameters
as in [13] in our simulations, allowing us to verify the im-
plications of adding a second oscillator to the system. For
N = 100, on the other hand, we compare our results with the
work presented in [12], which treated the dynamics of a single
oscillator interacting with large chaotic environments.

In the microscopic case, observables related to the har-
monic oscillators, like the energies H1 or H2, exhibit large
fluctuations when coupled to HQS. These fluctuations can
only be washed out by averaging over large ensembles of re-
alizations of the dynamics. In the macroscopic case this is not
necessary and the results obtained from a single realization
of the dynamics are already representative of the average be-
havior. In this case we can speak of an “effective dynamics”,
where no averages are performed.

MEASURES OF TEMPERATURE

Temperature is a central property in the description of equi-
librium and is properly defined only in the thermodynamic

limit of very large systems. Since the environment defined in
Eq. (3) is far from this limit for N = 1 and N = 100, different
possibilities arise. One natural definition comes from the
equipartition theorem [18]〈

zm
∂H
∂ zn

〉
= δmnτE , (6)

where zn denotes the coordinates or momenta of the system
and δmn is the Kronecker delta. The constant τE is identified
with kBT when the system is in contact with a thermal reser-
voir. The subscript in τE emphasizes the explicit use of the
equipartition theorem. Eqs. (1) and (6) predict that the frac-
tion of the total energy within each subsystem in equilibrium
should be 〈E1〉 = 〈E2〉 = τE = 2/3〈EQS〉. We can also write
the system’s temperature as a function of the number of quar-
tic systems as

ET = E1(0)+E2(0)+ET
QS(0) = 2τE +

3
2

NτE , (7)

in which ET
QS(0) is the environment’s total energy at t = 0.

Eq. (7) can also be derived from the thermodynamic rela-
tion [19]

τ
−1
E =

∂ lnΓ

∂ET
, (8)

where

Γ(ET ) =
∫

Θ(ET −H)d pdq (9)

and the integral is taken over the entire phase space of the
system. For the Hamiltonian in Eq. (1) we obtain

Γ = cE
3N f /4+2
T , (10)

where N f = 2N is the number of degrees of freedom of the
environment and c represents a constant depending on the sys-
tem parameters.

Notice that

lnΓ = lnc+(3N f /4+2) lnET (11)

plays the role of entropy. The usual entropy, on the other hand,
is given by

S(E) = ln
[∫

δ (E−H)d pdq
]
= ln

∂Γ

∂E
= lnc+(3N f /4+1) lnE + ln(3N f /4+2). (12)

Defining τ
−1
S = ∂S(ET )/∂ET we obtain

ET = τS +
3
2

NτS, (13)

which agrees with (7) in the limit of large N.
The two temperatures, τE and τS, can be calculated numer-

ically in a number of ways. According to [20], τS may be
calculated from the dynamics using the expression [20, 21]

τ
d
S = 〈Φ(H)〉−1, (14)
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where τd
S /kB is the so-called Rugh’s temperature and Φ(H)≡

div ∇H
‖∇H‖2 with ∇ denoting the gradient in phase space. This

formula assumes that the energy, H = E, is the only isolating
integral. On the other hand, τE can be estimated as a dynami-
cal average, as in the left hand side of Eq. (6). We use the su-
perscript d to emphasize that these temperatures are obtained
from the dynamics, i.e., from the trajectories.

Finally, the temperature can be calculated from the energy
distribution p(E), which is the probability of finding one QS
with energy E when the system is in equilibrium, and fitting
p(E) with the Boltzmann exponential pB(E)∼ exp(−E/τB).
Another possibility is to numerically calculate the distribution
of momentum and fit it with the Maxwellian profile pM(p)∼
exp(−p2/(2mτM)). These distributions will be obtained from
the numerical data for the oscillators and will be used to check
the predictions arising from Eqs. (7) and (13).

In the limit of large systems, we expect all these mea-
sures to approach the same equilibrium value; however, for
small number of degrees of freedom, they are likely to differ
[22]. We will use two basic definitions of temperature, and
the different ways to calculate them, to assess the equilibrium
properties of our model system.

DYNAMICS VIA ENSEMBLE AVERAGE (N = 1)

In this section, we investigate the approach to equilibrium
and equipartition of energy for the system described by the
Hamiltonian (1) with only one quartic system, which means
N = 1. We examine, particularly, the energy transfer dynam-
ics of this system for cases in which the coupling between the
subsystems is weak and the harmonic oscillators are near-to-
resonance. We test for equilibration by comparing the calcu-
lated distributions of energy and momentum with appropriate
equilibrium distributions. We also analyze and compare the
dynamical behavior of τd

E with that of τd
S , concentrating on

the issue of energy equipartition between the energy stored in
the oscillators and in the quartic system at large times.

Our approach makes use of averaging over large ensembles
of different initial chaotic configurations that have a common
fixed energy shell where HQS = EQS. The initial conditions
for the two harmonic oscillators are q1 = 0, p1 =

√
2m1E1(0),

q2 = 0, and p2 =
√

2m2E2(0). The initial data used for the
phase space variables x,y, px, py originate from points along
a single trajectory of the uncoupled chaotic quartic system,
rather than from random starting points in an energy shell.

To solve numerically the equations of motion, we used
the fourth-order Runge-Kutta method (detailed for example
in [23]). The integration time step length was set to ensure
energy conservation to within 1% for each individual trajec-
tory. The ensemble average value of an observable is calcu-
lated as the mean of its estimates generated by propagating
initial conditions in the ensemble. Throughout this section,
we set m1 = m2 = 10 and a = 0.1 [13].

The left panels in Fig. 1 present the short-time energy trans-
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Figure 1. (Color online) Short- and long-time energy dynamics of
the oscillators at various values of k = 0 (black), 1 (red), 6 (green),
11 (blue), 16 (cyan) for energies of EQS(0) = 0.1 (panels (a) and (b))
and EQS(0) = 5 (panels (c) and (d)). The averages were computed
using an ensemble of 40000 initial conditions.

fer dynamics between the two harmonic oscillators. Their
average energies are plotted versus dimensionless time t∗ =
ω1t/2π for the initial energies EQS = 0.1 (panel (a)) and
EQS = 5 (panel (c)), and frequencies ω2 in a small deviation
from the frequency ω1 = 0.0125: ω2 = ω1 + k ∆, with fixed
value ∆ = 0.0000375 for k = {0,1,6,11,16}. The initial en-
ergies of the oscillators are chosen as E1 = 25 and E2 = 0.
It is readily seen that the energy curves for k = 0 and 1 are
almost identical for both situations; however the response to
EQS = 0.1 is faster than that of EQS = 5. Another important
feature is the appreciably less energy transferred from one os-
cillator to the other at greater k values.

The right panels of Fig. 1 in turn capture the long-time be-
havior of the average energies of the two oscillators under
EQS = 0.1 (panel (b)) and EQS = 5 (panel (d)) conditions.
Except for the case when the frequencies coincide, the final
energies for the oscillators are visibly different for each ini-
tial state of the system. These panels indicate that the equili-
bration time is very long and might not be reached in practi-
cal situations. Not shown here is the behavior of the chaotic
system’s average energy, which ascends gradually with time
and more rapidly with increasing k, approaching a saturation
value. See panel (a) in Fig. 3 for a plot of 〈p2

x〉 as a function
of t∗.

Fig. 2 exhibits the energy distributions of the two oscillators
for an ensemble of 40000 initial conditions at time tf — which
corresponds to 3000 periods of the oscillator 1 — for the case
EQS(0) = 5. These distributions are generally different (ex-
cept for k = 0) and do not have the Boltzmann form (except
for k = 11 and k = 16 for oscillator 2). The fittings to these
distributions are, in majority, of the form

p f (E) = A(〈ET(tf)〉−E)BEC, (15)

where 〈ET(tf)〉 is the value of the average total system energy
at time tf. In most cases, all parameters A, B, and C had non-
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Figure 2. (Color online) Distributions of energy for the three sub-
systems at time tf, computed with initial value EQS = 5. The ragged
black curves in each k-labeled panel are for oscillator 1; the blue
curves are for oscillator 2, and the smooth curves are plotted accord-
ing to Eq. (15). The bottom-right panel displays results for QS, with
k increasing from top curve to bottom curve.

zero values. One exception occurs for the chaotic environment
for k equal to zero or one. In such cases, the fitting is reduced
to A
√

E.
For the case of a single harmonic oscillator, the energy dis-

tributions should approach a square root line, as suggested in
[13]. However, for k = 11 and k = 16, the energy distribution
of oscillator 2 can be well fit by an exponential, which seems
to be an unexpected transient. Interestingly, the correspond-
ing momentum distribution closely obey the Maxwellian law
pM(p), which also characterizes approximately the momen-
tum distributions of the quartic system. This behavior per-
sists for times up to t∗ = 6000. In particular, for k = 11, the
value found of τM = 12.28 for QS is reasonably close to three-
halves of that of τM = 8.16 for oscillator 2, which in turn is
near the corresponding value of τB = 8.77. This satisfies both
equipartition 〈EQS(tf)〉 ≈ 3

2 τE and, from energy conservation
[cf. Eq. (7)], τE = 2

7 ET(t = 0).

We show in Fig. 3 the time evolution of τd
E associated with

px (panel (a)) and of τd
S (panel (b)) for all k values studied.

Again, not all curves reach an asymptotic value within the
displayed time, confirming that dynamical equilibrium was

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

0 500 1000 1500 2000 2500 3000
0

3

6

9

12

15

(b)

 

 

d E

8.57

7.17

(a)

 

 

d S
t
*

12

10.04

Figure 3. (Color online) Panel (a): time evolution of 〈p2
x〉 for

EQS(0) = 0.1 (bottom curves) and EQS(0) = 5 (top curves). Panel
(b): time evolution of τd

S for EQS(0) = 0.1 (bottom curves) and
EQS(0) = 5 (top curves). Colors and parameters as in Fig. 1, ex-
cept that, for the calculation of τd

S , 4000 initial conditions were used
instead of 40000. The results for 〈p2

y〉 are nearly identical to those of
〈p2

x〉.

not yet reached. We compare the asymptotic values with those
predicted by Eqs. (7) and (13) for total energies 25.1 and 30:
2
7 × 25.1 ≈ 7.17 and 2

7 × 30 ≈ 8.57 for panel (a); 2
5 × 25.1 =

10.04 and 2
5 ×30 = 12 for panel (b). Except for the resonant

cases k = 0 and k = 1, τd
E converges to values close to the

expected results of 7.17 and 8.57. Also, τd
S converges better

to 12 than it does to 10.04 for the resonant cases.
Although both τd

E and τd
S display very similar time depen-

dent behavior in practically all cases studied, they disagree
with respect to the mean energy at equilibrium. The numeri-
cal results for the mean oscillators’ energies are closer to τd

E
than to τd

S , which indicates that the usual definition of entropy
[cf. Eq. (12)] can not be applied to this system, possibly be-
cause of its few degrees of freedom.

DYNAMICS WITH A SINGLE TRAJECTORY (N = 100)

In the previous section, we discussed the dynamical behav-
ior and equilibrium properties of the system described by the
Hamiltonian (1) for N = 1. The time dependence of any ob-
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Figure 4. (Color online) Energy of the oscillators as a function of the scaled time t∗ for (ω1,ω2) = (0.3,0.3) (panel (a)), (0.3,0.302) (panel
(b)), (0.3,0.304) (panel (c)), and (0.3,0.5) (panel (d)). The black and red solid lines show the numerical results, and black and red dotted lines
in panels (a) and (d) the theoretical results calculated using Eqs. (19) and (20) with γ ≈ 0.0044 (panel (a)) and γ ≈ 0.0035 (panel (d)).

servable, like the energy of the oscillators, typically displays
large fluctuations, when calculated for a single initial condi-
tion. These fluctuations, which result from the small num-
ber of degrees of freedom of the environment, are drastically
reduced when averaged over ensembles of initial conditions.
Even after such average we cannot state that the environment
simulates the action of a thermal reservoir, since the energy
distribution does not always follow a Boltzmann exponential
law. As more QS’s are included in the environment, these sin-
gle trajectory oscillations decrease. For N sufficiently large
the time behavior obtained for a single trajectory becomes
similar to that of the ensemble average and independent of N.
In this case, we may talk about a potentially effective dynam-
ics, where single realizations reproduce the average behavior.

The indirect interaction between the QS’s via the harmonic
oscillators enables the energy to be redistributed among them,
leading to a Boltzmann type of equilibrium distribution for
the environment [12]. When a single harmonic oscillator is
in contact with a sufficiently large and “cold” chaotic envi-
ronment, most of its energy is transferred to the environment.
The results exhibited in Fig. 1 show that for two resonant os-
cillators this is not true: more than 50% of the initial energy
stored in the oscillators remains in the harmonic modes even

for very long times. In what follows, we explore situations
where this symmetry is broken for N = 100, for which the
environment is already in the N-independent regime. All nu-
merical results in this section are obtained for a single trajec-
tory and for m1 = m2 = 1, a = 0.01 [12], and E1(0) = 10 and
E2(0) = 0.

Resonant case: Panel (a) of Fig. 4 shows the energy of the
two oscillators as a function of time t∗ for the resonant case.
Approximately 50% of E1(0)+E2(0) remains with the oscil-
lators. Notice that the curves displaying E1(t∗) and E2(t∗) are
mirror images of each other with respect to the dashed blue
line, which indicates that the final mean energy of the two os-
cillators is Ē1 = Ē2 ≈ 2.5. This result is confirmed in panel (a)
of Fig. 5 where the energy distributions of the oscillators are
Gaussians centered in Ē = 2.5. This is by no means a trivial
result and is in conflict with the equipartition theorem as given
in Eq. (7), which predicts Ē1 = Ē2 ≈ 0.072. The condition of
high symmetry associated with the resonance is responsible
for this apparent violation of the equipartition theorem as will
be discussed in the next section.

Non-Resonant case: Panels (b) to (d) in Fig. 4 show the
energy of the oscillators for frequencies moving away from
the resonance. It is still possible to see a flow of energy from
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Figure 5. (Color online) Distributions of energy for the four cases
displayed in Fig. 4. The distribution is Gaussian in the resonant
case (panel (a), centered in Ē = 2.5), and Boltzmann-like in all
off-resonant cases: pB(E) = exp(−E/Ēi)/Ēi with Ē1 ≈ 0.072 and
Ē2 ≈ 0.073 (panel(b)); Ē1 ≈ 0.072 and Ē2 ≈ 0.073 (panel(c)); and
Ē1 ≈ 0.075 and Ē2 ≈ 0.069 (panel(d)).

one oscillator to the other, although this becomes less evident
as the frequencies become more separated. Also visible is the
increase in the dissipated energy. Fig. 4 also shows how sen-
sitive is the dynamical behavior of the system with respect to
variations in the frequency of the oscillators. In the quasi-
resonant cases (see panels (b) and (c)), where ω1/ω2 ≈ 1, the
relaxation time is significantly greater than in the other cases,
allowing energy exchange between the oscillators for a very
long time. However, if the ratio ω1/ω2 deviates more con-
siderably from unity (panel (d)), the “opacity” of the chaotic
medium increases, culminating in almost independent oscilla-
tors that quickly lose all their energy to the environment. The
energy distributions corresponding to the cases of Fig. 4 are
depicted in Fig. 5, and show that the finite environment does
act as a thermal bath for the two oscillators, both of which
have the same temperature. Moreover, the equipartition the-
orem holds true for all three off-resonant cases at long times,
which means that the relation Ē1 ≈ Ē2 ≈ 2

3 ĒQS is valid. This
reinforces the ability of the finite chaotic environment to pro-
mote dissipation and thermalization [12]. Nevertheless, the
resonance condition creates an effective channel that permits
efficient flow of energy between the harmonic modes. The
aim of next section is to explain the special resonant case, and
show that in this case the equipartition is still valid.

LINEAR RESPONSE THEORY

The oscillators obey the dynamics given in the equations

q̈i +ω
2
i qi =−

λN

m

N

∑
n=1

xn ≡−
λN

m
X(t). (16)

As the dynamics of the variables xn are chaotic and the interac-
tion among the QS’s is of second order in the coupling, each xn
is approximately independent and we may replace X(t) by its
average 〈X(t)〉. Applying then linear response theory (LRT)
[24], we get

q̈i +ω
2
i qi ≈

λ 2
N

m

∫ t

0
dsφXX (t− s)(q1(s)+q2(s)) , (17)

where the response function φXX is given in Ref. [12] by

φXX (t− s) =
5µN

4
d
ds

δ (t− s)+
µN(t− s)

4
d2

dtds
δ (t− s) ,

(18)
where µ is a parameter that depends on the average energy of
the environment. After computing the integral we have

q̈1 + γ q̇1 +ω
2
1 q1 =−γ q̇2, (19)

q̈2 + γ q̇2 +ω
2
2 q2 =−γ q̇1, (20)

with γ = 3λ 2µ

8m . These equations cannot be diagonalized unless
ω1 = ω2. In this case, we can define the new variables

Q± =
q1±q2√

2
, (21)

associated with center-of-mass and relative coordinates of the
oscillators, and rewrite (19) and (20) as

Q̈++2γQ̇++ω
2Q+ = 0, (22)

Q̈−+ω
2Q− = 0. (23)

The Q− is then completely decoupled from the environment,
and will be called the conservative mode, whose initial en-
ergy is E1(0)/2 for the present initial conditions. Analo-
gously, Q+ will be termed dissipative mode. LRT predicts
γ � ω; therefore Q+ dissipates energy according to E+(t) ≈
E+(0)exp(−2γ t), where E+(0) is also E1(0)/2. Note that
Eq. (23) is exact, as can be seen by replacing (21) into (16).

The harmonic oscillators energies obtained from Eqs. (19)
and (20) are compared in Fig. 4 with numerical simulations of
the Hamiltonian (1). As seen from the figure, the qualitative
agreement is excellent for both resonant (panel (a)) and non-
resonant (panel (d)) cases.

In order to correctly apply the equipartition theorem in
the resonant case we have to consider only the energy in
Q+. Taking the expression for the total initial energy, ET =
E1/2+NEQS, we find that the expected value of the energy
of the dissipative mode in equilibrium is Ē+ ≈ 0.039. This
is confirmed in Fig. 6, which shows the energy distribution
of Q+. Therefore, the violation of equipartition was only ap-
parent, caused by the emergence of a conservative mode that
prevented the complete dissipation of the energy in the har-
monic oscillators.

CONCLUSIONS

We have studied the dynamical behavior of two harmonic
oscillators independently coupled to a chaotic environment
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Figure 6. (Color online) Distribution of energy for the dissipative
Q+-mode for N = 100. The fit is pB(E) = exp(−E/Ē+)/Ē+ with
Ē+ = 0.037.

with 2N degrees of freedom. We focused our analysis on two
points: the interactions between the oscillators mediated by
the chaotic environment and the equilibrium properties of the
system. We found that the oscillators can exchange energy
through the environment when in almost perfect resonance.
Deviations from this condition quickly changes this behavior
and makes the oscillators less sensitive to the presence of each
other. When in perfect resonance, the oscillators are able to
keep part of their initial energy in an apparent violation of the
equipartion theorem. This, however, turns out to be exactly
the fraction of the energy stored in the oscillators relative mo-
tion, which is not coupled to the environment. This holds both
for N = 1 via ensemble averages or for N = 100 for a single
realization of the dynamics and is also true within the approx-
imation of the linear response theory, which works well for
the resonant and non-resonant cases.

The equilibrium properties of the system, on the other
hand, depend critically on the number of degrees of free-
dom of the environment. In order to quantify the equilibrium
we considered two measures of temperature: τE , obtained
from the equipartition theorem, and τS, obtained via the usual
definition of entropy. These temperatures were also com-
pared with the energy distribution of each subsystem, when-
ever these converged to a Boltzmann-like exponential. For
N = 100 the oscillator’s energy distributions indeed always
converged to the exponential decay exp(−E/τB) with τB≈ τE
for all subsystems, except in the resonant cases. This charac-
terizes the thermal equilibrium and corroborates earlier results
that a not too small chaotic environment does play the role of
a thermal bath [12]. This conclusion also holds in the reso-
nant case if the energy of the conservative mode is properly
subtracted.

The case N = 1, on the other hand, showed a very rich be-
havior. Equilibration takes very long times for the present
choice of parameters and the energy distribution of the oscilla-

tors display, in some cases, exponential curves. Curiously, for
the particular values of ω1 and ω2 used, the exponent agreed
reasonably with energy equipartition, but not with τS. More-
over, the distribution of the momentum did often displayed
the expected Gaussian distribution, even if the corresponding
energy distribution was not exponential. These unexpected re-
sults show that the N = 1 environment does not simulate the
action of a thermal bath even if averaged over an ensemble of
trajectories, and display a more complicated type of approach
to equilibrium that is worth a deeper investigation.

We have also examined the ergodicity of the system. Be-
cause λ is small, it could be expected that the total system
would not be ergodic. This, however, is not the case. For
λ = 0, the environment is ergodic for N = 1 but it is not er-
godic for N = 100, since the quartic systems are totally inde-
pendent from each other. As the coupling is turned on, the to-
tal system becomes ergodic for N = 100 (and is able to show
the correct equipartition of energy), whereas, for N = 1, it
does not. This was verified by numerical results not shown in
which time and ensemble averages were compared for various
conditions. As expected, we found that temperature could be
defined whenever ergodicity was satisfied, although ergodic-
ity itself depends non-trivially on the parameters of the system
and on the number of degrees of freedom.

Finally, we note that the emergence of the conservative
mode Q− depends on the symmetry of the coupling as given
in Eq. (4) and on the resonance condition ω1 = ω2. The con-
servative mode is absent if ω1 6= ω2 or if each oscillator is
coupled to a different mode of the quartic system, such as in
HI = ∑n(q1xn + q2yn). In LRT this leads to decoupled equa-
tions for Q+ and Q−, each equation identical to Eq. (22).
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