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Moran model as a dynamical process on networks and its implications for neutral speciation
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In population genetics, the Moran model describes the neutral evolution of a biallelic gene in a population
of haploid individuals subjected to mutations. We show in this paper that this model can be mapped into an
influence dynamical process on networks subjected to external influences. The panmictic case considered by
Moran corresponds to fully connected networks and can be completely solved in terms of hypergeometric
functions. Other types of networks correspond to structured populations, for which approximate solutions are
also available. This approach to the classic Moran model leads to a relation between regular networks based on
spatial grids and the mechanism of isolation by distance. We discuss the consequences of this connection for
topopatric speciation and the theory of neutral speciation and biodiversity. We show that the effect of mutations
in structured populations, where individuals can mate only with neighbors, is greatly enhanced with respect
to the panmictic case. If mating is further constrained by genetic proximity between individuals, a balance of
opposing tendencies takes place: increasing diversity promoted by enhanced effective mutations versus decreasing
diversity promoted by similarity between mates. Resolution of large enough opposing tendencies occurs through
speciation via pattern formation. We derive an explicit expression that indicates when speciation is possible
involving the parameters characterizing the population. We also show that the time to speciation is greatly
reduced in comparison with the panmictic case.
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I. INTRODUCTION

A basic problem in population genetics is to predict
how allele frequencies change in a population according to
the underlying rules governing reproduction. For very large
populations, the Hardy-Weinberg law applies and no change
is expected between consecutive generations. However, for
finite populations this is not necessarily true, and drift due to
random variation can play an important role.

One of the first models to describe genetic drift in a finite
population is the Wright-Fisher model [1]. It considers a
population of N diploid individuals and a single gene with two
alleles A0 and A1, so that there are a total of 2N genes. Given
that the number of alleles A1 in the population at time t is i, one
can easily compute the probability to have j alleles A1 at time
t + 1. Assuming that reproduction occurs by randomly picking
2N genes among the previous population with replacement
and that there is no mutation, this probability is given by the
binomial distribution

pij =
(

2N

j

)
(i/2N )j [1 − (i/2N )]2N−j .

These transition probabilities form a matrix whose eigen-
values and eigenvectors contain all the information about the
evolution of the system. Although the Wright-Fisher matrix is
rather complicated, several analytical results can be extracted
from it and even mutations can be included [1].

Other models were developed later that allowed for simpler
mathematical treatment than the Wright-Fisher model or its
generalization by Cannings [2]. Of particular importance is
the Moran model [1,3,4], which considers haploid individuals
and overlapping generations. Here a single hermaphroditic
individual reproduces at each time step, with the offspring
replacing the expiring parent. The transition probabilities can
also be written down explicitly and all its eigenvalues and

eigenvectors can be calculated for the case of zero mutations
[5,6]. When mutations are included, the eigenvalues of the
transition matrix and the stationary probability distribution,
corresponding to the first eigenvector, can still be calculated
[2,7].

Here we show that the Moran model can be mapped into a
dynamical problem on networks, putting this classic model of
population genetics in a broader and modern perspective. The
mapping takes a panmictic population into a fully connected
network, where the dynamical problem can be completely
solved in terms of generating functions [8,9]. This provides
a simple and elegant representation of the complete set of
eigenvectors of the problem. The connection with the network
dynamics yields, to our knowledge, the first complete solution
of the Moran model.

Networks that are not fully connected map into nonran-
dom mating in structured populations. In particular, regular
networks based on two-dimensional grids relate to spatially
structured populations where mating is allowed only between
neighbors. This, in turn, provides the basic mechanism of
isolation by distance, as first proposed by Wright [10]. It
has been recently shown [11] that this process can lead to
speciation, termed topopatric speciation, and that the patterns
of diversity that arise are fully compatible with the character-
istics of biodiversity observed across many types of species in
nature [12]. In this paper, we use the connection to the network
dynamics to discuss analytically the mechanisms underlying
topopatric speciation. We use approximate solutions for the
network problem [9] that to our knowledge have not been
obtained in the Moran model literature.

Speciation is the process by which multiple species are
created from a single ancestral species. It can be triggered by
geographic isolation, competition for resources, and genetic
drift, among others [13,14]. The mechanism of genetic drift
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is termed “neutral” if the genes involved in speciation do not
affect the fitness of the individuals.

The idea of neutral evolution, where the role of natural
selection is not considered, has been disputed since its proposal
by Kimura [15]. The debate was further fueled by the work
of Hubbell [16], which demonstrated that realistic patterns
of abundance distribution can be obtained within a neutral
theory of biogeography in which species originate randomly
[17–23]. Recent numerical simulations have shown that the
same patterns of diversity emerge in explicitly genetic neutral
models if reproduction is constrained by spatial and genetic
proximity between individuals, and quantitative agreement
of observed and simulated diversity was demonstrated [11].
Moreover, analysis suggests that if the number of genes
involved in the process is very large, speciation may occur even
without the spatial constraint [24,25]. Genetic proximity in
mating may be imposed by a variety of mechanisms including
sexual selection, which has been linked to speciation in the
numerous species of cichlid fish in African lakes, that diverged
from a common ancestral species only a few thousands years
ago [26,27]. The theory developed in this paper sheds light
on the way drift can lead to speciation and clarifies the role
of the many parameters involved in these models, such as
mutation rate, genome size, spatial and genetic restrictions,
and population density, in the outcome of neutral evolution.
The time to speciation is also estimated and shown to be greatly
reduced in structured populations relative to the panmictic
case, rebutting the key criticism of neutral processes as being
very slow [28].

The paper is organized as follows: In Secs. II and III,
we define the network dynamical system associated with
the Moran process and write down its master equation and
transition probabilities. In Sec. IV, we explicitly show how
the Moran model can be mapped into this network problem.
In Sec. V, we summarize the Moran-network properties:
the distribution of allele frequencies at equilibrium, with its
mean value and variance, and the limit of large populations.
In Sec. VI, we discuss approximations for other network
topologies, and in Sec. VII, we discuss their consequences
for speciation.

II. THE NETWORK DYNAMICAL SYSTEM

Networks are mathematical structures composed of nodes
and links between the nodes. The nodes often represent
parts of a system and the links the interaction between
the parts. Networks can model a wide range of systems in
biology, engineering, and the social sciences [29]. In this
work, we will associate nodes to a particular gene carried
by individuals in a population, and links will be established
between individuals that can mate with each other. In this
section, networks will be treated as mathematical abstractions
with a particular dynamics of network states; the connection
with population genetics will be established in Sec. IV,
although the correspondence with the Moran process is going
to become evident as we proceed.

Consider a network with N + N0 + N1 nodes. To each node
i we assign an internal state xi that can take only the values
0 or 1. The nodes are divided into three categories: N nodes
are free to change their internal state (according to the rule

stated below); N1 nodes are frozen in the state xi = 1; and
N0 nodes are frozen in xi = 0. The frozen nodes are assumed
to be connected to all free nodes, and we consider them as
perturbations to the “free” network, composed of the free
nodes only. The information about the free network topology
is contained in its adjacency matrix A defined as Aij = 1 if
nodes i and j are connected, and Aij = 0 if they are not.

Our treatment of the model considers the most natural net-
work case in which there is no self-connection,Aii = 0. This is
also appropriate for the biological case of sexual reproduction
without any probability of asexual replication. Changing the
model to include the possibility of self-connection, Aii =
1, only slightly affects the mathematical treatment of the
model, changing the number of neighbors of a node from
N + N0 + N1 − 1 to N + N0 + N1. Formal expressions are
changed accordingly, and analytic results, including time
scales of the process, change only minimally since cloning
is the same as not updating the system.

We refer to the free nodes connected to node i as its
neighbors. The degree ki = ∑

j Aij is the number of neighbors
of node i. The dynamics of the free nodes is defined as
follows: at each time step, a node is selected at random to
be updated. With probability p, the state of the node does not
change, and with probability 1 − p it copies the state of one
of its connected nodes, selected randomly among the ki free
neighbors or N0 + N1 frozen nodes. If the node to be updated
is node i, then

xt+1
i =

{
xt

i with probability p,

xt
j with probability 1−p

ki+N0+N1
,

where j is connected to i.
We call this process an influence dynamics, since the state

of a node changes according to the state of its neighbors. This
system can model a number of interesting situations, such as,
for example, the following:

(a) An election with two candidates in which some of
the voters have a fixed opinion while the others change their
intention according to the opinion of others.

(b) A sexually reproducing population of N haploid
individuals in which the internal state represents two alleles
of a gene. Taking p = 1/2, the update of a node mimics
the mating of the focal individual with one of its neighbors.
The focal individual is replaced by the offspring, which can
take the allele of each parent with 50% probability. Since the
free node can also copy the state of a frozen node, the values
of N0 and N1 can be associated with mutation rates, as we will
show later.

(c) A ferromagnetic material composed of atoms with
magnetic moment ±1/2 interacting with an external magnetic
field.

Although the influence process is very simple, its analysis
can be quite complicated for networks of arbitrary topology.
We first consider the simpler case of fully connected networks,
where Aij = 1 if i �= j , Aii = 0, and ki = N − 1. Later we
will discuss the consequences of other topologies and provide
approximate results for these cases using the fully connected
case as a basis.
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III. MASTER EQUATION AND TRANSITION
PROBABILITIES

For fully connected networks, the nodes are indistinguish-
able and there are only N + 1 global states, which we call
σk , k = 0,1, . . . ,N . The state σk has k free nodes in the state
1 and N − k free nodes in the state 0. There is no need to
count the frozen nodes, since they never change. If Pt (m) is
the probability of finding the network in the state σm at the
time t , then Pt+1(m) can depend only on Pt (m), Pt (m + 1),
and Pt (m − 1), since only one node is updated per time step.
According to the updating rule given above, the dynamics of
the probabilities is described by

Pt+1(m) = Pt (m)

{
p + (1 − p)

N (N + N0 + N1 − 1)

× [m(m +N1 − 1) + (N − m)(N + N0 − m − 1)]

}

+Pt (m − 1)
(1 − p)

N (N + N0 + N1 − 1)
(m + N1 − 1)

× (N − m + 1) + Pt (m + 1)
(1 − p)

N (N + N0 + N1 − 1)
× (m + 1)(N + N0 − m − 1) .

The term inside the first set of brackets gives the probability
that the state σm does not change in that time step and
is divided into two contributions: the probability p that
the node does not change plus the probability 1 − p that
the node does change. In the latter case, the state of the
node is xi = 1 with probability m/N , and it may copy a
different node in the same state, xj = 1, with probability
(m − 1 + N1)/(N + N0 + N1 − 1). Also, if xi = 0, which has
probability (N − m)/N , it may copy another node xj = 0
with probability (N − m − 1 + N0)/(N + N0 + N1 − 1). The
other terms are obtained similarly.

The probabilities Pt (m) define a Pt vector of N + 1
components. In terms of Pt , the above master equation can
be written in matrix form as

Pt+1 = UPt ≡
[

1 − (1 − p)

N (N + N0 + N1 − 1)
A

]
Pt ,

where the evolution matrix U , and also the auxiliary matrix A,
is tridiagonal. The nonzero elements of A are independent of
p and are given by

Am,m = 2m(N − m) + N1(N − m) + N0m,

Am,m+1 = −(m + 1)(N + N0 − m − 1),

Am,m−1 = −(N − m + 1)(N1 + m − 1).

These transition elements are the network dynamics analog
of the Wright-Fisher transition probabilities described in the
Introduction.

Let �ar and �br be the right and left eigenvectors of U

(and therefore of A) and λr the corresponding eigenvalues, so
that U �ar = λr �ar and UT �br = λr

�br . The transition probability
between two states σM and σL after a time t can be written as

P (L,t ; M,0) =
N∑

r=0

brMarLλt
r , (1)

where arL and brM are the components of the right and left rth
eigenvectors. The eigenvalues of U are given by

λr = 1 − (1 − p)

N (N + N0 + N1 − 1)
μr,

where μr are the eigenvalues of A. Equation (1) indicates
that the λr have to be smaller than or equal to 1, otherwise
P (L,t ; M,0) would eventually become larger than 1. More-
over, the eigenvectors corresponding to λ = 1 completely
determine the asymptotic behavior of the system, since the
contributions of all the others to P (L,t ; M,0) disappear at
large times.

The eigenvalues of A are given by [9]

μr = r(r − 1 + N0 + N1),

which indeed implies that 0 � p � λr � 1. Therefore, if and
only if N0 = N1 = 0, there are two asymptotic (absorbing)
states, corresponding to r = 0 and 1, given by σ0 (all nodes
in state 0) and σN (all nodes in state 1). Otherwise, there is
only one possible asymptotic state, corresponding to r = 0. All
other eigenvectors, related to the transient dynamics, can be
calculated explicitly in terms of hypergeometric generating
functions [9]. We do not write all of the eigenvalues and
eigenvectors here because we are mostly interested in the
equilibrium properties. However, the time to equilibration can
be estimated from the value of the second largest eigenvalue,
λ1. Defining one unit of time (or one generation) as N updates
of individual nodes, we find λt

1 ≈ exp (−t/τ ), where

τ = (N + N0 + N1 − 1)

(1 − p)(N0 + N1)
. (2)

IV. MAPPING THE MORAN MODEL ONTO
NETWORK DYNAMICS

In order to map the evolution of a panmictic population of
N hermaphroditic individuals into the fully connected network
problem described above, we use the following notation: we
associate xi to the allele of the haploid individual i, which
is either 0 for allele A0 or 1 for allele A1. At each time
step, a random individual i is chosen to reproduce, and
a random mate j is selected among the remaining N − 1
individuals. The focal individual i is then replaced by the
offspring.

Reproduction is carried out in two steps. The first step is the
sexual reproduction itself: with probability 1/2 the allele xi is
passed to the offspring, and with probability 1/2 it takes the
allele xj . The second step takes mutation into account: after
having taken the allele of the focal individual or its mate, the
allele might change from 0 to 1 with probability μ− or from 1
to 0 with probability μ+. This corresponds to the Moran model
with asymmetric mutations and is very similar to the influence
process previously described for networks. In the framework
of networks, the update of the node by keeping its own state
or copying the state of a free neighbor corresponds to sexual
reproduction. Copying the state of a frozen node represents
mutation and its rate depends on N0 and N1.

However, the two processes are not quite the same: in
the network dynamics, the frozen nodes play a role only if
the node “decides” to copy a neighbor (probability 1 − p).
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Here mutation acts even if the allele is passed from the focal
individual i to the offspring. The master equation that includes

mutation is therefore slightly different. Using p = 1/2, which
is appropriate for unbiased reproduction, we have

Pt+1(m) = Pt (m)

{
1

2

(
m

N

)
(1 − μ+) + 1

2

(
N − m

N

)
(1 − μ−) + 1

2

(m

N

) [(
m − 1

N − 1

)
(1 − μ+) +

(
N − m

N − 1

)
μ−

]

+ 1

2

(
N − m

N

)[(
N − m − 1

N − 1

)
(1 − μ−) +

(
m

N − 1

)
μ+

]}
+ Pt (m − 1)

(
N − m + 1

N

)

×
[
μ−
2

+ 1

2

(
m − 1

N − 1

)
(1 − μ+) + 1

2

(
N − m

N − 1

)
μ−

]
+ Pt (m + 1)

(
m + 1

N

)

×
[
μ+
2

+ 1

2

(
N − m − 1

N − 1

)
(1 − μ−) + 1

2

(
m

N − 1

)
μ+

]
.

The first terms can be understood as follows: if the
population has m individuals with allele A1 at time t , it can
remain that way in the next time step in several ways. First,
if xi = 1 (probability m/N ), the offspring can keep the allele
A1 if it gets it from individual i (probability 1/2) and it does
not mutate after reproduction (probability 1 − μ+). Similarly,
if xi = 0 [probability (N − m)/N], the offspring can keep the
allele A0 if it gets it from individual i (probability 1/2) and
does not mutate after reproduction (probability 1 − μ−). The
other terms have similar interpretations.

This equation is greatly simplified when written in matrix
form. We obtain

Pt+1 = UPt ≡
[

1 − (1 + 2μ̄)

2N (N − 1)
A

]
Pt , (3)

where the nonzero elements of A are given by

Am,m = 2m(N − m) + N1(N − m) + N0m,

Am,m+1 = −(m + 1)(N − m − 1 + N0),

Am,m−1 = −(N − m + 1)(m − 1 + N1)

with

N1 ≡ 2μ−(N − 1)

1 − 2μ̄
,

(4)

N0 ≡ 2μ+(N − 1)

1 − 2μ̄
,

and

μ̄ = μ+ + μ−
2

. (5)

With our mapping of the parameters, this is identical to the
original matrix A of the network dynamics. Therefore, all
the known solutions of the network problem can be directly
transferred to the genetic problem via the above relationships
between the mutation rates μ− and μ+ and the frozen nodes
N0 and N1. These solutions are described in the next section.
In particular, the time to equilibration, Eq. (2), maps onto

τf = 1

2μ̄
(6)

for large N and small mutation rates, where the subscript f

denotes fully mixed populations.

V. EQUILIBRIUM DISTRIBUTION

The cases N0 = 0 or N1 = 0, corresponding to μ+ = 0 or
μ− = 0, are trivial since all individuals in the population will
eventually become identical, with allele A0 or A1, respectively.
If N0 and N1 are both zero, the individuals will also eventually
become identical, but the probability of each outcome, all A0

or all A1, depends on the initial distribution of alleles in the
population.

If N0 and N1 are both nonzero, the probability of finding m

nodes in state 1, or m individuals with allele A1, in equilibrium
is given by [1,7,9]

ρ(k) = A(N,N0,N1)
�(N1 + k)�(N + N0 − k)

�(N − k + 1)�(k + 1)
, (7)

where

A(N,N0,N1) = �(N + 1)�(N0 + N1)

�(N + N0 + N1)�(N1)�(N0)
(8)

is a normalization constant and �(x) is the Gamma function.
This result is valid even if N0 and N1 are not integers. In an
actual network, when N0 and N1 are integers, the � functions
can be replaced by factorials.

Note that, because of the mutation rates (or frozen nodes),
a particular realization of the dynamics never stabilizes in
a particular state: the number of individuals with allele A1

continues to change. The probability of finding the population
with m alleles A1, however, is independent of the time, and
given by the expression above. One interesting feature of this
solution is that for N0 = N1 = 1, we obtain ρ(m) = 1/(N + 1)
for all values of m, meaning that all states are equally likely,
independent of the population size.

The mean value m0 = ∑
m mρ(m) and the variance σ2 =∑

m m2ρ(m) − m̄2 can also be calculated explicitly. We obtain

m0 = N
N1

N0 + N1
(9)

and

σ2 = NN1N0(N1 + N0 + N )

(N1 + N0)2(1 + N1 + N0)
. (10)

Higher-order correlations can also be calculated explicitly, but
the results become progressively more complicated.
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FIG. 1. (Color online) Asymptotic probability distribution for a network with N = 100 nodes and several values of N0 and N1.

Figure 1 shows a few examples of the distribution ρ(m) for
a network with N = 100 and various values of N0 and N1.

If N is very large, ρ(m) peaks around m0 and can be
approximated by a Gaussian:

ρ(m) = ρ0 exp −
[

(m − m0)2

2�2

]

with

� =
[
NN0N1(N + N0 + N1)

(N0 + N1)3

]1/2

and

ρ0 = 1√
2π�

.

In terms of the continuous variables x = m/N , n0 = N0/N ,
and n1 = N1/N , we can also write

ρ(x) = ρ0 exp −
[

(x − x0)2

2δ2

]

with

δ =
[
n0n1(1 + n0 + n1)

N (n0 + n1)3

]1/2

,

x0 = m0/N , and ρ0 = 1/
√

2πδ, showing that the width of the
distribution goes to zero as N goes to infinity, in agreement
with the Hardy-Weinberg law.

VI. STRUCTURED NETWORKS

For networks that are not fully connected, the effect of
the frozen nodes is amplified. To see this, we note that the
probability that a free node copies a frozen node is Pi =
(N0 + N1)/(N0 + N1 + ki), where ki is the degree of the node.
For fully connected networks, ki = N − 1 and Pi ≡ PFC. For
general networks, an average value Pav can be calculated by
replacing ki by the average degree kav. We can then define
effective numbers of frozen nodes, N0ef and N1ef, as being the
values of N0 and N1 in PFC for which Pav ≡ PFC. This leads
to

N0ef = f N0, N1ef = f N1, (11)

where f = (N − 1)/kav. For well-behaved distributions, cor-
rections involving higher moments can be obtained by inte-
grating Pi times the degree distribution and expanding around
kav.

Figure 2 shows examples of the equilibrium distribution
for four different networks with N = 100 and N0 = N1 = 5.
Panel (a) shows the result for a random network constructed by
connecting any pair of nodes with probability 0.3. In this case,
kav = 29.7 and f = 3.3. The theoretical result was obtained
with Eq. (7) with N0ef = N1ef = 17. For a scale-free network
[panel (b)] grown from an initial cluster of six nodes adding
nodes with three connections each following the preferential
attachment rule [29], f = 99/6 and the effective values of N0

and N1 are approximately 82. Panel (c) shows the probability
distribution for a finite two-dimensional (2D) regular lattice
with 10 × 10 nodes connected to nearest neighbors for which
kav = 3.6 (the nodes near the boundaries have fewer than
four links), f = 99/3.6 ≈ 28. Finally, panel (d) shows a
small world version of the regular lattice [29], where 30
connections were randomly reallocated, creating shortcuts
between otherwise distant nodes. These results show that the
approximate rescaling of frozen nodes (or, equivalently, the
mutation rates) is accurate for many network topologies. Still,
extreme cases such as a star network do present different
distributions, and this is confirmed by simulations.

The time to equilibration in structured networks changes to

τ = 2(kav + N0 + N1)

N0 + N1
, (12)

which can be considerably smaller than the case of fully
connected networks.

VII. SPECIATION AND BIODIVERSITY

In the previous sections, we derived two important the-
oretical results: (a) the relationship between the process of
influence dynamics on networks and the Moran model; (b) the
approximate equilibrium distribution for structured networks,
obtained by rescaling the number of frozen nodes. We will
show now that these two results allow us to infer important
properties about the genetic evolution of spatially extended
populations.

031901-5



MARCUS A. M. DE AGUIAR AND YANEER BAR-YAM PHYSICAL REVIEW E 84, 031901 (2011)

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08 Random

ρ (
m

)

m
0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08 Scale Free

ρ(
m

)

m

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08 Regular 2-D Lattice

ρ(
m

)

m
0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08 Small World Network

ρ(
m

)

m

FIG. 2. (Color online) Equilibrium
probability distribution for networks
with different topologies. In all cases,
N = 100, N0 = N1 = 5, t = 10 000,
and the number of simulations is
50 000 (histograms). The theoretical
curve (solid red) is drawn with effec-
tive numbers of frozen nodes N0ef =
f N0 and N1ef = f N1: (a) random
network N0ef = N1ef = 17; (b) scale-
free N0ef = N1ef = 82; (c) regular 2D
lattice N0ef = N1ef = 140; (d) small
world network N0ef = N1ef = 140.

It has been recently shown [11,30] that when mating is
constrained by both spatial and genetic proximity between
individuals, neutral evolution by drift alone can lead to
speciation, i.e., to the spontaneous breakup of the population
into reproductively isolated groups. Moreover, the patterns
of abundance distributions generated by this mechanism are
compatible with those observed in nature [11]. In what follows,
we discuss the process of neutral speciation promoted by
spatial and genetic constraints, termed topopatric speciation,
in light of the theory developed above.

To make the analysis simpler, we restrict ourselves to
the case of symmetric mutation rates, μ− = μ+ ≡ μ, or,
equivalently, an equal number of frozen nodes N0 = N1 ≡ Nz.
In this case, the connection between mutations and frozen
nodes simplifies to

Nz = 2μ(N − 1)

1 − 2μ
. (13)

Let Pid be the probability that two individuals picked at
random in the population have identical genes at equilibrium.
This is given by the sum of the probabilities that their alleles
are both A1 or both A0:

Pid =
N∑

m=0

ρ(m)

[
m

N

m − 1

N − 1
+ N − m

N

N − m − 1

N − 1

]

= 1 + 2

N (N − 1)
[σ 2 + 〈m〉2 − N〈m〉].

Using Eqs. (9), (10), and (13), we obtain

Pid = 1 + Nz

1 + 2Nz

= 1 + 2μ(N − 2)

1 + 2μ(2N − 3)
. (14)

The probability that the two individuals are different, which is
the heterozygosity, is

Pht = 1 − Pid = 2μ(N − 1)

1 + 2μ(2N − 3)
≈ 2μN

1 + 4μN
, (15)

where the approximation holds for N 	 1.

Consider now a population in equilibrium where the N

individuals have B independent genes [11,24,30–33]. The
average genetic distance between two individuals is

〈d 〉 = BPht ≈ B

2

(
4μN

1 + 4μN

)
. (16)

This expression provides a connection between the size
of the population and the average genetic distance between
individuals, which is a measure of diversity within the
population. Two interesting relations can be derived from this
equation: first, for given B and μ we can calculate the size
NG that corresponds to a particular average genetic distance
〈d 〉 = G:

NG = G

2μ(B − 2G)
. (17)

Second, for given N and B, we calculate the mutation rate μG

that corresponds to 〈d 〉 = G:

μG = G

2N (B − 2G)
. (18)

Notice that NGμ = NμG.
When mating in panmictic populations is constrained by

genetic proximity between individuals, so that pairs whose
genetic distance is larger than G are incompatible, the
distribution of genetic distances stays very close to 〈d 〉 = G,
as if the genome had an effective size Bef = 2G. On the
other hand, if mating is constrained by spatial proximity, the
effective mutation rate tends to increase. Indeed, a spatial
restriction in mating corresponds to influence processes on
networks constructed over regular lattices, which amplifies
the effect of frozen nodes and, therefore, of mutations.

Consider a spatial area with L2 lattice sites and periodic
boundary conditions. A population resides in this area, where
each individual is a node in the resulting network of potential
mates. Due to spatial mating restrictions, a node is connected
to neighbors that are within a distance S from itself (measured
in units of lattice spacing). Let N be the number of individuals

031901-6



MORAN MODEL AS A DYNAMICAL PROCESS ON . . . PHYSICAL REVIEW E 84, 031901 (2011)

TABLE I. List of parameters in the speciation model.

Parameter Description Value used for figures

B number of biallelic genes 125
G maximum genetic difference for mating 20
μ mutation rate per gene 0.001
L linear size of spatial environment 128
S spatial radius of mating neighborhood 6
N population size, held fixed 2000
kav average number of individuals in spatial neighborhood S 14
P minimum number of potential mates in mating neighborhood 8
Smin spatial radius of mating neighborhood containing P individuals 4.6
Sc critical value of S above which no speciation occurs Eq. (24)
Gc critical value of G above which no speciation occurs Eq. (25)

in the population, so that the density is ρ = N/L2. The
area where an individual can look for a mate, its “mating
neighborhood,” is approximately πS2. The average degree of
the network is the density times the area kav = πNS2/L2.
Table I displays a list of the parameters and variables involved
in the process.

According to our discussion in Sec. VI, the resulting
population distribution can be modeled using a fully connected
network with an effective number of frozen nodes,

Nef = f Nz = N − 1

kav
Nz ≈ L2

πS2
Nz. (19)

The corresponding effective mutation rate is obtained from
Eq. (13),

Nef = 2μef(N − 1)

1 − 2μef
,

which gives

μef = f

1 + 2μ(f − 1)
μ ≈ μf

1 + 2μf
. (20)

Note that μef → 1/2 for μf 	 1.
When mating between individuals is constrained only

by their spatial distance, as measured by the parameter S,
the effective mutation rate Eq. (20) can be dramatically
enhanced with respect to a panmictic population. This, in turn,
increases the average genetic distance between individuals,
which approaches B/2 for large populations and fixed kav

(corresponding to large values of Nz). The distribution of
genetic distances approaches a broad symmetric distribution.

On the other hand, if mating is constrained only by
the genetic distance between individuals, the distribution of
genetic distances shrinks to about G. This corresponds to an
effective reduction in genome size from B to 2G.

When both spatial and genetic restrictions are present, as in
Ref. [11], the population feels a large effective mutation rate,
tending to spread out the genome distribution. On the other
hand, the individuals are compelled by the mating condition to
stay genetically close to each other. The only stable outcome
of these opposing forces is the formation of local groups where
〈d 〉 � G within the group but 〈d 〉 > G among groups. This
characterizes the groups as reproductively isolated from each
other and, therefore, as separate species.

The average number of individuals in each group is given
approximately by NG, Eq. (17), which is usually much smaller
than N . This also implies that the individuals within groups
are highly connected to each other, so that f ≈ 1 and μef ≈ μ,
restoring the equilibrium of the system.

The conditions for speciation can be estimated as follows.
When S is very large, the effect of the genetic mating restriction
is to reduce the effective size of the genome, Bef, from B to
2G, so that, from Eq. (16), 〈d 〉 is at most G. As S is reduced,
the effective mutation rate increases and additional genes are
incorporated into the effective (variable) genome, increasing
the average genetic distance between individuals. When 〈d 〉
becomes larger than about 2G, the population can no longer
hold itself together and splits. This has been confirmed by
numerical simulations as illustrated in Fig. 3.

We write

Bef = 2G + (B − 2G)P, (21)

where P is the probability that a new gene is fixed into the
effective genome.

P goes to 0 for large values of S and reaches 1 for small S. It
must depend only on the mutation rate μ, genome length B, and
the size of the local mating population πS2ρ = πS2N/L2 =
kav. This local mating population has to be at least 2, otherwise
mating is not possible. More generally, if the minimum number
of potential mates for reproduction is P , we can define the
minimum S by πS2

minρ = P , or

Smin = L
√

P/πN. (22)

The probability P must be small if the local mating
population is large. On the other hand, it must increase with
the mutation rate and size of the genome. We may therefore
write the ansatz

P = exp

{
−c

[
π (S − Smin)2N/L2)

Bμ

]2
}

or

P = exp

{
−π2(S − Smin)4N2

γ 4L4B2μ2

}
, (23)

where the constant of proportionality c is rewritten as γ −4 for
convenience. The exponential dependence of P on the square
of kav/Bμ is suggested by numerical simulations.
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FIG. 3. Distribution of genetic distances between pairs of individuals for different vales of S. For large S, the average genetic distance 〈d〉
is of the order of G. As S is decreased, 〈d〉 increases and speciation occurs when 〈d〉 is about 2G, as indicated by the breakup of the unimodal
distribution in the lower right panel into a proximate part (within species distances) and a remote part (interspecies distances). In this example,
N = 2000, G = 20, μ = 0.001, B = 125, L = 128, and P = 8.

The condition for speciation is

〈d 〉 = Bef

2

(
4μefN

1 + 4μefN

)
� 2G.

Since the μN is usually of order 1 in most simulations,
and μef 	 μ, the factor 4μefN/(1 + 4μefN ) can be safely
approximated by 1. Using Eqs. (21) and (23), we obtain

π2(S − Smin)4N2

γ 4L4μ2B2
� log

(
B − 2G

2G

)
or

S � Smin + γL

√
Bμ

Nπ

[
log

(
B − 2G

2G

)]1/4

≡ Sc(G). (24)

Inverting this equation, we obtain

G � B/2

1 + exp
(

π2N2(S−Smin)4

γ 4μ2B2L4

) ≡ Gc(S), (25)

which gives the minimum value of G for a given S.
Equation (24) gives the maximum size of the mating

neighborhood for which speciation is possible. This analytical
result describes the dependence of speciation on six model
parameters: B, G, μ, P , L, and N . It provides a very good
quantitative estimate for the parameter region where speciation
is possible, as illustrated in Fig. 4. The result also incorporates
cutoffs at G = B/4 and at Smin, which are in agreement
with numerical simulations [11]. Furthermore, it also gives

the scaling dependence of Sc on these various parameters. In
particular, it predicts speciation at large values of S if B is
sufficiently large. This corroborates the results in [24,25] but

FIG. 4. Parameter region in the S-G plane where speciation is
possible according to Eq. (25) (thick line) and numerical simulations
(solid line and shading [11]). The other parameters are the same as in
Fig. 3 and Table I with γ = 4.2.
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shows that such space-independent speciation occurs only for
very large values of B, since Sc increases with B1/2.

Our analytical results constitute an important addition
to the simulations presented in [11] and contribute to the
understanding of the significant role of drift in speciation
[11,13,16,20,21,24,30]. Equation (24) identifies the combina-
tion of parameters that makes this possible. For example, low
mutation rates, which hinder speciation, can be compensated
by a large number of participating genes or by low population
density.

Finally, we address the frequent criticism that the time scale
for speciation by drift is too long [13,28] and, therefore, should
be very rare. The time to speciation should be proportional to
the equilibration time of the dynamics, measured in number
of generations. For a well-mixed population we found that
τf = 2/μ, which can indeed be very large in realistic cases in
which μ is very small. However, for structured populations,
Eq. (12) maps into

τs = 2(kav + 4μN )

4μN
, (26)

where kav = πS2ρ is the local population size within a mating
neighborhood S. If kav 	 4μN , we obtain τ ≈ kav/2μN ,
which is smaller than the fully mixed time by a factor kav/N

and can speed up speciation by several orders of magnitude. In
our example, we find τs/τf ≈ 0.01. Equivalently, this can be
considered to be a result of the enhancement in the effective
mutation rate in structured populations, as discussed above.

VIII. CONCLUSIONS

The process of speciation underlies the creation of the
tree of life. Fossil records and molecular analysis allow the
construction of detailed phylogenetic trees linking species to
their ancestors, identifying the branching points of speciation.
The way speciation occurred in each case, however, is rarely
known with certainty and several mechanisms have been
considered. A recently proposed mechanism of speciation [11]
demonstrated that a spatially extended population can break up

spontaneously into species when subjected to mutations and
to spatial and genetic mating restrictions, even in the absence
of natural selection. Numerical simulations have shown that
this mechanism, termed topopatric speciation, occurs for a
restricted range of parameters, which include population size
N , mutation rate μ, and the parameters S and G controlling
the spatial and genetic mating restrictions.

In this paper, we have introduced a mapping of genetic
dynamics in an evolving population onto the dynamics
of influence on a network, and we used this mapping to
analytically study the process of topopatric speciation. This
mapping gives, to our knowledge, the first complete solution
of the Moran model, providing an elegant representation of the
complete set of eigenvectors of the problem.

We have shown that, while fully connected networks cor-
respond to panmictic populations, certain structured networks
can be mapped into dynamic spatially extended populations.
Moreover, the mapping shows that limiting mating to a fraction
of the total population by network connections increases the
effective mutation rate as compared to the panmictic case, and
increases the genetic diversity of the population. By extending
the model from one to multiple independent biallelic genes,
we have shown that a genetic restriction on mating decreases
the effective size of the genome, decreasing diversity. These
opposing forces are resolved not by compromise but by
pattern formation, breaking up the population into multiple
species. This process, and its dependence on the most relevant
characteristics of the population, is accurately described by
Eq. (25). This equation provides a new and important tool
to understand neutral speciation, revealing explicitly the
relationships among the parameters involved in the process
and the interplay of genetic processes whose opposition leads
to spontaneous speciation.

ACKNOWLEDGMENTS

We thank Elizabeth M. Baptestini for helpful comments.
M.A.M.A. acknowledges financial support from CNPq and
FAPESP.

[1] W. J. Ewens, Mathematical Population Genetics I. Theoretical
Introduction Series: Biomathematics, Vol. 9. (Springer-Verlag,
New York, 1979).

[2] C. Cannings, Adv. Appl. Prob. 6, 260 (1974).
[3] P. A. P. Moran, Proc. Cambridge Philos. Soc. 54, 60

(1958).
[4] J. Wakeley, Coalescent Theory (Roberts & Company,

Greenwood Village, Colorado, 2009).
[5] G. A. Watterson, Ann. Math. Statist. 32, 716 (1961).
[6] K. Gladstien, Siam J. Appl. Math 34, 630 (1978).
[7] J. H. Gillespie, Population Genetics: A Concise Guide (Johns

Hopkins University Press, Baltimore, MD, 2004).
[8] M. A. M. de Aguiar, I. R. Epstein, and Y. Bar-Yam, Phys. Rev.

E 72, 067102 (2005).
[9] D. D. Chinellato, M. A. M. de Aguiar, I. R. Epstein, D. Braha,

and Y. Bar-Yam, e-print arXiv:0705.4607v2 [nlin.SI].

[10] S. Wright, Genetics 28, 114 (1943).
[11] M. A. M. de Aguiar, M. Baranger, E. M. Baptestini, L. Kaufman,

and Y. Bar-Yam, Nature (London) 460, 384 (2009).
[12] M. L. Rosenzweig, Species Diversity in Space and Time

(Cambridge University Press, Cambridge, 1995).
[13] J. A. Coyne and H. A. Orr, Speciation (Sinauer Associates,

Sunderland, MA, 2004).
[14] C. Pinho and J. Hey, Annu. Rev. Ecol. Evol. Syst. 41, 215 (2010).
[15] M. Kimura, The Neutral Theory of Molecular Evolution

(Cambridge University Press, Cambridge, UK, 1883).
[16] S. P. Hubbell, The Unified Neutral Theory of Biodiversity and

Biogeography (Princeton University Press, Princeton, NJ, 2001).
[17] S. Gavrilets, H. Li, and M. D. Vose, Evolution 54, 1126

(2000).
[18] S. Nee and G. Stone, Trends Ecol. Evol. 18, 433 (2003).
[19] J. R. Banavar and A. Maritan, Nature (London) 460, 334 (2009).

031901-9

http://dx.doi.org/10.2307/1426293
http://dx.doi.org/10.1017/S0305004100033193
http://dx.doi.org/10.1017/S0305004100033193
http://dx.doi.org/10.1214/aoms/1177704967
http://dx.doi.org/10.1137/0134050
http://dx.doi.org/10.1103/PhysRevE.72.067102
http://dx.doi.org/10.1103/PhysRevE.72.067102
http://arXiv.org/abs/arXiv:0705.4607v2
http://dx.doi.org/10.1038/nature08168
http://dx.doi.org/10.1146/annurev-ecolsys-102209-144644
http://dx.doi.org/10.1554/0014-3820(2000)054[1493:DOSADI]2.0.CO;2
http://dx.doi.org/10.1554/0014-3820(2000)054[1493:DOSADI]2.0.CO;2
http://dx.doi.org/10.1016/S0169-5347(03)00196-4
http://dx.doi.org/10.1038/460334a


MARCUS A. M. DE AGUIAR AND YANEER BAR-YAM PHYSICAL REVIEW E 84, 031901 (2011)

[20] M. Kopp, BioEssays 32, 564 (2010).
[21] H. Ter Steege, Biotropica 42, 631 (2010).
[22] R. S. Etienne and B. Haegeman, Theor. Ecol. 4, 87 (2011).
[23] J. Rosindell, S. P. Hubbell, and R. S. Etienne, Trends in Ecology

& Evolution 26, 340 (2011).
[24] P. G. Higgs and B. Derrida, J. Phys. A 24, L985 (1991).
[25] P. G. Higgs and B. Derrida, J. Mol. Evol. 35, 454 (1992).
[26] O. Seehausen et al., Nature (London) 455, 620 (2008).
[27] M. Kirkpatrick and T. Price, Nature (London) 455, 601 (2008).

[28] M. Nei, T. Maruyama, and C.-I. Wu, Genetics 103, 557 (1983).
[29] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47

(2002).
[30] G. A. Hoelzer, R. Drewes, J. Meier, and R. Doursat, PLoS

Comput. Biol. 4, e1000126 (2008).
[31] Y.-C. Zhang, Phys. Rev. E 55, R3817 (1997).
[32] M. Hall, K. Christensen, S. A. di Collobiano, and H. J. Jensen,

Phys. Rev. E 66, 011904 (2002).
[33] K. Jain, Phys. Rev. E 76, 031922 (2007).

031901-10

http://dx.doi.org/10.1002/bies.201000023
http://dx.doi.org/10.1111/j.1744-7429.2010.00701.x
http://dx.doi.org/10.1007/s12080-010-0076-y
http://dx.doi.org/10.1016/j.tree.2011.03.024
http://dx.doi.org/10.1016/j.tree.2011.03.024
http://dx.doi.org/10.1088/0305-4470/24/17/005
http://dx.doi.org/10.1007/BF00171824
http://dx.doi.org/10.1038/nature07285
http://dx.doi.org/10.1038/455601a
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1371/journal.pcbi.1000126
http://dx.doi.org/10.1371/journal.pcbi.1000126
http://dx.doi.org/10.1103/PhysRevE.55.R3817
http://dx.doi.org/10.1103/PhysRevE.66.011904
http://dx.doi.org/10.1103/PhysRevE.76.031922

