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Abstract

We present a semiclassical trace formula for the canonical partition function of arbitrary one-dimensional systems. The

approximation is obtained via the stationary exponent method applied to the phase-space integration of the density

operator in the coherent state representation. The formalism is valid in the low temperature limit, presenting accurate

results in this regime. As illustrations we consider a quartic Hamiltonian that cannot be split into kinetic and potential

parts, and a system with two local minima. Applications to spin systems are also presented.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The quantum partition function Z is the basic physical quantity from which all ensemble averages are
derived in the canonical formalism [1–3]. It is given by the trace of the density operator Z ¼ Tr ½r̂�, which can
be expressed either as a discrete sum in the microstate energies Z ¼

P
ne
�bEn or as a continuum integral,

Z ¼ 1=h
R
dqdpr, where r is some representation of the density operator in phase-space, like the Wigner

function [4] or the coherent state average of r̂. In classical mechanics the density is simply rclass ¼ e�bH, where
H is the classical Hamiltonian.

Because of the difficulties in the exact evaluation of Z, a variety of formal developments have appeared in
the literature to include quantum effects in statistical mechanics, without exactly solving the Schrodinger
equation. Semiclassical methods, in particular, have attracted a lot of attention [5–11]. From a more basic
point of view, it is well known that classical statistical mechanics is, in most of the cases, unable to reproduce
the experimental behavior for T ! 0. A paradigmatic example is the failure at low temperatures of
Dulong–Petit law for the specific heat of solids, or more generally, the failure of classical systems in obeying
the third law of thermodynamics [1–3]. Roughly speaking, this is due to quantum discreteness that becomes
relevant in this regime. Given this strong discrepancy between classical and quantum statistical mechanics for
T ! 0, it is reasonable to ask what happens in a semiclassical formulation, since it should be somewhere in
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between the two theories. Therefore, it is desirable to obtain an explicit semiclassical expression for the
canonical partition function, from which thermodynamic quantities such as internal energy and entropy can
be derived in a closed analytical form in terms of classical ingredients.

A straight, but not particularly effective, procedure in this direction is to replace the exact quantum levels by
semiclassical ones in the discrete summation. For one-dimensional systems, expressions for the energy levels in
the WKB approximation are relatively easy to obtain, but the corresponding partition function is inaccurate
at low temperatures. More elaborated examples are the Wigner–Kirkwood method, which consists of an
expansion of the density matrix in powers of _b ¼ _=kBT [12], approximate path integral representations [5]
and phase-space sampling with semiclassical quasi-probability distributions [6,8,9]. All these methods use
classical ingredients to represent the density operator, but the procedure presented in Ref. [6] is perhaps the
most direct, in the sense that it simply replaces the classical Boltzmann weight by a semiclassical one. In this
paper we shall consider a similar method. The procedure is based on the recognition that the evolution
operator in quantum mechanics and the Boltzmann operator in statistical physics are formally similar.
Explicitly we have the correspondence e�iĤt=_ ! e�bĤ for t!�it, with t � _b (the so-called Wick rotation).
The density operator r̂ is obtained when such a rotation is applied to the diagonal quantum propagator and
the partition function is written as a phase-space (or configuration space [10,11]) integral that can be
calculated numerically. The ensemble averages are, consequently, also expressed in the form of integrations
(see in Ref. [6, Eq. (2.16)–(2.18)]). This method, in spite of its usefulness in numerical calculations, does not
allow for a detailed analysis of the functional dependence of thermodynamic potentials, and other related
physical quantities of interest, with the temperature. In this work we show that, in the low temperature limit,
the phase-space integrals appearing in the semiclassical expressions can actually be performed analytically.
The resulting representation of the partition function in terms of classical quantities is similar to a trace
formula, involving only equilibrium points and periodic orbits. In order to obtain the semiclassical partition
function we shall use the coherent state representation. This choice enables the formalism to be applied in
more general situations involving internal degrees of freedom such as spins [13].

We believe that such a direct semiclassical formula should be of use in theoretical studies and also in
numerical applications. Besides, some traditional methods like the Wigner–Kirkwood expansion converge
very slowly for small T, justifying the particular interest in this region of temperatures. As we shall see,
however, the semiclassical calculation of Tr½r̂� naturally leads to the complicated problem of summing over all
periodic orbits of a related classical system. This is a common difficulty in practical applications of
semiclassical trace formulas. Fortunately, due to the effects of the Wick rotation in the classical equations of
motion, we shall see that this problem is not present in some important situations, e.g., one-dimensional
potentials with a single minimum.

The paper is organized as follows: in Section 2 we review the concepts of Wick rotation, coherent states and
semiclassical propagator. Next we derive the semiclassical formula for the partition function and give explicit
expressions for potentials with a single well and multiple wells. In Section 4 we apply these formulas for three
specific systems and compare our results with exact quantum and classical calculations and with other
approximations. In Section 5 we outline the extension of the formalism to spin systems. Finally, Section 6 is
devoted to some concluding remarks.

2. Preliminary definitions

The partition function can be written in terms of the quantum density of particles in the coherent state
representation as

Z ¼

Z
dq dp

2p_
hzje�bĤjzi ¼

Z
dq dp

2p_
rðq; p; bÞ. (1)

Our procedure to calculate the semiclassical limit of Z consists of two main steps: first we perform a Wick
rotation in the quantum propagator hzj e�iĤt=_ jzi. Next we replace the propagator by its semiclassical
expression and calculate the integral over q and p explicitly by the saddle point method to obtain Zsc. In the
following subsections we review the basic ingredients of this approach: the Wick rotation, the coherent state
representation and the semiclassical propagator. In the next section we calculate Zsc.
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2.1. Wick rotation and classical dynamics

Semiclassical formulas contain classical quantities, such as actions and their derivatives, thus our first step is
to understand the effect of the rotation t�!� it on these classical ingredients. We start with Newton’s second
law. Consider the pair of transformations

t ¼ �it; V ðqÞ ¼ �V ðqÞ, (2)

leading to

d2q

dt2
¼ �

dV

dq
�! €q ¼

dV

dq
�! €q ¼ �

dV

dq
, (3)

where dot means derivative with respect to t. We see that in order to get back the usual form of the equation
after the Wick rotation we have set V ¼ �V , which means that the classical dynamics with complex time is
formally equivalent to real-time dynamics with the reversed potential V [5,10]. The effect on the classical
action is as follows ðm ¼ 1Þ:

S ¼

Z t

0

dt0L ¼

Z t

0

dt0
1

2

dq

dt

� �2

� V

" #
! i

Z _b

0

dt0
1

2
_q2 � V

� �
¼ i

Z _b

0

dt0L ¼ iS, (4)

where it is understood that L and S in the right-hand side are evaluated for a final time _b and with the
reversed potential V . There is, however, a more general approach, which we may call ‘canonical Wick
rotation’, which is constructed in phase-space and does not rely on the existence of the function V ðqÞ. Starting
from Hamilton’s equations and making

t ¼ �it; H ¼ iH, (5)

we obtain

dq

dt
¼

qH
qp

;
dp

dt
¼ �

qH
qq
! _q ¼ �i

qH
qp

; _p ¼ i
qH
qq
! _q ¼

qH

qp
; _p ¼ �

qH

qq
, (6)

which preserve the original form of the canonical equations. If the Hamiltonian can be written in ‘Euclidean’
form (p2=2þ V ) the operations (2) and (5) produce the same overall result. However, for more general
Hamiltonians, for example with force fields not derivable from a potential or involving spin degrees of
freedom, only the last pair of transformations is applicable. The classical action is invariant under these
transformations,

S ¼

Z t

0

dt0 p
dq

dt

� �
�H

� �
!

Z _b

0

dt0 p _q�Hð Þ ¼ S. (7)

In deriving our semiclassical partition function we shall employ the canonical Wick rotation because of its
generality. As illustrations we apply the transformation (5) to a non-Euclidean Hamiltonian and the
transformation (2) to a system with a well-defined potential in Section 4.

2.2. Coherent state representation

Here we briefly describe some properties of the coherent state representation of quantum mechanics.
Canonical coherent states fjzig can be expressed as an infinite sum of harmonic oscillator number states fjnig:

jzi ¼ e�jzj
2=2
X1
n¼0

znffiffiffiffi
n!
p jni where z ¼

1ffiffiffi
2
p

q

b
þ i

bp

_

� �
. (8)

The real numbers q and p are the expectation values of the corresponding quantum operators q̂ and p̂ in the
state jzi, while the parameter b is proportional to the uncertainty in position, b ¼

ffiffiffi
2
p

Dq, and is related to the
frequency of the associated harmonic potential by b2

¼ _=mo. The resolution of unity can be written in terms
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of the set fjzig as

Î ¼

Z
dqdp

2p_
jzihzj �

Z
dz� dz

2pi
jzihzj. (9)

In the coherent state representation the density of particles in phase-space reads

rðq; p;bÞ ¼ hzje�bĤjzi, (10)

whose corresponding quantity under the inverse transformation t ¼ it is the diagonal form of the coherent
state propagator Kðq; p; tÞ ¼ hzje�iĤt=_jzi.

We finish this subsection by defining the canonically conjugated variables uðtÞ ¼ ½qðtÞ=bþ i bpðtÞ=_�=
ffiffiffi
2
p

and
vðtÞ ¼ ½qðtÞ=b� i bpðtÞ=_�=

ffiffiffi
2
p

in terms of which Hamilton’s equations read

dv

dt
¼

i

_

qH
qu

;
du

dt
¼ �

i

_

qH
qv

. (11)

These variables are particularly convenient to write down the semiclassical limit of the coherent state
propagator.

2.3. Semiclassical coherent state propagator

The set of coherent states forms a non-orthogonal over-complete basis, since each state in the set can be written as
a linear combination of the others. This over-completeness implies the existence of several forms of the path integral
formulation for the propagator, all equivalent quantum mechanically, but each leading to a slightly different
semiclassical limit. Klauder and Skagerstam [14] proposed two basic forms for the coherent state path integral. The
semiclassical limit of these propagators were considered in Ref. [15] where it was shown that both propagators can be
written in terms of classical complex trajectories, each governed by a different classical representation of the
Hamiltonian operator Ĥ: the P representation in one case and the Q representation in other. The phase appearing in
these semiclassical formulas is not just the action of the corresponding complex classical trajectory, but it also
contains a ‘correction term’ that comes with different signs in each formula. In Ref. [15] it was also suggested that a
semiclassical representation involving directly the Weyl representation of Ĥ, or the classical Hamiltonian H, could
probably be constructed, and a formula for this representation was conjectured. This conjecture, along with the
corresponding quantum mechanical path integral representation, has been recently proved [16] using the translation
and reflection operators studied in Ref. [17]. In this paper we shall adopt this later semiclassical expression, since it is
the simplest (although not always the most accurate [18]) of the three known formulas. This semiclassical expression
for the propagator connecting an initial state jz0i to a final state jz00i is given by

hz00je�ði=_ÞĤtjz0isc ¼

ffiffiffiffiffiffiffiffiffi
1

Mvv

r
exp

i

_
Fðv00; u0; tÞ �

1

2
ðju0j2 þ jv00j2Þ

� �
, (12)

where there is an implicit sum over the, usually complex, trajectories satisfying Hamilton’s equations (11) with
boundary conditions u0 � uð0Þ ¼ z0, v00 � vðtÞ ¼ z00�. The Hamiltonian entering in formula (12) is the function
H describing the corresponding classical system, and the function appearing in the exponent is the complex
action given by

Fðv00; u0; tÞ ¼
Z t

0

i_

2
v
du

dt
� u

dv

dt

� �
�H

� �
dt0 �

i_

2
u0v0 þ v00u00½ �, (13)

where we have set u00 � uðtÞ and v0 � vð0Þ. Note that, due to the complex character of the classical orbits, in
general, we have v0az0� and u00az00. Finally, the pre-factor in formula (12) is written in terms of the tangent
matrix, whose elements are given by the following relation:

du00

dv00

� �
�

Muu Muv

Mvu Mvv

 !
du0

dv0

� �
, (14)

where ðdu0, dv0Þ denote small initial deviations from the classical orbit and ðdu00, dv00Þ the corresponding
deviations after a propagation time t. It is simple to show that det½M� ¼ 1 and that the following relations
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are valid:

i_

Mvv

¼ �q2F=qu0qv00;
1

Muv

¼
q2F=qu0 qv00

q2F=qv002
;

1

Mvu

¼ �
q2F=qu0 q v00

q2F=qu02
. (15)

3. The semiclassical canonical partition function

We proceed to make the transformations t ¼ �it and H ¼ iH in Eq. (12) to get the semiclassical density of
particles in phase-space. Since the complex action and, consequently, the tangent matrix elements remain
invariant, the semiclassical density of particles at a given temperature is

rsc ¼ hz
0je�bĤjz0isc ¼

ffiffiffiffiffiffiffiffiffi
1

Mvv

r
exp

i

_
Fðv00; u0; tÞ � z0�z0

� �
. (16)

We remark that Hamilton’s equations (11) become

_v ¼
i

_

qH

qu
; _u ¼ �

i

_

qH

qv
, (17)

with the boundary conditions (for the diagonal propagator)

uð0Þ ¼ u0 ¼ z0; vðtÞ ¼ v00 ¼ vð_bÞ ¼ z0�. (18)

The semiclassical partition function is given by

Zsc ¼

Z
du0 dv00

2pi

ffiffiffiffiffiffiffiffiffi
1

Mvv

r
exp

i

_
Fðv00; u0; tÞv00¼z0�;u0¼z0 � z0�z0

� �
. (19)

In order to evaluate this integral by stationary exponent approximation we shall assume the low temperature
limit bb1. The stationarity conditions are

i

_

qF
qu0
� z0� ¼ v0 � z0� ¼ 0;

i

_

qF
qv00
� z0 ¼ u00 � z0 ¼ 0, (20)

where we used the relations qF=qu0 ¼ �i_v0 and qF=qv00 ¼ �i_u00 [15]. We get

v0 ¼ z0�; u00 ¼ z0. (21)

Therefore, the trajectories must satisfy the four conditions (18) and (21). It can be shown that these restrictions
demand the contributing orbits to be real and periodic. Next we expand the exponent in (19) around the
stationary trajectories, labeled with the subscript ‘0’, up to second order and evaluate the pre-factor on the
contributing solutions. We obtain

Zsc ¼
eði=_ÞF�u0v00ffiffiffiffiffiffiffiffiffi

Mvv

p

� �
0

Z
dðDu0ÞdðDv00Þ

2pi

� exp
i

2_

q2F
qu02

� �
0

Du0
2
þ

i

2_

q2F
qv002

� �
0

Dv002 þ
i

_

q2F
qu0qv00

� 1

� �
0

Du0 Dv00
� �

, ð22Þ

where Du0 ¼ u0 � u00 and Dv00 ¼ v00 � v000. The Gaussian integration gives

Zsc ¼
eði=_ÞF�u0v00ffiffiffiffiffiffiffiffiffi

Mvv

p

� �
0

i

_

q2F
qu0qv00

� 1

� �2

þ
1

_2
q2F
qu02

q2F
qv002

" #�1=2
0

. (23)

From relations (15) we obtain the following compact expression for the semiclassical partition function:

Zsc ¼
X

j

eði=_ÞF
ðjÞ

0
�u0
ðjÞ

0
v00
ðjÞ

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½M

ðjÞ
0 � � 2

q , (24)

where the sum runs over the real periodic trajectories with period _b and Tr½M� ¼Muu þMvv. Note that,
since the contributing trajectories are periodic, the second term in the right-hand side of expression (13) is
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exactly �i_u0v00, so we can write the exponent in Eq. (24) as

i

_

Z t

0

i_

2
v _u� u_vð Þ �H

� �
dt0 ¼

i

_

Z t

0

ðp _q�HÞdt0 �
i

2_
pqjt0 ¼

i

_
S, (25)

where we have used the periodicity in the last equality. Finally, we can write the expression for the
semiclassical partition function as

Zsc ¼ Tr½r̂sc� ¼
X

j

ZðjÞsc ¼
X

j

eði=_ÞS
ðjÞ

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½M

ðjÞ
0 � � 2

q . (26)

We remark that, as is usual in stationary phase evaluations, there may exist stationary orbits whose
contributions to the propagator, or partition function, become divergent in the semiclassical limit. These
orbits correspond to saddle points that cannot be reached by smoothly deforming the original contour of
integration, in accordance with Cauchy’s Integral Theorem. A well-known example is provided by the
asymptotic approximation of the Airy function AiðzÞ, where each of the two saddle points may have to be
included or not, depending of the phase of the complex number z [19]. These non-contributing orbits must be
excluded from the evaluation of semiclassical quantities and criteria based on physical reasoning have been
proposed to systematically separate them from the contributing solutions [20–23]. These criteria are much
simpler to apply than the direct verification of Cauchy’s Theorem, which, in general, is a prohibitive task.

Note that the expected divergence in the infinite temperature limit occurs for t! 0, when M becomes the
identity matrix and Tr½M

ðjÞ
0 � ! 2. Finally, we recall that, had we used transformation (2) instead of (5), the

above formula would have �S=_ as the argument of the exponential. This alternative form is used in the next
subsections.

3.1. Single well potentials

Now let us assume that there is a potential function V which has a single minimum (corresponding to a
maximum of V ). Due to the inversion in concavity, there are no periodic trajectories, except for the trivial
orbit that, without loss of generality, we place at u ¼ v ¼ 0 (or q ¼ p ¼ 0). So, in this important case, the
summation in (26) reduces to a single term calculated on the trivial orbit:

Zsc ¼
e�ð1=_ÞS0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½M0� � 2
p . (27)

Formula (27) can be evaluated more explicitly. We have the following relations for the time evolution of small
perturbations:

d _q ¼ dp; d _p ¼ �
q2V
qq2

dq. (28)

For a non-trivial trajectory the coefficient q2V=qq2 � V
00
is a time-dependent function, since it must be

evaluated on the trajectory qðtÞ, but for the trivial orbit it is simply a constant calculated at the maximum of
V , and the above equations can be readily integrated. The result is Tr½M0� ¼ 2 cosð

ffiffiffiffiffiffiffi
V
00

p
tÞ ¼ 2 coshð

ffiffiffiffiffiffiffi
V 00
p

tÞ,
where V 0040. This leads to the following semiclassical partition function:

Zsc ¼
e�bV ð0Þ

2 sinh 1
2
_
ffiffiffiffiffiffiffi
V 00
p

b
	 
 . (29)

The above expression is simply the partition function for the harmonic oscillator that best fits V at q ¼ 0. This
result turns out to be too poor and the conclusion is that a higher order approximation is needed in this case.
In Section 4 we illustrate such a higher order expansion for a specific example. In contrast, we shall show that
the second order semiclassical partition function given by (26) already gives non-trivial results in the case of
potentials with multiple minima.
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3.2. Multiple well potentials

Let us assume that the potential V has N minima, located at qs, with s ¼ 1; 2; . . . ;N, and N � 1 local
maxima. In this case there are non-trivial periodic orbits between two successive maxima of V . In addition
each equilibrium point corresponds to a trivial orbit that, in principle, should contribute to the evaluation of

Zsc. However, the N � 1 stable equilibrium points of V give rise to terms proportional to 1= sinð_
2

ffiffiffiffiffiffiffi
V
00

p
bÞ,

V
00
40, which have an oscillatory and divergent behavior for b!1, and correspond to the spurious saddle

points we have mentioned. Discarding these contributions we get

Zsc ¼
XN

s¼1

e�bV ðqsÞ

2 sinh 1
2
_
ffiffiffiffiffiffiffiffiffiffi
V 00js

p
b

	 
þX
m

0 e�ð1=_ÞS
ðmÞ
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tr½M
ðmÞ
0 � � 2

q , (30)

where we have split the sum into the trivial unstable equilibria (with respect to V ) and the non-trivial periodic
orbits (denoted by the primed sum). We call the first term the harmonic contribution and the second term the
tunneling contribution, since the m-orbits connect successive minima in the original potential. The calculation
of the tunneling terms requires a careful procedure. For a fixed temperature T we must seek, in each well of V ,
orbits with period t ¼ _=kBT and sum their contributions. Note also that these orbits should, in principle,
contribute to the partition function at temperatures T=2;T=3; . . . ;T=n, corresponding to the propagation
times 2t; 3t; . . . ; nt. However, these multiple traversal period orbits have larger and larger actions for
increasing values of n, causing their contribution to fall off exponentially.

3.3. Connection with thermodynamics

The connection between the canonical ensemble in statistical mechanics and thermodynamics can be made
through relation Z ¼ expð�bf Þ, where f is the Helmholtz free energy per particle, whose semiclassical
expression reads f sc ¼ �kBT lnðZscÞ. The internal energy can also be easily expressed in terms of classical
quantities. Using the general formula (26) we obtain

usc ¼ �
q
qb

lnZsc ¼
1

Zsc

X
j

ZðjÞsc H
ðjÞ
0 þ

1

2

q
qb

lnðTr½M
ðjÞ
0 � � 2Þ

� �
, (31)

where we have used qS=qt ¼ �H ¼ iH. Once we get the Helmholtz and internal energies we can determine
the semiclassical expression for the entropy through relation s ¼ ðu� f Þ=T ¼ kBbðu� f Þ. In the next section
we give an example of a system that classically violates the third law, and show that, on the contrary, the
semiclassical entropy does satisfy the condition s! 0 for T ! 0. Higher order derivatives of
thermodynamical interest can also be obtained analytically, e.g., the specific heat qusc=qT :

csc ¼ �kBb
2u2

sc þ
kBb

2

Zsc

X
j

ZðjÞsc H
ðjÞ
0 þ

1

2

q
qb

lnðTr½M
ðjÞ
0 � � 2Þ

� �2

�
1

2

q2

qb2
lnðTr½M

ðjÞ
0 � � 2Þ

" #
. (32)

In the next section we shall apply our formalism to simple examples and compare the results with the pure
classical and quantum ones.

4. Applications

4.1. The simple harmonic Hamiltonian

We first illustrate our semiclassical procedure with the simple harmonic oscillator. The Hamiltonian is

H ¼ 1
2
p2 þ 1

2
o2q2 ¼ _ouv) H ¼ �i_ouv. (33)

The solutions of the equations of motion (17) are uðt0Þ ¼ u0e�ot
0

, vðt0Þ ¼ v00eoðt
0�tÞ, with uð0Þ ¼ z0 and

vðtÞ ¼ z0�. From these relations we can write u00 ¼ u0e�ot and v00 ¼ v0eot, or du00 ¼ e�otdu0 and dv00 ¼ eotdv0.
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Therefore

Muu ¼ e�ot; Mvv ¼ eot. (34)

The only periodic trajectory is u ¼ v ¼ 0, for which the complex action vanishes. Gathering the ingredients
together we get the exact quantum result for the partition function

Zsc ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e_ob þ e�_ob � 2
p ¼

1

2 sinhð_ob=2Þ
. (35)

This expression leads to the well-known results for an ensemble of non-interacting harmonic oscillators. In
particular, we get for csc the Einstein expression for the specific heat of a crystalline solid (csc ¼ ceinstein).

4.2. The quartic non-Euclidean Hamiltonian: quadratic approximation

We now consider a more challenging system described by the Hamiltonian

H ¼
1

_o
1

2
p2 þ

1

2
o2q2 þ l

� �2

¼ _oðuvþ aÞ2, (36)

with a ¼ l=_o. This Hamiltonian describes anharmonic effects in high amplitude molecular vibrations [1] and,
in quantum optics, it is closely related to the Kerr Hamiltonian, associated to non-linear optical media (see for
example Ref. [24]). Applying the Wick rotation we get

H ¼ �i_oðuvþ aÞ2. (37)

Note that this Hamiltonian may be seen as a sum of a harmonic term (proportional to a) and an anharmonic
quartic term (independent of a). Since a�_�1, while uv�_0, in the semiclassical limit (ab1) the quartic term
must be seen as a perturbation added to the harmonic Hamiltonian. Note also that H cannot be written as
p2=2þ V ðqÞ. The equations of motion are

_v ¼ 2oðuvþ aÞv and _u ¼ �2oðuvþ aÞu. (38)

Since ðuvþ aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H=_o

p
is a constant of the motion, the classical solution satisfying the boundary conditions is

uðt0Þ ¼ u0e�Ot
0

; vðt0Þ ¼ v00eOðt
0�tÞ ) u00 ¼ u0e�Ot; v00 ¼ v0eOt, (39)

where O ¼ 2oðu0v0 þ aÞ and t ¼ _b. We note that the only periodic orbit is the trivial one, although the system
does not involve a potential. The above solution is very similar to that of the harmonic Hamiltonian but, in the
present case, the frequency O is energy dependent. The connection between initial and final variations in a given
trajectory can be obtained from

du00 ¼ e�Otdu0 � te�OtdO; dv00 ¼ eOtdv0 þ teOtdO, (40)

where dO ¼ 2oðu0dv0 þ v0du0Þ. Therefore, the relevant tangent matrix elements are

Muu ¼ ð1� 2otu0v0Þe�Ot (41)

and

Mvv ¼ ð1þ 2otu0v0ÞeOt. (42)

On the trivial trajectory u ¼ v ¼ 0 we obtain simply

Muu ¼ e�2a_ob; Mvv ¼ e2a_ob;
i

_
S0 ¼ �a2_ob, (43)

where we have set O ¼ 2oa. This leads to the semiclassical result

Zsc ¼
e�a

2_ob

2 sinhða_obÞ
, (44)

from which one can write

f sc ¼ a2_oþ
1

b
ln½2 sinhða_obÞ� (45)
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and

usc ¼ a2_oþ _oa cothða_obÞ . (46)

Not surprisingly, these expressions correspond to the exact quantum result for the harmonic part of the
Hamiltonian (36). In the next subsection we develop a more accurate approximation. The exact quantum
partition function is given by Z ¼

P
ne
�bEn , where fEng are the (non-degenerate) eigenvalues of the quantum

Hamiltonian Ĥ ¼ _oðâyâþ aÞ2. Thus

Z ¼
X

n

e�_obðnþaþ1=2Þ
2

. (47)

The classical function is given by

Zclass ¼

Z
dqdp

2p_
e�bH ¼

ffiffiffi
p
p

2
ffiffiffiffiffiffiffiffiffi
_ob

p ½1� Erfð
ffiffiffiffiffiffiffiffiffi
_ob

p
aÞ�, (48)

where Erf denotes the error function.

4.3. The quartic non-Euclidean Hamiltonian: higher order approximation

Higher order corrections to the semiclassical partition function can also be obtained from (19). We illustrate
the method for the Hamiltonian (36). Let us rewrite integral (19) as

Zsc ¼

Z
du0 dv00

2pi
A exp

i

_
Fðv00; u0; tÞv00¼z0�;u0¼z0 � z0�z0

� �
, (49)

where A ¼ 1=
ffiffiffiffiffiffiffiffiffi
Mvv

p
. Our procedure now is to expand the argument of the exponential up to fourth order

around the saddle points, and the pre-factor up to second order (for more details see Ref. [15, Appendix B]).
We get

A � A0 þ AðuÞ Du0 þ AðvÞDv00 þ 1
2
AðuuÞ Du0

2
þ 1

2
AðvvÞ Dv00

2
þ AðuvÞ Du0 Dv00 (50)

and

i

_
F� z0�z0 �

i

_
F0 � u00v000 þ

i

2_
FðuuÞ Du0

2
þ

i

2_
FðvvÞ Dv002 þ

i

_
FðuvÞ � 1

� �
Du0 Dv00

þ
i

6_
½FðuuuÞ Du0

3
þ 3FðuuvÞ Du0

2 Dv00 þ 3FðuvvÞ Du0 Dv00
2
þ FðvvvÞ Dv00

3
�

þ
i

24_
½FðuuuuÞ Du0

4
þ 4FðuuuvÞ Du0

3 Dv00 þ 6FðuuvvÞ Du0
2 Dv00

2

þ 4FðuvvvÞ Du0 Dv00
3
þ FðvvvvÞ Dv00

4
�, ð51Þ

where AðuÞ ¼ ðqA=qu0Þ0 and so on. For the Hamiltonian (36) we find that the only non-vanishing terms are the
ones proportional to AðuvÞ, FðuvÞ, and FðuuvvÞ besides the zeroth order terms (see Appendix). Therefore, the
partition function integral reads

~Zsc ¼ eð�i=_ÞF0

Z
dðDu0ÞdðDv00Þ

2pi
ðA0 þ AðuvÞ Du0 Dv00Þ

� exp
i

_
FðuvÞ � 1

� �
Du0 Dv00 þ

i

4_
FðuuvvÞ Du0

2 Dv00
2

� �

� e�oa
2_b
Z

dðDu0ÞdðDv00Þ

2pi
ðA0 þ AðuvÞ Du0Dv00Þ

� 1þ
i

4_
FðuuvvÞ Du0

2 Dv00
2

� �
exp

i

_
FðuvÞ � 1

� �
Du0 Dv00

� �
, ð52Þ
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where we have assumed that the fourth order contribution in the exponent is small if compared to the second
order term, and the tilde indicates the higher order approximation. The next step is to diagonalize the
quadratic form in the argument of the exponential. This can be done with the variables W and K given by

Du0 ¼
1ffiffiffiffiffi
2g
p ðK � iW Þ; Dv00 ¼ �

1ffiffiffiffiffiffi
2 g
p ðK þ iW Þ, (53)

where 2 g � ðiFðuvÞ=_� 1Þ. Integral (52) becomes

~Zsc ¼
e�oa

2_b

i g

Z
dW dK

2pi
A0 �

AðuvÞ

2g
ðW 2 þ K2Þ þ

iA0FðuuvvÞ

16_g2
ðW 2 þ K2Þ

2

� �
e�W 2�K2

, (54)

where we have excluded terms of order higher than four. The resulting partition function is

~Zsc ¼Zsc 1�
AðuvÞ

2gA0
�

FðuuvvÞ

i8_g2

� �
, (55)

where Zsc is given by expression (44). We have found that (see Appendix)

A0 ¼ e�a_ob; AðuvÞ ¼ �2_obe�3 a_ob; FðuuvvÞ ¼ 4i_2obe�4a_ob, (56)

and, therefore,

~Zsc ¼
e�a

2_ob

2 sinhða_obÞ
1�

_ob
2

sinhða_obÞ½ �
�2

� �
. (57)

In Fig. 1 we compare the scaled thermodynamic potentials f � ¼ f =_o and u� ¼ u=_o as functions of the
reduced temperature T� ¼ kBT=_o, with a ¼ 8:0, for the four cases: higher order semiclassical (black),
quantum (gray), classical (crosses) and quadratic semiclassical (dashed line). As expected the classical results
tend to the exact quantum ones for high temperatures, while they completely fail to describe the physical
behavior at T ! 0. In contrast, the semiclassical approximations are very precise in the low temperature limit.
In particular, we note that the semiclassical entropy satisfies the third law of thermodynamics while the
classical function does not. This is shown in Fig. 2, where the scaled entropy s� ¼ s=kB is plotted as a function
of T�.
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4.4. Two-well potential

Here we address a system with a quartic potential function V ¼ A q4 � B q2 þ C, with A;B40. If we denote
the height of the local maximum located at q ¼ 0 by DE and the distance between the two symmetric minima
by 2a, the potential is written as

V ðqÞ ¼ DE
q

a

	 
4
� 2

q

a

	 
2
þ 1

� �
, (58)

such that V ð	aÞ ¼ 0. In this case we apply Eq. (30) directly. The harmonic contribution is
2� 1=½2 sinhð_

ffiffiffiffiffiffiffiffiffiffi
2DE
p

b=aÞ�, while the tunneling term must be determined numerically. There are two
distinct regimes to be considered. If DE is large enough to encompass several energy levels, the harmonic
contribution should be dominant over the tunneling one, since the two minima hardly ‘see’ each other. In
this case the trajectories connecting the wells have large actions, giving exponentially small contributions
to the semiclassical partition function. In contrast, when DE is comparable with the energy of the ground
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state, the tunneling term should give a relevant contribution. These statements are verified in the numerical
computation of Zsc for DE ¼ 3:0 and DE ¼ 0:15 with a ¼ 5 in both cases (we use arbitrary units for which
_ ¼ 1 and kB ¼ 1). In the first case (deep well) the ground state has an approximate energy of 0:5, and there
are eight levels (four doublets) with energy smaller than DE, as shown in Fig. 3(a). Fig. 3(b) shows
the quantum partition function and Zsc, where we have used only the harmonic term, since the tunneling
contribution is about three orders of magnitude smaller. The approximation derived by Gildener and
Patrascioiu [25] (see also Ref. [26]) specifically for the potential (58) is also displayed. This approximation
and the semiclassical one produce almost identical results in this case. In the case of the shallow well there
are only two levels with energy below DE ¼ 0:15 (see Fig. 4(a)). As expected the harmonic contribution is
unable to give a good approximation to Z and the tunneling term must be considered. The overall
semiclassical result is in very good agreement with the exact one, as can be verified from Fig. 4(b). In this case,
the G&P formula does not agree with thequantum result. In the computation of the tunneling term we have
not considered multi-period trajectories, since we have found that the corresponding contributions are
vanishingly small.

5. Spin systems

As discussed in the beginning of Section 2.3 the coherent state propagator can be described by a variety of
semiclassical expressions. For simplicity we chose the one involving the classical Hamiltonian H. For spin
systems there is no direct classical Hamiltonian and we have to use a different representation. Our starting
point is the spin coherent state, defined by jwi ¼ ð1þ w�wÞ�s expfwŜþ=_gjs;�si, where _s is the total spin
and w is a complex number. The Q-representation of the Hamiltonian operator is defined as H � hwjĤjwi.
This function appears naturally in the first form of path integral suggested by Klauder and Skagerstan [14],
whose semiclassical limit requires the addition of an extra term in (13) [15], the so-called Solari-Kochetov
phase [27,28]:

ISK ¼
1

4

Z t

0

q
qw�

ð1þ w�wÞ2

2s

qH
qw

� �
þ

q
qw

ð1þ w�wÞ2

2s

qH
qw�

� �� �
dt0. (59)

Furthermore, since w and w� are not canonically conjugated, it is convenient to define new canonical variables
by [29]

Q ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

1þ w�w

r
ðw� � wÞ; P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

1þ w�w

r
ðw� þ wÞ. (60)
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This transformation is the classical analogue of the Holstein–Primakoff bosonization procedure [30]. In these
variables, the equations satisfied by the stationary phase trajectories that contribute to the semiclassical
propagator are the usual Hamilton’s equation of motion

dQ

dt
¼

qH
qP

;
dP

dt
¼ �

qH
qQ

. (61)

We remark that the Solari–Kochetov term does not change the stationary exponent condition since it already
involves second derivatives of the Hamiltonian. With this procedure the formalism we have developed can be
readily applied to spin systems. The semiclassical partition function reads

Zsc ¼
X

j

eði=_ÞðS
ðjÞ

0
þI

ðjÞ

SK
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tr½M
ðjÞ
0 � � 2

q or Zsc ¼
X

j

e�ð1=_ÞðS
ðjÞ

0 þI
ðjÞ

SK Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½M

ðjÞ
0 � � 2

q , (62)

for transformations (5) and (2), respectively.
As a simple example we consider a spin in a uniform magnetic field. The Hamiltonian operator is Ĥ ¼ oŜz,

leading to the exact partition function

Z ¼ e_obs
X2s

n¼0

e�_obn ¼
e_obðsþ1=2Þ � e�_obðsþ1=2Þ

e_ob=2 � e�_ob=2
. (63)

From the definition of spin coherent states we obtain

H ¼ �_os
1� w�w

1� w�w

� �
¼ _o

P2

2
þ

Q2

2

� �
� _os, (64)

from which one sees that the only contributing orbit is the trivial one. This yields iS=_ ¼ _obs and
iISK=_ ¼ _ob=2. The corresponding semiclassical partition function is

Zsc ¼
e_obðsþ1=2Þ

e_ob=2 � e�_ob=2
, (65)

which differs from the exact result by a factor that is exponentially small in the low temperature and large spin
limits. At first glance it might be expected that the semiclassical result should be exact, since the effective
Hamiltonian is quadratic. However, it is important to note that the classical problem we are dealing with is not
completely equivalent to that of a harmonic oscillator. In the present case, the phase-space is compact since
Hp_os (see Eq. (64)). The two problems are strictly equivalent only if s!1, when the semiclassical result
is exact.

6. Concluding remarks

We have obtained a semiclassical trace formula for the canonical partition function in the low temperature
limit that does not require sampling and numerical integration in phase-space. The examples presented in
Sections 3 and 4 show that, in spite of the failure of the classical partition function in describing thermal effects
at low temperatures, the appropriate combination of classical ingredients appearing in the semiclassical
formula is indeed capable of giving very accurate results in this limit. The quantum corrections come precisely
in the way we combine the classical functions. The two- and three-dimensional extensions of the formalism are
straightforward in the case of single minimum potentials.

In the case of multiple minima, the calculation of the non-trivial periodic orbits is more involved due to the
higher dimensionality. However, contrary to the situation in usual trace formulas, only very long orbits should
contribute in the low temperature regime. In particular, heteroclinic orbits connecting the top of the inverted
wells should be of great importance. Calculations for two-dimensional potentials are currently under way.
Other potentially interesting perspectives are also open, such as the inclusion of spin–orbit interactions, whose
semiclassical propagator has been recently derived [31].
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Appendix A. Expansion coefficients

In this appendix we indicate how to obtain the equalities (56). The first expression is immediate

A0 ¼

ffiffiffiffiffiffiffiffiffi
1

Mvv

r
¼ e�oa_b, (A.1)

where we have used the second relation in (43). Now let us calculate AðuÞ. We have

AðuÞ ¼
qA

qu0

� �
0

¼ �
1

2M3=2
vv

qMvv

qu0

 !
0

. (A.2)

From Eq. (42) we have Mvv ¼ ð1þ 2otu0v0ÞeOt, which in terms of the independent variables u0 and v00 becomes
Mvv ¼ ðe

Ot þ 2otu0v00Þ. Therefore

qMvv

qu0
¼ 2otv00 þ t

qO
qu0

eOt. (A.3)

One can implicitly determine the derivative of O starting from O ¼ 2oðu0v0 þ aÞ ¼ 2oðu0v00e�Ot þ aÞ. The result
is

qO
qu0
¼

2ov00e�Ot

1þ 2otu0v00e�Ot
)

qO
qu0

� �
0

¼ 0. (A.4)

Consequently we have ðqMvv=qu0Þ0 ¼ 0 and AðuÞ ¼ 0. A similar calculation shows that AðvÞ ¼ 0. For AðuvÞ we
get

AðuvÞ ¼ �
1

2

1

M3=2
vv

q2Mvv

qu0 qv00
�

3

2M5=2
vv

qMvv

qu0
qMvv

qv00

 !
0

¼ �
1

2

1

M3=2
vv

q2Mvv

qu0 qv00

 !
0

, (A.5)

with

q2Mvv

qu0 qv00

� �
0

¼ t
q2O

qu0 qv00

� �
0

e2oat þ 2ot. (A.6)

From Eq. (A.4) we can show that

q2O
qu0 q v00

� �
0

¼ 2oe�2oat )
q2Mvv

qu0 qv00

� �
0

¼ 4ot, (A.7)

which leads to AðuvÞ ¼ �2ote�3oat. Using the same strategy one can prove that AðuuÞ ¼ AðvvÞ ¼ 0, that all third
order derivatives of F vanish at the trivial orbit, and that the only non-vanishing fourth order derivative is

FðuuvvÞ ¼
i_

M2
vv

q2Mvv

qu0 qv00

� �
0

¼ 4i_ ote�4oat. (A.8)
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