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Semiclassical coherent-state propagator via path integrals with intermediate states
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We derive a semiclassical approximation for the coherent state propa(gétef‘““ﬂz’) using a path
integral formulation in which the intermediate coherent states can have arbitrary widths. Our semiclassical
formula involves complex trajectories of the smoothed Hamiltofigg,p,b) =<z|l:| |z) whereb, the width of
the coherent statg), is a free function that can be chosen conveniently. The generality of this formalism
enables us to derive a semiclassical approximation which contains, as particular cases, other similar approxi-
mations known in the literature, providing a natural link between them. We present numerical results showing
that the semiclassical propagation can be very sensitive to the chdicanaf we suggest an energy dependent
value b=Dbg that results in considerable improvement over other choices. This value for the width will be
generally different from the widths’ or o of the initial and final statelz’) and|z").
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I. INTRODUCTION . 1 a .f)b 1/q pb
a = B—I? , =— B-H? (2)
Coherent states are a powerful tool in the study of the ﬁ \/5

semiclassical limit of quantum mechanics. They provide a
minimum uncertainty overcomplete representation containtn the aboveg, p, anda' are operatorsg and p are real
ing explicit information on both position and momentum, numbers;z is complex. The parameter
leading to a natural phase space picture of quantum mechan-
ics. b= (A/mw)Y? 3)

The first derivation of the semiclassical coherent state
propagator based on path integral techniques was given bé’efines: the length scale and we call it thiglth of the coher-
Klauder[1-3]. Weissmari4,5] and Heller and collaborators ent state.
[6,7] also presented a derivation of the semiclassical propa- These states satisfy the identity
gator, based on general semiclassical techniques. Baranger
et al. [8] have recently given a detailed derivation of the 427
semiclassical coherent state propagator using path integrals. 1= f |2) —(z| (4

The overcompleteness of the coherent basis set leads to gl
several possible path integral representations of the evolution
operator. These representations, while identical quantum méadependent of the width. In this paper we explore this fact
chanically, lead to different propagators in the semiclassicahnd construct path integrals where the infinitesimal propaga-
limit. Klauder and Skagerstaif2] considered this question tions, in which the full evolution operator is broken into, are
from the quantum mechanical point of view, presenting twobetween coherent states of different widths. In the continuum
basic constructions for the quantum mechanical path intelimit, the width itself becomes a time dependent quantity that
gral. One of these forms is associated with a Hamiltomian can be chosen conveniently to improve the performance of
which is a smoothed version of the classical Hamiltorttan  the semiclassical approximation.
The other involves a different Hamiltoniath,, which can be Our main result, Eq(53), is a semiclassical approxima-
thought of as an antismoothed version of the classicdlhe  tion for the propagato((z”|R(T)|z’) in which the initial and
semiclassical limits of these basic forms were discussed ifinal coherent states have arbitrary width'sands”, respec-
detayl in[8]. A thqu construction, whlch combines the two tively, andR(T):e—iHTlﬁ is the evolution operator. This for-
basic ones, was discussed #, and is closely related to the 13 inyolves classical trajectories governed by the Hamil-

classical Hamiltonian itself. In this paper we shall restrict, . o0 P . —
ourselves to the first type of construction and we shall usdonian H(d,p,b) =(z|H|z) where the “dynamical width'd

the symbolH for H =Db(t) can be chosen appropriately and does not need to
1- HR : H ’ "

In all these previous formulations, the path integrals areco'lnc'dl(ej W':h teltf}[el’a' for 7 .I : imple situati

constructed using coherent states with the same fixed width, h order 1o test our formula In Some simple situations, we

i.e., coherent states of the same harmonic oscillator of maé%r(_)je‘;t the coherent state pro_pagat_or in the po_sitio_n represen-
m a;nd frequencyw. These are given by tation and calculate the semiclassical approximation for the

mixed propagato¢x|K(T)|z'). The result, a Gaussian func-

|z>=e*|z|2’2ezy|0> (1)  tion of x that depends only on the trajectory issuing from
q(0)=q’, p(0)=p’, will be called a Gaussian semiclassical
with |0) the harmonic oscillator ground state and approximation(GSA). The GSA is related to another well
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N—-1

known type of semiclassical approximation called the initial N
[T e tmAas
]=0

value representatioiVR). IVR’s are written as K(z*z' ,T)= < Zy

Zo> ; (7)

where we have se=2z" andz,=2" and the time; is in the
q'dp’ interval[j 7,(j +1)_7-]. _ _
F(x,2', T){(Z'| ), (5) The next step is to inserfN(— 1) unit operators between
2mh each successive exponential. Sinceand ¢” are arbitrary,
there is noa priori reason to choose the width of these in-

h the kernek ') is ai lelv in t fol termediate states as either one of them. Rather, for each reso-
where the kerneF(x,z',T) is given solely in terms of clas- lution of unit we shall associate a widty) which, in prin-

sical trajectories starting at ,p’. The GSA described above ciple, can take any value. Our main purpose is to obtain a

plays the role of a kernel. o semiclassical approximation for the propagator starting from
The general idea of initial value representations is to havey path integral formulation where the intermediate states can

semiclassical formulas in which only trajectories defined byhave arbitrary widths. We shall then verify the sensitivity of

their initial position and momentum are needed. IVR's avoidthe approximation to different choices of intermediate widths
the cumbersome calculation of trajectories starting at a cerp;}.

tain position and ending at another and have become very
popular among chemisfsl0—18. Of the three most used
IVR kernels, Heller's[10], that of Baranger, de Aguiar, A. Coherent states of arbitrary widths
Keck, Korsch, and Schellhaa¢8AKKS) [8], and Herman A coherent statéz) of the harmonic oscillator is specified
and Kluk's[11,12,19-2], the last seems to be superior in py three real parametersp, andb, corresponding to the
most tested casésee, howevel,22,23). Our GSA formula  expectation values of the position and momentum operators
is an improvement over the kernels of BAKKS and Heller and the mean square deviation of the position. The parameter
and might result in a more accurate IVR representation.  p, which is the width of the packei/(x) =(x|z), is also

This paper is organized as follows. In Sec. Il we deriverelated to uncertainty in position by=+2Aq and to the
our main formula for the coherent state propagator,(B8),  frequency of the associated harmonic oscillator by
and for the GSA, Eq(68). Section Ill is devoted to some = ./z/mo.
analytical and numerical applications of the formalism. Our  To make these parameters explicit it is sometimes useful
conclusions are summarized in Sec. IV. to write |z)=|q,p,b) or z=z(q,p,b), with (qg,p,b) e R?

X R, . In this notation the resolution of unit reads

d

R |

II. FORMALISM

dqgdp
In this section we construct a path integral representation l:f f |9,p.b) 2k (a,p.b| ®

for the coherent state propagator o )
and is independent df. In order to take advantage of this

freedom in the path integral, we shall need to compute the
overlap between two coherent states labeled by
K(Z”*,Z/’T):(Zuﬁ—e—(i/ﬁ)fgl:l(t)dqZr>, 6) c:aﬁ:(ucllélt%ntgl)vg:d Zj11=2j41(dj+1,Pj+1,0j+1). Asimple

where 7 is the time ordering operator. We assume that the 2b;bj .4 1 1

quantum Hamiltoniard can be written as a power series of (741l2))= 2+p2. R T2l b2z

the creation and annihilation operatarsanda’ and that the b b

initial and final coherent states have arbitrary widétisand

a”, respectively. X£(9j,9j+1,P;Pj+1,b; 7bj+1)]v ©)
We divide the timeT into N steps of sizer, so that, in the

limit of small 7, the propagator can be written as where

f(9;,9j+1,P;,Pj+1.bj,bj 1+ )=Fj 11
(bibj+1)?

2i 1
52 (Pj+1—Pj)?— 7 bquj+1pj_bj2+1quj+l+ 5(b12+1_b12)

=(Qy1—a)>+
X(Qj+1Pj+11djp)) |- (10
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For b;j=b;,, the overlap between coherent states of thewith

same harmonic oscillator is recovered.

B. The path integral
Using Eq.(8) the propagato(7) can be written as

K(z*z',T)= f[

where z;=z;(q;,p;,b;) and the limitsN—~, 7—0, N7
=T are implicit. This corresponds to Klaudefisst form of
path integral2]. Following his steps we write

]II {(zj4ale” MRz,
(1

N—1

T {(zeale” A0}

i
_ﬁHjJrl,j , (12

N—-1 N—1
L elzen] 3
]=0 ]=0
with the notation

<Zj+l||:|(tj)|zj>
<Zj+1|zj> .

From Egs.(9), (11), and(12), we obtain

d2z |\ [2bb; 4
Kz*z’T—f 1 ST GFlapb]
( ) [ng ™ ]JI;[ b2+b,2+l

(14)

Hjv1j= (13

N—-1 1
F[qapib]zz {_E
]=0

1 iT
b+, )
(19

Here we are using the abbreviation[q,p,b]
=(dg, - - -, OnsPos -« - [SINTH <P bn). We remember that
(qOIPO!bO) = (q, vp, 10-,) and (qN PN !bN) = (qn’pnyo_n) .

In the semiclassical limit—0 the integrals in Eq(14)
can be performed in the stationary exponent approximation,
which consists of three basic steps.

(1) Calculate the stationary path, i.e., the set of points

(d1,92, - - - An-1,P1:P2, - - -5 pn-1) satisfying

JF  oF

. N—1. 16
apk (9Qk (18

(2) ExpandF to second order around the stationary path
and perform the resulting Gaussian integrals.

(3) Simplify the prefactors arising from the Gaussian in-
tegrations.

These steps are performed in Secs. IIC, IID, and Il E,
respectively.

C. The stationary trajectory

Equations(16) lead to the equations

1 1 i 1
| 5 bb [b + = (b? } S ¥ e Sa— b_,b
2\ p2 bk+1)| hz( kbict 1) 2(Picr 1= P) — KOk+1 ( k+17 )Qk} Z(b B [ (b 1by) *(pk
2i iT aHkk 1 ﬁHk 1k
_Dkl)—ﬁ[ bROk-1+ 5 (bk b 1)QkH %\ ope + 57p+k )Z (17
and
1 1 5 2i b2 1 b2 b2 1 1 2
3 b+—bk+1 ~2(0k+17 )~ 77| ~BiraPrrat 5 (D =bIPe [ — 5 m (dk—0k-1)
2i 1 |7 (7Hkk &Hk k
— | b aPk-1t 5 (b 1>pk“ ﬁ< o )= (18
|
For k=1 andk=N-1, which is equivalent t¢=0 and and
t=T, Eqs.(17) and(18) provide the boundary conditions for
the classical complex path: q(T) _a"p(T) 1(q" o"p" ,
— | ———i =—|——i——|=z% (20
\/z o' A \/E o A

3 q/ O_Ip/

1
2\ & h

a0 ."'p(o)) i(
2\ o

_'+IT) =z (19)

For intermediate values é&fwe can expand Eq$17) and
(18) in terms of the infinitesimal differenceAq,=qy1
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—0k, APk=Px+1— Pk, andAby=by 1 —by. In the limit 7 and the analogous variableg andV; related toQ; andP;
—0 only first order terms contribute to the equations. We getn the same way. In these variableés can be written as

N—-1

1 i
572 APk APk + o5 (Al A1) F2=—j§l (@)U + BVI+ UV + UV + i UU
B i_7'<07Hk,kl N ﬁHkﬂ,k) _o (21) T ViVt U1V (27)
h\ o apy JPk _ .
with coefficients
and
b?,,—b? 1 b? ,—b? 1
j+1 j j+1 J
1 i G=T o7 a2 BiTo s ot
207 (A0 802) 5 (APt AP 2(bf, 1 +b) 2 2(bf ,+bj) 2
iT7(0Hkk-1 Hir1x _ 2bjbi+1 _ =9 —
- * X = Ni=— ——S5+7ki, =1, and uj=v;=9;=0,
ﬁ( J0k i o ) 0 22 : b12+1 ij e S
_ _ (28
As 7—0, Ag/7—q, Ap/T—p, and
where
aHk,kfl_F IHy+ 1k _}ﬁ (9Hk,k—1+ IHy+1x _)ﬂ
oo dac | oa’ \ape T amc ) ap N L L PV
(23 Pj 27 ﬁqu 2bj2 z"7pj2 Jq;p, i+, ii—1)

(these last relations are demonstrated in AppendixiAere- (29

fore, Egs.(21) and(22) become simply

ib? 2 ih ? P
0=\ 57 T2 o2 3 oo | (i1t Hyj-1),

. JH . IH 2k 992 2b2 gp2  99iIp;
=— and p=——. 24 q i P 17K
9= 3p P="7g (24) (30
The solutions of Hamilton'’s equatiorig4) with boundary 1(ibjbjyq 0PH,.q, b, %M1,
conditions(19) and (20) are the extremal paths or trajecto- Kj=% -
. . N 2\ 099041 b1 9941
ries. The HamiltoniarH(q,p,b)=(z|H|z), however, con-
tains a nonconstant width(t) that modifies the dynamics. bis1 *Hji1; i 9*Hjiq
We. recall thatﬂ does not c'oincide w.ith the Weyl hzilmil— b, 40j+10P; bibj+1 P;AP; 1) (32)
tonianH, which is the most direct classical counterpartof
For quantum Hamiltonians of the fort=3p?+V, we ob- The coefficientsa;, Bj, and \; in Eq. (28) must be
tain H(q,p,b) = % p2+#2/4b2+1(q,b), with VE<2|\7|2>. handled carefully. Keeping only linear termsAb; we find

D. The stationary exponent and the Gaussian integrals o; :[ —Abj/2bj+ 72 for j=1,...N-2, (32)

Once the equations of motion have been obtained, we — &2t Tl for j=N-1,

proceed to expand the exponéiiig,p,b] of Eq. (14) around
the extremal paths.

Let us denote the classical trajectory hy; (p;) and the
corresponding deviations from it b@;=q;—q; and P;
=p;—p;. We write

[AbJ1/2bJ+TQJ/2 for j:2,...,N—1,
J-:

o'12+7e;/2 for j=1,
(33

Nj=7Kk;j—1 for j=1,... N—2, (34)
FeF+FirFe. @9 here §"'=[a"2—b2(T))/[o"2+b3(T)] and & =[b2(0)
—o'?]/[b%(0)+0'?]. Note thatay, ay, Bos» Bns Mo
fN-10 and\ are never used becausg, Uy, Vg, andVy
vanish.

Finally, the square root multiplying the exponential in Eq.
(14) has only second and higher order termsiin; . There-
fore, it contributes only at the extremities of the trajectory,
_i(ﬂﬂ %) vj—i<$—i %) (26)  sinceb(0) does not have to be’ andb(T) does not have to

u._ =
b2\ h N be ¢”. Putting these ingredients together we obtain

whereF is the zeroth order term, correspondingR@valu-
ated over the classical trajectory. The first order term is o
course zero, and the second order ténms a quadratic form
in Q andP. It is convenient to define the auxiliary variables
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(7 T)~\/ 40'b(0)a"b(T) =
T N e Z02(0) [0 2+ AT

N—-1

du;dV;

II J J

X —_—
J[j—l a

gF2luV]

_\/ 40'b(0)o"b(T)
~ V[o24b%(0)][0"?+bA(T)]

xeF[(—=1)N"tdetM(N-D]~12 (35
where the symmetric N—1)x2(N—1) matrix MN~1) is
defined by the relation 2,= —TTMN"UI' (see[8]), with
I''=(Uy-1,Vn_1,....U1,Vy) and T’ the corresponding
column vector.

In order to calculat& and detM N1 it is convenient to
define the variables

1 (q)  a'p(t)
’7“*—\5(7*' G )

1 (at) o"p(t)
ﬂt)zﬁ(?" h ) 0

In these variables the boundary conditid8) and (20) be-
come_simplyn(O)E n'=2" and {(T)=¢"= Z* The expo-
nentF also simplifies tolsee Refs[2,8])

— 1
=S¢ D)= 5 (7' P+]€?)

—2((‘;:‘;32) (7%= &), (37
whereS(¢”, %', T) is the complex action,
T iAo . ) i%
S(é”,n’,T)=f0 X5 (En=né)—H|dt=x—
X[ 7' §0)+ & n(T)] (38)

andy=20"'o"l(c'?+d"?).
It can be shown that small variatiord&®;” and 6¢” in S
lead to

0S=—ifix[£(0)6n'+ n(T)SE"]. (39
Therefore
JS ] ]
— = —ihx&0)=—ifx¢',
an
aS ) ]
—, = ~ihxn(T)=—ihxn". (40)
Z3
Also

PHYSICAL REVIEW A8, 062112 (2003

hx O&' (9285 "+ 7S Y (41
—I X =T o7 ! "
(977’2 an' o€
and
, 2 39S
—ihxon' = on'+—6¢". (42
&ﬂ’&g” ag"Z

Variation in the propagation tim€ leads to the usual relation
dSIdT=—"H.

E. The prefactor

The calculation of de¥1™~Y is worked out in Appendix
B, and the result is

(=Nt detM(N"D=[5v(T)— 6" 6u(T)]e®"M7,
(43

where

) PH
b2(t) —, +
Jq

(44)

h? *H it
b2(t) 9p?

andu and v are the continuous versions of the variables
defined in Eq(26):

1(q .bp 1(q . bp
u_\/i(b+'ﬁ)’ U_\/E(b |ﬁ). (45
The valuesév(T) and 6u(T) appearing in Eq(43) are ob-
tained by linearizing the above equations around the station-
ary trajectory and solving them with initial conditions
ou(0)=—¢" andév(0)=1 (see Appendix B

Equation (43) assumes a simpler form in terms of the
variablesn and ¢ defined in Eq(36). Using the conversion
relations betweendu, sv) and (57, 6€),

5 p% (0_112+ b2 5o ( O_/Z_bZ) 55 (46)
u: —_—
2 a'b 7 ag'b
and
5 Y 0_!/2_b2) 5 +(0,12+b2) 5 an
V=4 ,
2 b g o'b

we rewrite Eq.(43) as

2b(T)o”

~DN detMN V= ————
(v o"?+b%(T)

SE(T)el@MT (48

Evaluating these equations &0 with su(0)=—45" and
ov(0)=1,

X
5_2

o"2+ bZ(O)) ( o'2—b%(0)
_ |+ —

anb(0) a'b(0) ) 55(0)}’

(49
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formula we are not restricted tb=0' or b=¢". The
) 65(0)], present result is valid for anly, constant or time dependent.
We shall explore this arbitrariness latter for a Gaussian semi-
(50 classical approximation.

and using Eqs(41) and (42) we can write8&(T)=6¢" in As a test of formula(53) we calculate the semiclassical

terms of the second derivatives of the complex acowe propagator for the simple harmonic oscillator. The quantum
Hamiltonian is given by

(a’"z—bz(O)) (0’2+b2(0)
_— | | —

X
2 a"b(0) a'b(0)

getsn’' =0 and
- ~ 1.1 -
20'b(0) [ s \! _ L 1 o
5S¢ = — (0) ' 51 A= 5 P2+ Sme’e, (56)
a'?+b2%(0) \ an' 9"
Thus and the corresponding smoothed Hamiltonian reads
’ " 1 %2 1 Ma2b?2
(—1)N_1detM(N_1):—ih 4o b(O)O' b(T) H:ﬁ 2+ b2+§mw2q2+ 4 . (57)
[0_/2+ b2(0)][0_112+ bZ(T)] 4m
S o The equations of motion can be easily found and written in
X e~ (@MT (52)  terms of the variabley and &. The solution is given by
077,(95”
1 2 12\ ql ot 2 12\ it
F. The semiclassical propagator n(t)= ﬂ[IC(b —o'9)e' + M((b*+ o' )e '
g
Substituting Eqs(52) and(37) in Eqg. (35), we obtain the (58)
final expression for the semiclassical propagator,
5 and
i S i
K(¢", 7', T)= ——e("ﬁ)fexq’—s(f”,n’.T)]
hoon' o h _ 1 2, w2y aiwt 2 w2y a-iot
()= ——[K(b*+o"9)e' '+ M(b*—c"*)e™"'“"].
1 n2 12 20"b
- o -0 12__ ¢n2 (59)
Xexp{z 0_!/2_|_0_72 (7] g )
The mixed boundary conditions are satisfied for
1
12 "2 i
_§(|77 | +|§ | )], (53 - b[(b2+0"2)0'” lr_(bZ_O_nZ)O_/,,]/efle]
N i(b*+ o' 20"?)sifwT)+b%(0"?+ o'?)coqd wT)
where (60)
T oih . .
S<§",n',T)=f0 X (€n- nf)—H}dt and
i% M= 2bo’" | b2—o'? . 61
_X?[,rllgl_'_gun/l], (54) _b2+0"27] b2+0-’2 .
wherey is defined after Eq(38) and The complex action takes the simple form
1(7), , *H h* PH L if ,
1= Zfo b(t) 7 oA 702 dt. (55) S n' \T)=-I-x5[7&0)+&(TM)]. (62

For ¢’ = ¢” the propagator becomes formally identical to This expression together with Eq$8), (59), (60), and(61)
the result in[8], but they do not coincide since in the above leads to

i J°S B —4l0' 0" 63
hion' 08" (1-47%0"%0"?)sin(wT)~2{(c'?+0"?)cod wT)

and
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a_//2_0_/2

(12+27%0"26"%)siNwT) = {(0"?~ o' %) (5'?~ &"*)cog wT)—4{c' o 7' &'
(1-420"%0")siN(wT)—2{(0'?+ 0"?)cog wT) ’

[ 1
7 (I+9+5 )(772—52)2

0_//2+0_12

with {=iw/2h. The final result is

K(E”,n’,T)=2\/ —Lre o= (124172
(1-47%0"%0"%)sin(wT)—2¢(o'?+ ¢"?)cog wT)

p{ (1/2+ 2§20',20'”2)Sin(0)T)_ g(O’"Z_ 0_/2)( 7]/2_ gr/Z)Coq wT)—4§0"0'”7]'§"]
X ex : (64)

(1-480"20"%)siNwT) = 2{(0'?+ d"?)cod wT)

which coincides with the exact result. Note that this expres- —1/4_—1/2

L : . . i 9°S
sion is independent of the choice lnfFor general potentials  (x|K(T)|z')= 7 —
this is not expected to occur. Vity hoon' ot
_ a2
G. Gaussian semiclassical Approximation X exp — l u A
21+y\ o

In order to study the role of the width in our semiclassical
formula, we shall derive a simpler Gaussian semiclassical i
X ex %

1
Pr(X=0Gr)+50"p"+Su+T

approximation of the propagator. This will allow us to avoid
the complications introduced by complex trajectories and fo-
cus only on the implications of using different widths. (68)

We consider the “mixed propagator”

The quantities with the subscriptare evaluated over the real
A d2z" A trajectory, andSy is Hamilton’s action
KRDI2Y= [ 2y @IRMIz), 69 f

SH=f (pdg—"Hdt). (69)
with (z’|K(T)|z) given by Eq.(53), and ¢’ =0"=0 for '
simplicity. The mixed propagator is a possikiteut not the The approximate wave function given by E8) is al-
only) kernel F(x,z",t) in Eq. (5), since for any quantum \ays Gaussian, which justifies the name GSA. The corre-
state| ) sponding IVR formula is Eq(66) with the GSA as the ker-
nel, which is integrated over ai’ and p’, resulting in a

dzz/ R . . .
)= (T2 MWz’ _ non-Gaussian propagated wave function. We emphasize that
™) j T IRz K2 |w(0)) 66 formula (68) is valid for any choice ob, time dependent or
not.

The GSA is obtained from E@65) by Taylor expanding the

complex action around theal trajectory starting atq’,p’). Il. APPLICATIONS

If we denote the final point of this trajectory by,(,p,) or o

equivalently by @, ,&,), then the action can be expanded as A. Special limits

Expression(68) is a very flexible GSA. It contains as
[ L [ , N 1 5 particular cases the Gaussian semiclassical approximation
7S D)= S(& . 0" T+ (8= &)+ 57" =&)%  presented iffig], which we call the BAKKS GSAsimply by
(67)  settingb= o), and the Heller thawed GSA in the more subtle

limit b—0. The first case follows directly from E¢8), by
where we have used E(0) to express the first order term, inspection. Let us demonstrate the assertion on the Heller
and definedy=i/a(9°S/9&"?)|,. This procedure is sup- GSA.
ported by the assumption that the contribution to the propa- From the definition of the smoothed potential we have
gator falls in a Gaussian-like way as the complex trajectories L
get farther away from the real trajectory. With the above iy a)2/b2
expansion, Eq(65) becomes a simple Gaussian integral in W(a,b)= mf V(xpe T dx
the variablesy” and p”. A detailed calculation of this inte-
gral and the many simplifications that follow were presented _ (b)
in [8] for the case of fixed widths. In the present case the _J' S (x=q)V(x)dx, (70
steps of the calculation are very similar, and we write down
the final result directly: where
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1 22 . Y
o0 (x—q)=—=e (- @) (xR(T)[z')= \/
b XIKMIz) o2cog wT)+ib2sin(wT)
is a representation of the Dirac delta function, in the sense a?(x—q,)?
e —
that 2[bisir(wT)+ o*cof(wT)]
IimU s®(x—q)V(x)dx| =V(q), (72) < ex i(by—o)sin(wT)cog wT)
b—0 2b2[bisi?(wT) + o*coR(wT)]
if V(x) is a continuous function. Thus, &s-0, i
><(X_Qr)z"_%pr(x_quz) ) (77)
1 5 ﬁ2 2
H—-p?+—+V(q)=H+—. 73
2P 4pb? (@) 4b? (73 which coincides with the exact result and is completely in-

dependent of the choice of

C. Propagation in generic potentials

2 2

The actionS, and the phase factdr, become, in this limit,
Sy= ff[ pdg— T = ff ﬁ—dt The GSA(68) has a limited capacity to describe the exact
i T )i gp2 quantum propagation due to its Gaussian nature. However,
(74) its simplicity enables us to verify the influence of the choice
of different widths in the semiclassical propagation in a
so that simple way.
When the potential is not harmonic, the semiclassical re-
f sults may be quite sensitive to the choicelofFor anhar-

SH JrIr:fi (pdg—Hdt)=S;. (75 monic potentials a completely analytical treatment is not
possible, and the following results refer to numerical calcu-
lations. In this section we compare the semiclassical propa-
egation using many distinct but constdns. We have dem-
onstrated that the BAKKS GSAE= o) and the Heller GSA
b_(b—>0) belong to this category, and have seen that all GSAs

derived from Eq(68) give the exact result for the harmonic
oscillator. If the potential is not harmonic, its characteristic

H+ dt

4ap?

The divergent factof;?/4b? cancels out exactly and the re-
sult is the usual action for the dynamics governed by th
classical H. Since the action(38) appears in(68) only
through its derivatives, the diverging term does not contri
ute. Therefore,

s 12 [ > frequency depends on the energy of the trajectasy:
" ) _m 9 1S = w(E). Therefore, a natural choice for the width is
(X"K(T)|Z" )p0=
1wy Vhoaga
' f
o] - LY [X =) > Vinu® = &
21+y o

whereE=H(q’,p’).

i , 1 As an example, we consider the Gaussian propagation in
Xexp o (X" =)+ 5a'p’ + S, the quartic potential
= (X"|K(T)|Z") (76) 122,14
Heller V(x)= zwox + §€x , (79

where all the quantities are calculated with the classical h di hed Hamiltonian i
HamiltonianH. As shown in[8], the expressioii76) is pre- ~ WNOSe corresponding smoothed Hamiltonian is
cisely Heller’'s propagator.

1 h? 1 w3b?
szpz ?‘F Ewng-i- 2
B. Propagation in a harmonic potential 4
Now let us consider the propagation of a coherent state of 1, 2 2 4
width ¢ in a harmonic potential of frequenay whereb, +gt(a"+3b%q"+3b%/4). (80)

=Jhlmw#o.

The quantum Hamiltonian is given by E(6) and the In what follows we shall set =0.05, wy=1/2, £=1/16, and
corresponding smoothed Hamiltonian by E§7). The equa- m=1. As a first illustration we compare the exact and semi-
tions of motion can be readily solved and all quantities en<lassical propagations usilg= o, b=0.0, andb=Dbg. Fig-
tering the GSA formula can easily be computed. The finaure 1 shows the square modulus of the wave functiorik at
result is =0.0, T=2.0 andT=16.0. The initial packet is given by
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3 \ 3
(a) T=0.0 exact
——— b=b=0.31
—-—- b=0=0.2
~~~~~~~~~ b=0.0
2 L
N—
=
T=2.0
1t
0 L
-0.5 0.5 1.5

X

FIG. 1. Square modulus of the exact and semiclassical wave functions as a function of the ioséibitrary units for (a) T=0 and
T=2; and(b) T=16.

g’'=0.0, p’=0.5, ando=0.2. For this system and initial using intermediate states of arbitrary widths. The resulting
stateE=1/8 andbg~0.31. As can be seen from Figal, at  expression, Eq53), is written in terms of classical trajecto-
short times T=2.0) all the propagators are equivalent. Forries governed by the smoothed Hamiltonid(q,p,b)

longer times, however, the differences become clear, a&<z||3||z>_ The “dynamical width”b appearing inH is not
shown in Fig. 1b) for T=16.0. necessarily equal to the widths or ¢ of the initial state
Snapshots of the probability density are a very illustrativeand final stategz’) and |z"), respectively. We have also
procedure, but it restricts the analysis to a small set of timegerived a Gaussian semiclassical approximation(&®), by
and says nothing about phases. A more reliable procedure fojecting K (z'*,z’,T) into the coordinate representation.
to follow the overlap(ye|¢sc) of the exact and semiclassi- We have shown that both the Heller and BAKKS GSA's can
cal results as a function of time. Figure 2 shows the moduluge obtained as particular cases of this formula. This unified
of this overlap for a time interval of approximately three yjew enables us to discuss more clearly the efficiency of the
classical periods. Four initial configurations with the samegSAs. Our analysis shows that, in general, neither Heller's
total energy are displayeda) q'=0.0, p’=0.5; (b) 9"  GSA nor the BAKKS GSA are the best semiclassical formu-
=0.97,p'=0.0; (¢) 9'=0.6, p’=0.4; and(d) g'=0.6, p’  |as. The simple choice=bg=\7/mw(E) presents a con-
=—0.4. In all situations is fixed at 0.2 ¢<bg) and five  sjderable improvement over the Heller and BAKKS results
distinct values of the widthb are used in the semiclassical for a Variety of potentia's_ We emphasize' however, H@S
approximationb=oc, b=0, b=bg, andb=bg*0.1. Itis  not the optimal constant value foib, as demonstrated by
clear from this figure that the best results are achieved fopigs_ 2a) and Zd). It only provides a simple and systematic
b=bg or b=bg+0.1. The same conclusions hold for  way to improve the propagation of wave packets. Better
=0.5>bg, ie., the result is better fob=bg or b=beg  choices otb can certainly be found for specific potentials. In
+0.1, depending on the initial configuration. particular, for very nonlinear potentials, liké€, our numeri-
The quality of the approximation with=bg seems to be cal calculations show that the optimialseems to be about
consistently better than any other choicedboie have per-  2p_.
formed extensive tests in many distinct situations, including As mentioned in 8], for very small values ofi Heller’s
propagation in other bounded potentials, with stronger anhaisSA is expected to become very efficient. This is in agree-
monicity and with or without asymmetry. In all cases the ment with condition(78), since when#—0 we havebg
propagation withb=Dbg (or in some caseb slightly larger = 77me,—0. In other words, the GSA with=bg be-
than bg) is better than any other choice. In general, for  -omes the Heller GSA in the classical limit.
>D, whereD is the size of the classically allowed region, s also interesting to consider the total time derivative of
the accuracy of the GSA becomes very poor. H. Assuming that the original Hamiltonia is time inde-
pendent, we have

IV. CONCLUDING REMARKS
_ dH .oH .JH .oH . IH
We derived a semiclassical approximation for the coher- gt 9 Py T b%= b%- (82

ent state propagator aq "~ Ip

L If we want the smoothet to be conserved, like its original
K(z"*,2',T)=(2"|Te” ("MIHOdY z"y (81)  counterparH, there are only two choices: eithieis constant
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FIG. 2. Overlap between the exact and semiclassical propagations as a function of ttie &rbérary unitg for differentb’s. The initial
conditions aréa) q'=0.0,p’=0.5; (b) g'=0.97,p’=0.0; (c) g’ =0.6, p’ =0.4; and(d) q' =0.6, p’ = —0.4. The time interval corresponds
to approximately three vibrational periods.

or 9H/9b=0. Solving this last equation givds=b(q,p) as

another prescription for the width. We have not shown re- H:% Anm(@h"a™, (A1)
sults with nonconstarti’s in this paper, but our preliminary '
calculations show that this prescription does not improve the e
calculation very much with respect g for the quartic po- the smoothed Hamiltonian is simply
tential Eq.(79).
Finally, we remark that an important application of the _ *\nom
present results is the use of our GSA as an improved kernel H_% Anm(Z)"2". (A2)

to the IVR, Eq.(5). This point is currently under investiga-

tion and the results will be published in the near future. In this form, it is easy to calculate the derivativesof For

example
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APPENDIX A: PROOF OF EQS. (23 ~ ~ . L
QS. (29 Leta, anda;r be the creation and annihilation operators of

For quantum Hamiltonian8l which can be written as a the —harmonic ~ oscillator with ~ coherent ~statgz;)
power series of creation and annihilation operators, =|q;,p;.b;). LetH be written in terms of these operators as
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ﬂ=% Anm@hral. (Ad) Hm,j:nEm Anm(ZF, ) 2"+ O(ADy). (A7)

In order to calculaté; ,,;, we need to expresd in terms ~ Therefore,

of a',, anda; in normal ordering. From the definition of
ﬁHH—lJ ~An m

andp in terms of creation and annihilation operators we find —m(Z", ) zm !
o oAt - ot S ot aq;  wm o 2b, Ot
bj(aj+aj)=bj.1(aj-1+afs))  and  bji(aj-a)) j
=bj(aj;1—a/,,). Eliminatinga/, ; we obtain A 1
— —m(z*)"z" . (A8)
< [ 2bjbj iy | - b?, ,—b?)| . am 2b
al=| =22 al,, o Bt e | a. (A5)
bo\b? b2 b7, +b? This is the first term in expansio@3). A similar procedure

for the derivatives ofH; ;_; yields the other term, which
In the I|m|t 70, Ab=b;,;—Db; becomes small and we can proves the first equa‘uo@S) A completely analogous calcu-
write a J+l+ O(Ab;) and [aJ, J+l] 1+0(Abj), so lation proves the second equation.
that

APPENDIX B: THE DETERMINANT OF M®N=1

H:% Anvm(éhl)nér“Lo(AbJ) (AB) In this appendix we will calculate the determinant of
: M®N=D " which is a 2N—1)X2(N—1) symmetric matrix
and given by
|
-8+ ToN_1 1 0 0 T 0 0
1 KN_l—f— TON-1 k-1~ 1 0 0
0 Tkny_1— 1 —An_ptTon-2 1 0
M (N-D— : : : : : , (BY)
K2+ TO> Tho—1 0
Tko—1  —Ajt T 1
0 1 8+ 10,

WhereszAbj_llbj andA;=Ab;/b;. Expanding the determinant with respect to the first line we obtain

detMN"D=(— 5"+ 7py_;)detFN"D —detGN~1), (B2)
where
An_1+7ON-1 ThN-1—1 0
Thn-1—1  —An—2 T TeN-2 1
F(Nil): 0 1 KN*Z—’_ TON-2 TKN_]__]. s (83)
0 0 TKN-2— 1 —AN 3t TON-_3
and
1 TKN_l_l 0 0
0 _AN—2+ TON-2 1 O
GN-b=| 0 1 Ayt TON-2 Tn-1—1 I (B4)
0

0 TKN-2— 1 —AN-3tTeN-3

Expanding the determinants one more time we get
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detF(N"D=(Ay_;+ ron_1)detLN "D — (7xy_;— 1)detRN-2),

detGN"D=detL(N-2),

where the matrices N2 andR(N~2) are given by

—An-2tToN-2 1
1 An_ptTON-2
L(N=2)= 0 Thn_2— 1
0 0
and
TKn-1— 1 1
0 An_p+TON-2
RN-2)= 0 Thn_2— 1
0 0

Finally, we close the cycle with the equations

detLN=2)=(—Ay_,+ 7oyn_p)detF(N=2) —detG(N~2),

detR(N"2)=(7xy_,—1)detF(N~2),
(B8)

Substituting Egs(B8) in (B5) and keeping only first order
terms inT andAb we get two coupled difference equations

detF(N_l): - (KN—]_—'_ TQN_l)detG(N_z)
—(1—27ky_1)detF(N=2),

detGN"V=(—Ay_,+ royn_,)detFN"2) — detGN-2),
(B9)

Defining  Fp_;=(—1)N"'detFN"D  and
(—1)N"1detG(N"1), these equations become

Gn-1=

Fno1—Frno2=(Ano1+ 70N-1)Gn-2—27kn-1FN-2,

Gn-1—Gn2=—(—An_2+ToN-—2)Fn-2.
(B10)

Taking the limit7— 0 we obtain the differential equations

) . b
F= B+Q G—2«kF and G:—(—B+(p)F,
(B11)
where
~ 1(ib2 PH ik aZH) ) 9*H ®12
P72\ g2 b2 ap2)  aqap

(B5)
0 0
TKN,Z_]. 0
—An_3tToN-3 1 (B6)
1 ANzt TON-3
0 0
TKN_2_1 0
—An_3tToN-3 1 (B7)
1 An-3t7ON-3
|
_1[ib? PH ik PH|  PH B13
2\ % aq vt apr) sap P
and
_1[ib* #PH ik PH B14
T2\ F e ) (519

The second derivatives df;,,; have been calculated with
the same procedure presented in Appendix A for the first
derivatives. In order to put EqéB11) in a more symmetric
form we make the transformation

G= ge—fgk(t)dtz Gel2imIL,
(B15)

= :fe—fgx(t)dtzfe(zuh)z'

We get

F=—kF+(blb+0)G and G=(b/b—¢)F+«G.
(B16)

We now compare these equations with the linearized
Hamilton’s equations in terms of the variablesndv, de-
fined by Eq.(45). We get

. 1(q ib.| b 5._1 5q ibé. bg
e TR TR Bl TR P b

(B17)
and
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. 1(g ib.} b 5._1 5q ib5 b5
v_ﬁ b #P "7 U‘E o %P oY
(B18)
Using
. M 5 PH sa 827-(5 (619
= —= = — s
q D q 200D q op? p
. IH s a2H6 *H 5 (820
:——:> = — — — y
P 20 P e q 200D p

and expressing these relations in termséof and év we

obtain

=—(b/b—¢)du+kdv.
(B21)

Su=—kdu—(b/b+0)dv, v

Comparing with Egs(B16) we find that/=éu and G=

PHYSICAL REVIEW A8, 062112 (2003

0 -1 0 1 -1 0
FO=f{ -1 0 1] andG®=|{0 0 1
o 1 ¢ 0o 1 ¢
(B22
Thus,
detF=—-¢" = F;=70)=6u(0)=-7,

detGM=-1 = G,;=G(0)=—1=6v(0)=1.
(B23)

Therefore, the solutions of Eq&B11) are

F(t)=osu(t)e@™I and G(t)=— dv(t)elMT,
(B24)

subjected to the conditiond23). Substituting in(B2) we
get

(= DN detMN"D=[5v(T)— 5" su(T)]e® M7,
(B25)

— dv. The initial conditions are determined by the matrices

FIN"D andGIN~Y for N=2. We have

which is the final result.
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