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Semiclassical coherent-state propagator via path integrals with intermediate states
of variable width

Fernando Parisio and M. A. M. de Aguiar
Instituto de Fı´sica ‘‘Gleb Wataghin,’’ Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165, 13083-970 Campinas,

~Received 3 September 2003; published 30 December 2003!

We derive a semiclassical approximation for the coherent state propagator^z9ue2 iHt /\uz8& using a path
integral formulation in which the intermediate coherent states can have arbitrary widths. Our semiclassical

formula involves complex trajectories of the smoothed HamiltonianH(q,p,b)5^zuĤuz& whereb, the width of
the coherent stateuz&, is a free function that can be chosen conveniently. The generality of this formalism
enables us to derive a semiclassical approximation which contains, as particular cases, other similar approxi-
mations known in the literature, providing a natural link between them. We present numerical results showing
that the semiclassical propagation can be very sensitive to the choice ofb and we suggest an energy dependent
value b5bE that results in considerable improvement over other choices. This value for the width will be
generally different from the widthss8 or s9 of the initial and final statesuz8& and uz9&.
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I. INTRODUCTION

Coherent states are a powerful tool in the study of
semiclassical limit of quantum mechanics. They provide
minimum uncertainty overcomplete representation conta
ing explicit information on both position and momentum
leading to a natural phase space picture of quantum mec
ics.

The first derivation of the semiclassical coherent st
propagator based on path integral techniques was give
Klauder@1–3#. Weissman@4,5# and Heller and collaborator
@6,7# also presented a derivation of the semiclassical pro
gator, based on general semiclassical techniques. Bara
et al. @8# have recently given a detailed derivation of t
semiclassical coherent state propagator using path integ

The overcompleteness of the coherent basis set lead
several possible path integral representations of the evolu
operator. These representations, while identical quantum
chanically, lead to different propagators in the semiclass
limit. Klauder and Skagerstam@2# considered this questio
from the quantum mechanical point of view, presenting t
basic constructions for the quantum mechanical path i
gral. One of these forms is associated with a HamiltonianH1
which is a smoothed version of the classical HamiltonianH.
The other involves a different HamiltonianH2, which can be
thought of as an antismoothed version of the classicalH. The
semiclassical limits of these basic forms were discusse
detail in @8#. A third construction, which combines the tw
basic ones, was discussed in@9#, and is closely related to th
classical Hamiltonian itself. In this paper we shall restr
ourselves to the first type of construction and we shall
the symbolH for H1.

In all these previous formulations, the path integrals
constructed using coherent states with the same fixed w
i.e., coherent states of the same harmonic oscillator of m
m and frequencyv. These are given by

uz&5e2uzu2/2ezâ†
u0& ~1!

with u0& the harmonic oscillator ground state and
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â†5
1

A2
S q̂

b
2 i

p̂b

\
D , z5

1

A2
S q

b
1 i

pb

\ D . ~2!

In the above,q̂, p̂, and â† are operators;q and p are real
numbers;z is complex. The parameter

b5~\/mv!1/2 ~3!

defines the length scale and we call it thewidth of the coher-
ent state.

These states satisfy the identity

15E uz&
d2z

p
^zu ~4!

independent of the widthb. In this paper we explore this fac
and construct path integrals where the infinitesimal propa
tions, in which the full evolution operator is broken into, a
between coherent states of different widths. In the continu
limit, the width itself becomes a time dependent quantity t
can be chosen conveniently to improve the performance
the semiclassical approximation.

Our main result, Eq.~53!, is a semiclassical approxima
tion for the propagator̂z9uK̂(T)uz8& in which the initial and
final coherent states have arbitrary widthss8 ands9, respec-
tively, andK̂(T)5e2 iĤ T/\ is the evolution operator. This for
mula involves classical trajectories governed by the Ham
tonianH(q,p,b)5^zuĤuz& where the ‘‘dynamical width’’b
5b(t) can be chosen appropriately and does not need
coincide with eithers8 or s9.

In order to test our formula in some simple situations,
project the coherent state propagator in the position repre
tation and calculate the semiclassical approximation for
mixed propagator̂xuK̂(T)uz8&. The result, a Gaussian func
tion of x that depends only on the trajectory issuing fro
q(0)5q8, p(0)5p8, will be called a Gaussian semiclassic
approximation~GSA!. The GSA is related to another we
©2003 The American Physical Society12-1
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known type of semiclassical approximation called the init
value representation~IVR!. IVR’s are written as

^xuK̂~T!uc&5E dq8dp8

2p\
F~x,z8,T!^z8uc&, ~5!

where the kernelF(x,z8,T) is given solely in terms of clas
sical trajectories starting atq8,p8. The GSA described abov
plays the role of a kernel.

The general idea of initial value representations is to h
semiclassical formulas in which only trajectories defined
their initial position and momentum are needed. IVR’s avo
the cumbersome calculation of trajectories starting at a
tain position and ending at another and have become
popular among chemists@10–18#. Of the three most used
IVR kernels, Heller’s @10#, that of Baranger, de Aguiar
Keck, Korsch, and Schellhaass~BAKKS! @8#, and Herman
and Kluk’s @11,12,19–21#, the last seems to be superior
most tested cases~see, however,@22,23#!. Our GSA formula
is an improvement over the kernels of BAKKS and Hel
and might result in a more accurate IVR representation.

This paper is organized as follows. In Sec. II we der
our main formula for the coherent state propagator, Eq.~53!,
and for the GSA, Eq.~68!. Section III is devoted to some
analytical and numerical applications of the formalism. O
conclusions are summarized in Sec. IV.

II. FORMALISM

In this section we construct a path integral representa
for the coherent state propagator

K~z9*,z8,T!5^z9uT̂e2( i /\)*0
TĤ(t)dtuz8&, ~6!

where T̂ is the time ordering operator. We assume that
quantum HamiltonianĤ can be written as a power series
the creation and annihilation operatorsâ andâ† and that the
initial and final coherent states have arbitrary widthss8 and
s9, respectively.

We divide the timeT into N steps of sizet, so that, in the
limit of small t, the propagator can be written as
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K~z9*,z8,T!5K zNU)
j 50

N21

e2( i /\)Ĥ(t j )tUz0L , ~7!

where we have setzN5z9 andz05z8 and the timet j is in the
interval @ j t,( j 11)t#.

The next step is to insert (N21) unit operators between
each successive exponential. Sinces8 ands9 are arbitrary,
there is noa priori reason to choose the width of these i
termediate states as either one of them. Rather, for each
lution of unit we shall associate a widthbj which, in prin-
ciple, can take any value. Our main purpose is to obtai
semiclassical approximation for the propagator starting fr
a path integral formulation where the intermediate states
have arbitrary widths. We shall then verify the sensitivity
the approximation to different choices of intermediate wid
$bj%.

A. Coherent states of arbitrary widths

A coherent stateuz& of the harmonic oscillator is specifie
by three real parametersq,p, and b, corresponding to the
expectation values of the position and momentum opera
and the mean square deviation of the position. The param
b, which is the width of the packetc(x)5^xuz&, is also
related to uncertainty in position byb5A2Dq and to the
frequency of the associated harmonic oscillator byb
5A\/mv.

To make these parameters explicit it is sometimes us
to write uz&5uq,p,b& or z5z(q,p,b), with (q,p,b)PR2

3R1 . In this notation the resolution of unit reads

15E E uq,p,b&
dqdp

2p\
^q,p,bu ~8!

and is independent ofb. In order to take advantage of thi
freedom in the path integral, we shall need to compute
overlap between two coherent states labeled byzj
5zj (qj ,pj ,bj ) andzj 115zj 11(qj 11 ,pj 11 ,bj 11). A simple
calculation gives

^zj 11uzj&5A 2bjbj 11

bj
21bj 11

2
expH 2

1

2 S 1

bj
21bj 11

2 D
3 f ~qj ,qj 11 ,pj ,pj 11 ,bj ,bj 11!J , ~9!

where
f ~qj ,qj 11 ,pj ,pj 11 ,bj ,bj 11![ f j 11,j

5~qj 112qj !
21

~bjbj 11!2

\2
~pj 112pj !

22
2i

\ Fbj
2qj 11pj2bj 11

2 qj pj 111
1

2
~bj 11

2 2bj
2!

3~qj 11pj 111qj pj !G . ~10!
2-2
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For bj5bj 11 the overlap between coherent states of
same harmonic oscillator is recovered.

B. The path integral

Using Eq.~8! the propagator~7! can be written as

K~z9*,z8,T!5E H )
j 51

N21
d2zj

p J )
j 50

N21

$^zj 11ue2( i /\)Ĥ(t j )tuzj&%,

~11!

where zj5zj (qj ,pj ,bj ) and the limitsN→`, t→0, Nt
5T are implicit. This corresponds to Klauder’sfirst form of
path integral@2#. Following his steps we write

)
j 50

N21

$^zj 11ue2( i /\)Ĥ(t j )tuzj&%

' )
j 50

N21

^zj 11uzj&expH (
j 50

N21

2
i t

\
Hj 11,j J , ~12!

with the notation

Hj 11,j[
^zj 11uĤ~ t j !uzj&

^zj 11uzj&
. ~13!

From Eqs.~9!, ~11!, and~12!, we obtain

K~z9*,z8,T!5E H )
j 51

N21
d2zj

p J )
j 50

N21 A 2bjbj 11

bj
21bj 11

2
eF[q,p,b] ,

~14!
r

06211
ewith

F@q,p,b#5 (
j 50

N21 H 2
1

2 S 1

bj
21bj 11

2 D f j 11,j2
i t

\
Hj 11,jJ .

~15!

Here we are using the abbreviation@q,p,b#
5(q0 , . . . ,qN ,p0 , . . . ,pN ,b0 , . . . ,bN). We remember that
(q0 ,p0 ,b0)5(q8,p8,s8) and (qN ,pN ,bN)5(q9,p9,s9).

In the semiclassical limit\→0 the integrals in Eq.~14!
can be performed in the stationary exponent approximat
which consists of three basic steps.

~1! Calculate the stationary path, i.e., the set of poi
(q1 ,q2 , . . . ,qN21 ,p1 ,p2 , . . . ,pN21) satisfying

]F

]pk
5

]F

]qk
50, k51, . . . ,N21. ~16!

~2! ExpandF to second order around the stationary pa
and perform the resulting Gaussian integrals.

~3! Simplify the prefactors arising from the Gaussian i
tegrations.

These steps are performed in Secs. II C, II D, and II
respectively.

C. The stationary trajectory

Equations~16! lead to the equations
2
1

2 S 1

bk
21bk11

2 D H 2
2

\2
~bkbk11!2~pk112pk!2

2i

\ Fbk
2qk111

1

2
~bk11

2 2bk
2!qkG J 2

1

2 S 1

bk21
2 1bk

2D H 2

\2
~bk21bk!

2~pk

2pk21!2
2i

\ F2bk
2qk211

1

2
~bk

22bk21
2 !qkG J 2

i t

\ S ]Hk,k21

]pk
1

]Hk11,k

]pk
D50 ~17!

and

2
1

2 S 1

bk
21bk11

2 D H 22~qk112qk!2
2i

\ F2bk11
2 pk111

1

2
~bk11

2 2bk
2!pkG J 2

1

2 S 1

bk21
2 1bk

2D H 2~qk2qk21!

2
2i

\ Fbk21
2 pk211

1

2
~bk

22bk21
2 !pkG J 2

i t

\ S ]Hk,k21

]qk
1

]Hk11,k

]qk
D50. ~18!
For k51 andk5N21, which is equivalent tot50 and
t5T, Eqs.~17! and~18! provide the boundary conditions fo
the classical complex path:

1

A2
S q~0!

s8
1 i

s8p~0!

\ D 5
1

A2
S q8

s8
1 i

s8p8

\ D 5z8 ~19!
and

1

A2
S q~T!

s9
2 i

s9p~T!

\ D 5
1

A2
S q9

s9
2 i

s9p9

\ D 5z9*. ~20!

For intermediate values ofk we can expand Eqs.~17! and
~18! in terms of the infinitesimal differencesDqk5qk11
2-3
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2qk , Dpk5pk112pk , andDbk5bk112bk . In the limit t
→0 only first order terms contribute to the equations. We

1

2\2
~Dpk2Dpk21!1

i

2\
~Dqk1Dqk21!

2
i t

\ S ]Hk,k21

]pk
1

]Hk11,k

]pk
D50 ~21!

and

1

2bk
2 ~Dqk2Dqk21!2

i

2\
~Dpk1Dpk21!

2
i t

\ S ]Hk,k21

]qk
1

]Hk11,k

]qk
D50. ~22!

As t→0, Dq/t→q̇, Dp/t→ ṗ, and

S ]Hk,k21

]qk
1

]Hk11,k

]qk
D→ ]H

]q
, S ]Hk,k21

]pk
1

]Hk11,k

]pk
D→ ]H

]p
~23!

~these last relations are demonstrated in Appendix A!. There-
fore, Eqs.~21! and ~22! become simply

q̇5
]H
]p

and ṗ52
]H
]q

. ~24!

The solutions of Hamilton’s equations~24! with boundary
conditions~19! and ~20! are the extremal paths or traject
ries. The HamiltonianH(q,p,b)5^zuĤuz&, however, con-
tains a nonconstant widthb(t) that modifies the dynamics
We recall thatH does not coincide with the Weyl hami
tonianH, which is the most direct classical counterpart ofĤ.
For quantum Hamiltonians of the formĤ5 1

2 p̂21V̂, we ob-
tain H(q,p,b)5 1

2 p21\2/4b21V(q,b), with V[^zuV̂uz&.

D. The stationary exponent and the Gaussian integrals

Once the equations of motion have been obtained,
proceed to expand the exponentF@q,p,b# of Eq. ~14! around
the extremal paths.

Let us denote the classical trajectory by (q̄ j ,p̄ j ) and the
corresponding deviations from it byQj5qj2q̄ j and Pj

5pj2 p̄ j . We write

F5F̄1F11F2 , ~25!

whereF̄ is the zeroth order term, corresponding toF evalu-
ated over the classical trajectory. The first order term is
course zero, and the second order termF2 is a quadratic form
in Q andP. It is convenient to define the auxiliary variable

uj5
1

A2
S qj

bj
1 i

bj pj

\ D , v j5
1

A2
S qj

bj
2 i

bj pj

\ D ~26!
06211
t

e

f

and the analogous variablesU j andVj related toQj andPj
in the same way. In these variablesF2 can be written as

F252 (
j 51

N21

~a jU j
21b jVj

21g jU jVj1l jU jVj 111m jU jU j 11

1n jVjVj 111q jU j 11Vj ! ~27!

with coefficients

a j52
bj 11

2 2bj
2

2~bj 11
2 1bj

2!
1

t

2
w j , b j5

bj 11
2 2bj

2

2~bj 11
2 1bj

2!
1

t

2
% j ,

l j52
2bjbj 11

bj 11
2 1bj

2
1tk j , g j51, and m j5n j5q j50,

~28!

where

w j5S ib j
2

2\

]2

]qj
2

2
i\

2bj
2

]2

]pj
2

1
]2

]qj]pj
D ~Hj 11,j1Hj , j 21!,

~29!

% j5S ib j
2

2\

]2

]qj
2

2
i\

2bj
2

]2

]pj
2

2
]2

]qj]pj
D ~Hj 11,j1Hj , j 21!,

~30!

k j5
1

2 S ib jbj 11

\

]2Hj 11,j

]qj]qj 11
2

bj

bj 11

]2Hj 11,j

]qj]pj 11

1
bj 11

bj

]2Hj 11,j

]qj 11]pj
1

i\

bjbj 11

]2Hj 11,j

]pj]pj 11
D . ~31!

The coefficientsa j , b j , and l j in Eq. ~28! must be
handled carefully. Keeping only linear terms inDbj we find

a j5H 2Dbj /2bj1tw j /2 for j 51, . . . ,N22,

2d9/21tw j /2 for j 5N21,
~32!

b j5H Dbj 21/2bj1t% j /2 for j 52, . . . ,N21,

d8/21t% j /2 for j 51,
~33!

l j5tk j21 for j 51, . . . ,N22, ~34!

where d95@s922b2(T)#/@s921b2(T)# and d85@b2(0)
2s82#/@b2(0)1s82#. Note that a0 , aN , b0 , bN , l0 ,
lN21, andlN are never used becauseU0 , UN , V0, andVN
vanish.

Finally, the square root multiplying the exponential in E
~14! has only second and higher order terms inDbj . There-
fore, it contributes only at the extremities of the trajecto
sinceb(0) does not have to bes8 andb(T) does not have to
be s9. Putting these ingredients together we obtain
2-4
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K~z9*,z8,T!'A 4s8b~0!s9b~T!

@s821b2~0!#@s921b2~T!#
eF̄

3E H )
j 51

N21
dUjdVj

p J eF2[U,V]

5A 4s8b~0!s9b~T!

@s821b2~0!#@s921b2~T!#

3eF̄@~21!N21detM (N21)#21/2, ~35!

where the symmetric 2(N21)32(N21) matrix M (N21) is
defined by the relation 2F252GTM (N21)G ~see@8#!, with
GT5(UN21 ,VN21 , . . . ,U1 ,V1) and G the corresponding
column vector.

In order to calculateF̄ and detM (N21), it is convenient to
define the variables

h~ t !5
1

A2
S q~ t !

s8
1 i

s8p~ t !

\ D ,

j~ t !5
1

A2
S q~ t !

s9
2 i

s9p~ t !

\ D . ~36!

In these variables the boundary conditions~19! and~20! be-
come simplyh(0)[h85z8 and j(T)[j95z9*. The expo-
nent F̄ also simplifies to~see Refs.@2,8#!

F̄5
i

\
S~j9,h8,T!2

1

2
~ uh8u21uj9u2!

1
~s922s82!

2~s821s92!
~h822j92!, ~37!

whereS(j9,h8,T) is the complex action,

S~j9,h8,T!5E
0

TFx i\

2
~jḣ2hj̇!2HGdt2x

i\

2

3@h8j~0!1j9h~T!# ~38!

andx52s8s9/(s821s92).
It can be shown that small variationsdh8 and dj9 in S

lead to

dS52 i\x@j~0!dh81h~T!dj9#. ~39!

Therefore

]S

]h8
52 i\xj~0![2 i\xj8,

]S

]j9
52 i\xh~T![2 i\xh9. ~40!

Also
06211
2 i\xdj85
]2S

]h82
dh81

]2S

]h8]j9
dj9 ~41!

and

2 i\xdh95
]2S

]h8]j9
dh81

]2S

]j92
dj9. ~42!

Variation in the propagation timeT leads to the usual relation
]S/]T52H.

E. The prefactor

The calculation of detM (N21) is worked out in Appendix
B, and the result is

~21!N21detM (N21)5@dv~T!2d9du~T!#e(2i /\)I,
~43!

where

I5
1

4E0

TFb2~ t !
]2H
]q2

1
\2

b2~ t !

]2H
]p2 Gdt ~44!

and u and v are the continuous versions of the variabl
defined in Eq.~26!:

u5
1

A2
S q

b
1 i

bp

\ D , v5
1

A2
S q

b
2 i

bp

\ D . ~45!

The valuesdv(T) anddu(T) appearing in Eq.~43! are ob-
tained by linearizing the above equations around the stat
ary trajectory and solving them with initial condition
du(0)52d8 anddv(0)51 ~see Appendix B!.

Equation ~43! assumes a simpler form in terms of th
variablesh andj defined in Eq.~36!. Using the conversion
relations between (du,dv) and (dh,dj),

du5
x

2 F S s921b2

s9b
D dh1S s822b2

s8b
D djG ~46!

and

dv5
x

2 F S s922b2

s9b
D dh1S s821b2

s8b
D djG , ~47!

we rewrite Eq.~43! as

~21!N21detM (N21)5
2b~T!s9

s921b2~T!
dj~T!e(2i /\)I. ~48!

Evaluating these equations att50 with du(0)52d8 and
dv(0)51,

2d85
x

2 F S s921b2~0!

s9b~0!
D dh81S s822b2~0!

s8b~0!
D dj~0!G ,

~49!
2-5
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x

2 F S s922b2~0!

s9b~0!
D dh81S s821b2~0!

s8b~0!
D dj~0!G ,

~50!

and using Eqs.~41! and ~42! we can writedj(T)5dj9 in
terms of the second derivatives of the complex actionS. We
get dh850 and

dj952 i\
2s8b~0!

s821b2~0!
S ]2S

]h8]j9
D 21

. ~51!

Thus,

~21!N21detM (N21)52 i\
4s8b~0!s9b~T!

@s821b2~0!#@s921b2~T!#

3S ]2S

]h8]j9
D 21

e2(2i /\)I. ~52!

F. The semiclassical propagator

Substituting Eqs.~52! and~37! in Eq. ~35!, we obtain the
final expression for the semiclassical propagator,

K~j9,h8,T!5A i

\

]2S

]h8]j9
e( i /\)IexpH i

\
S~j9,h8,T!J

3expH 1

2 S s922s82

s921s82D ~h822j92!

2
1

2
~ uh8u21uj9u2!J , ~53!

where

S~j9,h8,T!5E
0

TFx i\

2
~jḣ2hj̇!2HGdt

2x
i\

2
@h8j81j9h9#, ~54!

wherex is defined after Eq.~38! and

I5
1

4E0

TFb2~ t !
]2H
]q2

1
\2

b2~ t !

]2H
]p2 Gdt. ~55!

For s85s9 the propagator becomes formally identical
the result in@8#, but they do not coincide since in the abo
06211
formula we are not restricted tob5s8 or b5s9. The
present result is valid for anyb, constant or time dependen
We shall explore this arbitrariness latter for a Gaussian se
classical approximation.

As a test of formula~53! we calculate the semiclassica
propagator for the simple harmonic oscillator. The quant
Hamiltonian is given by

Ĥ5
1

2m
p̂21

1

2
mv2x̂2, ~56!

and the corresponding smoothed Hamiltonian reads

H5
1

2m
p21

\2

4mb2
1

1

2
mv2q21

mv2b2

4
. ~57!

The equations of motion can be easily found and written
terms of the variablesh andj. The solution is given by

h~ t !5
1

2s8b
@K~b22s82!eivt1M~b21s82!e2 ivt#

~58!

and

j~ t !5
1

2s9b
@K~b21s92!eivt1M~b22s92!e2 ivt#.

~59!

The mixed boundary conditions are satisfied for

K5
b@~b21s82!s9j92~b22s92!s8h8e2 ivT#

i ~b41s82s92!sin~vT!1b2~s921s82!cos~vT!
~60!

and

M5
2bs8

b21s82
h82S b22s82

b21s82DK. ~61!

The complex action takes the simple form

S~j9,h8,T!52I2x
i\

2
@h8j~0!1j9h~T!#. ~62!

This expression together with Eqs.~58!, ~59!, ~60!, and~61!
leads to
i

\

]2S

]h8]j9
5

24zs8s9

~124z2s82s92!sin~vT!22z~s821s92!cos~vT!
~63!

and
2-6
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i

\
~I1S!1

1

2 S s922s82

s921s82D ~h822j92!5
~1/212z2s82s92!sin~vT!2z~s922s82!~h822j92!cos~vT!24zs8s9h8j9

~124z2s82s92!sin~vT!22z~s821s92!cos~vT!
,

with z5 iv/2\. The final result is

K~j9,h8,T!52A 2zs8s9

~124z2s82s92!sin~vT!22z~s821s92!cos~vT!
e2(uh8u21uj9u2)/2

3expH ~1/212z2s82s92!sin~vT!2z~s922s82!~h822j92!cos~vT!24zs8s9h8j9

~124z2s82s92!sin~vT!22z~s821s92!cos~vT!
J , ~64!
es

a
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id
fo

a

,
-
pa
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in

-
te
th
w

l

rre-

that

s
tion

tle

ller
which coincides with the exact result. Note that this expr
sion is independent of the choice ofb. For general potentials
this is not expected to occur.

G. Gaussian semiclassical Approximation

In order to study the role of the width in our semiclassic
formula, we shall derive a simpler Gaussian semiclass
approximation of the propagator. This will allow us to avo
the complications introduced by complex trajectories and
cus only on the implications of using different widths.

We consider the ‘‘mixed propagator’’

^xuK̂~T!uz8&5E d2z9

p
^xuz9&^z9uK̂~T!uz8&, ~65!

with ^z9uK̂(T)uz8& given by Eq.~53!, and s85s95s for
simplicity. The mixed propagator is a possible~but not the
only! kernel F(x,z8,t) in Eq. ~5!, since for any quantum
stateuc&

^xuc~T!&5E d2z8

p
^xuK̂~T!uz8&^z8uc~0!&. ~66!

The GSA is obtained from Eq.~65! by Taylor expanding the
complex action around thereal trajectory starting at (q8,p8).
If we denote the final point of this trajectory by (qr ,pr) or
equivalently by (h r ,j r), then the action can be expanded

i

\
S~j9,h8,T!'

i

\
S~j r ,h8,T!1h r~j92j r !1

1

2
g~j92j r !

2,

~67!

where we have used Eq.~40! to express the first order term
and definedg[ i /\(]2S/]j92)ur . This procedure is sup
ported by the assumption that the contribution to the pro
gator falls in a Gaussian-like way as the complex trajecto
get farther away from the real trajectory. With the abo
expansion, Eq.~65! becomes a simple Gaussian integral
the variablesq9 and p9. A detailed calculation of this inte
gral and the many simplifications that follow were presen
in @8# for the case of fixed widths. In the present case
steps of the calculation are very similar, and we write do
the final result directly:
06211
-

l
al

-

s

-
s

d
e
n

^xuK̂~T!uz8&5
p21/4s21/2

A11g
A i

\

]2S

]h8]j9
U

r

3expH 2
1

2

12g

11g S x2qr

s D 2J
3expH i

\ Fpr~x2qr !1
1

2
q8p81SH1Ir G J .

~68!

The quantities with the subscriptr are evaluated over the rea
trajectory, andSH is Hamilton’s action

SH5E
i

f

~pdq2Hdt!. ~69!

The approximate wave function given by Eq.~68! is al-
ways Gaussian, which justifies the name GSA. The co
sponding IVR formula is Eq.~66! with the GSA as the ker-
nel, which is integrated over allq8 and p8, resulting in a
non-Gaussian propagated wave function. We emphasize
formula ~68! is valid for any choice ofb, time dependent or
not.

III. APPLICATIONS

A. Special limits

Expression~68! is a very flexible GSA. It contains a
particular cases the Gaussian semiclassical approxima
presented in@8#, which we call the BAKKS GSA~simply by
settingb5s), and the Heller thawed GSA in the more sub
limit b→0. The first case follows directly from Eq.~68!, by
inspection. Let us demonstrate the assertion on the He
GSA.

From the definition of the smoothed potential we have

V~q,b!5
1

Apb
E V~x!e2(x2q)2/b2

dx

5E d (b)~x2q!V~x!dx, ~70!

where
2-7
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d (b)~x2q![
1

Apb
e2(x2q)2/b2

~71!

is a representation of the Dirac delta function, in the se
that

lim
b→0

H E d (b)~x2q!V~x!dxJ 5V~q!, ~72!

if V(x) is a continuous function. Thus, asb→0,

H→ 1

2
p21

\2

4b2
1V~q!5H1

\2

4b2
. ~73!

The actionSH and the phase factorIr become, in this limit,

SH5E
i

f H pdq2S H1
\2

4b2D dtJ , Ir5E
i

f \2

4b2
dt,

~74!

so that

SH1Ir5E
i

f

~pdq2Hdt![Sc . ~75!

The divergent factor\2/4b2 cancels out exactly and the re
sult is the usual action for the dynamics governed by
classical H. Since the action~38! appears in~68! only
through its derivatives, the diverging term does not contr
ute. Therefore,

^x9uK̂~T!uz8&b→05
p21/4s21/2

A11g
A i

\

]2S

]h8]j9
U

r

3expH 2
1

2

12g

11g S x92qr

s D 2J
3expH i

\ Fpr~x92qr !1
1

2
q8p81ScG J

5^x9uK̂~T!uz8&Heller , ~76!

where all the quantities are calculated with the class
HamiltonianH. As shown in@8#, the expression~76! is pre-
cisely Heller’s propagator.

B. Propagation in a harmonic potential

Now let us consider the propagation of a coherent stat
width s in a harmonic potential of frequencyv wherebh

[A\/mvÞs.
The quantum Hamiltonian is given by Eq.~56! and the

corresponding smoothed Hamiltonian by Eq.~57!. The equa-
tions of motion can be readily solved and all quantities
tering the GSA formula can easily be computed. The fi
result is
06211
e

e

-

l

of

-
l

^xuK̂~T!uz8&5A p21/2s

s2cos~vT!1 ibh
2sin~vT!

3expH 2
s2~x2qr !

2

2@bh
4sin2~vT!1s4cos2~vT!#

J
3expH i ~bh

42s4!sin~vT!cos~vT!

2bh
2@bh

4sin2~vT!1s4cos2~vT!#

3~x2qr !
21

i

\
pr~x2qr /2!J , ~77!

which coincides with the exact result and is completely
dependent of the choice ofb.

C. Propagation in generic potentials

The GSA~68! has a limited capacity to describe the exa
quantum propagation due to its Gaussian nature. Howe
its simplicity enables us to verify the influence of the choi
of different widths in the semiclassical propagation in
simple way.

When the potential is not harmonic, the semiclassical
sults may be quite sensitive to the choice ofb. For anhar-
monic potentials a completely analytical treatment is n
possible, and the following results refer to numerical calc
lations. In this section we compare the semiclassical pro
gation using many distinct but constantb’s. We have dem-
onstrated that the BAKKS GSA (b5s) and the Heller GSA
(b→0) belong to this category, and have seen that all GS
derived from Eq.~68! give the exact result for the harmon
oscillator. If the potential is not harmonic, its characteris
frequency depends on the energy of the trajectory:v
5v(E). Therefore, a natural choice for the width is

b5A \

mv~E!
[bE , ~78!

whereE5H(q8,p8).
As an example, we consider the Gaussian propagatio

the quartic potential

V~x!5
1

2
v0

2x21
1

8
,x4, ~79!

whose corresponding smoothed Hamiltonian is

H5
1

2
p21

\2

4b2
1

1

2
v0

2q21
v0

2b2

4

1
1

8
,~q413b2q213b4/4!. ~80!

In what follows we shall set\50.05,v051/2, ,51/16, and
m51. As a first illustration we compare the exact and sem
classical propagations usingb5s, b50.0, andb5bE . Fig-
ure 1 shows the square modulus of the wave functions aT
50.0, T52.0 andT516.0. The initial packet is given by
2-8
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FIG. 1. Square modulus of the exact and semiclassical wave functions as a function of the position~in arbitrary units! for ~a! T50 and
T52; and~b! T516.
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q850.0, p850.5, ands50.2. For this system and initia
stateE51/8 andbE'0.31. As can be seen from Fig. 1~a!, at
short times (T52.0) all the propagators are equivalent. F
longer times, however, the differences become clear,
shown in Fig. 1~b! for T516.0.

Snapshots of the probability density are a very illustrat
procedure, but it restricts the analysis to a small set of tim
and says nothing about phases. A more reliable procedu
to follow the overlap̂ cEucSC& of the exact and semiclass
cal results as a function of time. Figure 2 shows the modu
of this overlap for a time interval of approximately thre
classical periods. Four initial configurations with the sa
total energy are displayed:~a! q850.0, p850.5; ~b! q8
50.97, p850.0; ~c! q850.6, p850.4; and~d! q850.6, p8
520.4. In all situationss is fixed at 0.2 (s,bE) and five
distinct values of the widthb are used in the semiclassic
approximation:b5s, b50, b5bE , and b5bE60.1. It is
clear from this figure that the best results are achieved
b5bE or b5bE10.1. The same conclusions hold fors
50.5.bE , i.e., the result is better forb5bE or b5bE
10.1, depending on the initial configuration.

The quality of the approximation withb5bE seems to be
consistently better than any other choices ofb. We have per-
formed extensive tests in many distinct situations, includ
propagation in other bounded potentials, with stronger an
monicity and with or without asymmetry. In all cases t
propagation withb5bE ~or in some casesb slightly larger
than bE) is better than any other choice. In general, forb
.D, whereD is the size of the classically allowed regio
the accuracy of the GSA becomes very poor.

IV. CONCLUDING REMARKS

We derived a semiclassical approximation for the coh
ent state propagator

K~z9* ,z8,T!5^z9uT̂e2( i /\)*0
TĤ(t)dtuz8&, ~81!
06211
r
as

e
s
is

s

e

r

g
r-

r-

using intermediate states of arbitrary widths. The result
expression, Eq.~53!, is written in terms of classical trajecto
ries governed by the smoothed HamiltonianH(q,p,b)
5^zuĤuz&. The ‘‘dynamical width’’b appearing inH is not
necessarily equal to the widthss8 or s9 of the initial state
and final statesuz8& and uz9&, respectively. We have als
derived a Gaussian semiclassical approximation, Eq.~68!, by
projecting K(z9* ,z8,T) into the coordinate representatio
We have shown that both the Heller and BAKKS GSA’s c
be obtained as particular cases of this formula. This unifi
view enables us to discuss more clearly the efficiency of
GSA’s. Our analysis shows that, in general, neither Helle
GSA nor the BAKKS GSA are the best semiclassical form
las. The simple choiceb.bE5A\/mv(E) presents a con-
siderable improvement over the Heller and BAKKS resu
for a variety of potentials. We emphasize, however, thatbE is
not the optimal constant value forb, as demonstrated by
Figs. 2~a! and 2~d!. It only provides a simple and systemat
way to improve the propagation of wave packets. Bet
choices ofb can certainly be found for specific potentials.
particular, for very nonlinear potentials, likex8, our numeri-
cal calculations show that the optimalb seems to be abou
2bE .

As mentioned in@8#, for very small values of\ Heller’s
GSA is expected to become very efficient. This is in agr
ment with condition~78!, since when\→0 we havebE

5A\/mv→0. In other words, the GSA withb5bE be-
comes the Heller GSA in the classical limit.

It is also interesting to consider the total time derivative
H. Assuming that the original HamiltonianH is time inde-
pendent, we have

dH
dt

5q̇
]H
]q

1 ṗ
]H
]p

1ḃ
]H
]b

5ḃ
]H
]b

. ~82!

If we want the smoothedH to be conserved, like its origina
counterpartH, there are only two choices: eitherb is constant
2-9
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FIG. 2. Overlap between the exact and semiclassical propagations as a function of the time~in arbitrary units! for differentb’s. The initial
conditions are~a! q850.0, p850.5; ~b! q850.97,p850.0; ~c! q850.6, p850.4; and~d! q850.6, p8520.4. The time interval correspond
to approximately three vibrational periods.
re
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or ]H/]b50. Solving this last equation givesb5b(q,p) as
another prescription for the width. We have not shown
sults with nonconstantb’s in this paper, but our preliminary
calculations show that this prescription does not improve
calculation very much with respect tobE for the quartic po-
tential Eq.~79!.

Finally, we remark that an important application of th
present results is the use of our GSA as an improved ke
to the IVR, Eq.~5!. This point is currently under investiga
tion and the results will be published in the near future.
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APPENDIX A: PROOF OF EQS. „23…

For quantum HamiltoniansĤ which can be written as a
power series of creation and annihilation operators,
06211
-

e

el

s

Ĥ5(
n,m

An,m~ â†!nâm, ~A1!

the smoothed Hamiltonian is simply

H5(
n,m

An,m~z* !nzm. ~A2!

In this form, it is easy to calculate the derivatives ofH. For
example

]H
]q

5(
n,m

An,m

A2b
@m~z* !nzm211n~z* !n21zm#. ~A3!

Let â j andâ j
† be the creation and annihilation operators

the harmonic oscillator with coherent stateuzj&
5uqj ,pj ,bj&. Let Ĥ be written in terms of these operators
2-10
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Ĥ5(
n,m

An,m~ â j
†!nâj

m . ~A4!

In order to calculateHj 11,j , we need to expressĤ in terms
of â j 11

† and â j in normal ordering. From the definition ofq̂

andp̂ in terms of creation and annihilation operators we fi
bj (â j1â j

†)5bj 11(â j 111â j 11
† ) and bj 11(â j2â j

†)

5bj (â j 112â j 11
† ). Eliminating â j 11

† we obtain

â j
†5S 2bjbj 11

bj 11
2 1bj

2D â j 11
† 1S bj 11

2 2bj
2

bj 11
2 1bj

2D â j . ~A5!

In the limit t→0, Db5bj 112bj becomes small and we ca
write â j

†5â j 11
† 1O(Dbj ) and @ â j ,â j 11

† #511O(Dbj ), so
that

Ĥ5(
n,m

An,m~ â j 11
† !nâj

m1O~Dbj ! ~A6!

and
06211
Hj 11,j5(
n,m

An,m~zj 11* !nzj
m1O~Dbj !. ~A7!

Therefore,

]Hj 11,j

]qj
5(

n,m

An,m

A2bj

m~zj 11* !nzj
m21

→
t→0

(
n,m

An,m

A2b
m~z* !nzm21. ~A8!

This is the first term in expansion~A3!. A similar procedure
for the derivatives ofHj , j 21 yields the other term, which
proves the first equation~23!. A completely analogous calcu
lation proves the second equation.

APPENDIX B: THE DETERMINANT OF M „NÀ1…

In this appendix we will calculate the determinant
M (N21), which is a 2(N21)32(N21) symmetric matrix
given by
M (N21)[S 2d91twN21 1 0 0 ••• 0 0

1 D̄N211t%N21 tkN2121 0 ••• 0 0

0 tkN2121 2DN221twN22 1 ••• 0 0

A A A � � A A

0 0 0 ••• D̄21t%2 tk221 0

0 0 0 ••• tk221 2D11tw1 1

0 0 0 ••• 0 1 d81t%1

D , ~B1!

whereD̄ j5Dbj 21 /bj andD j5Dbj /bj . Expanding the determinant with respect to the first line we obtain

detM (N21)5~2d91twN21!detF (N21)2detG(N21), ~B2!

where

F (N21)5S D̄N211t%N21 tkN2121 0 0 •••

tkN2121 2DN221twN22 1 0 •••

0 1 D̄N221t%N22 tkN2121 •••

0 0 tkN2221 2DN231twN23 •••

A A A A �

D ~B3!

and

G(N21)5S 1 tkN2121 0 0 •••

0 2DN221twN22 1 0 •••

0 1 D̄N221t%N22 tkN2121 •••

0 0 tkN2221 2DN231twN23 •••

A A A A �

D . ~B4!

Expanding the determinants one more time we get
2-11
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detF (N21)5~D̄N211t%N21!detL (N22)2~tkN2121!detR(N22),

detG(N21)5detL (N22), ~B5!

where the matricesL (N22) andR(N22) are given by

L (N22)5S 2DN221twN22 1 0 0 •••

1 D̄N221t%N22 tkN2221 0 •••

0 tkN2221 2DN231twN23 1 •••

0 0 1 D̄N231t%N23 •••

A A A A �

D ~B6!

and

R(N22)5S tkN2121 1 0 0 •••

0 D̄N221t%N22 tkN2221 0 •••

0 tkN2221 2DN231twN23 1 •••

0 0 1 D̄N231t%N23 •••

A A A A �

D . ~B7!
r
s

rst

ed
Finally, we close the cycle with the equations

detL (N22)5~2DN221twN22!detF (N22)2detG(N22),

detR(N22)5~tkN2121!detF (N22).
~B8!

Substituting Eqs.~B8! in ~B5! and keeping only first orde
terms int andDb we get two coupled difference equation

detF (N21)52~D̄N211t%N21!detG(N22)

2~122tkN21!detF (N22),

detG(N21)5~2DN221twN22!detF (N22)2detG(N22).
~B9!

Defining FN215(21)N21detF (N21) and GN215
(21)N21detG(N21), these equations become

FN212FN225~D̄N211t%N21!GN2222tkN21FN22 ,

GN212GN2252~2DN221twN22!FN22 .
~B10!

Taking the limitt→0 we obtain the differential equations

Ḟ5S ḃ

b
1% DG22kF and Ġ52S 2

ḃ

b
1w DF,

~B11!

where

w5
1

2 S ib2

\

]2H
]q2

2
i\

b2

]2H
]p2 D 1

]2H
]q]p

, ~B12!
06211
%5
1

2 S ib2

\

]2H
]q2

2
i\

b2

]2H
]p2 D 2

]2H
]q]p

, ~B13!

and

k5
1

2 S ib2

\

]2H
]q2

1
i\

b2

]2H
]p2 D . ~B14!

The second derivatives ofHj 11,j have been calculated with
the same procedure presented in Appendix A for the fi
derivatives. In order to put Eqs.~B11! in a more symmetric
form we make the transformation

F5Fe2*0
Tk(t)dt[Fe(2i /\)I, G5Ge2*0

Tk(t)dt[Ge(2i /\)I.
~B15!

We get

Ḟ52kF1~ ḃ/b1% !G and Ġ5~ ḃ/b2w!F1kG.
~B16!

We now compare these equations with the lineariz
Hamilton’s equations in terms of the variablesu andv, de-
fined by Eq.~45!. We get

u̇5
1

A2
S q̇

b
1

ib

\
ṗD 2

ḃ

b
v⇒du̇5

1

A2
S dq̇

b
1

ib

\
d ṗD 2

ḃ

b
dv

~B17!

and
2-12
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v̇5
1

A2
S q̇

b
2

ib

\
ṗD 2

ḃ

b
u⇒d v̇5

1

A2
S dq̇

b
2

ib

\
d ṗD 2

ḃ

b
du.

~B18!

Using

q̇5
]H
]p

⇒dq̇5
]2H
]q]p

dq1
]2H
]p2

dp, ~B19!

ṗ52
]H
]q

⇒d ṗ52
]2H
]q2

dq2
]2H
]q]p

dp, ~B20!

and expressing these relations in terms ofdu and dv we
obtain

du̇52kdu2~ ḃ/b1% !dv, d v̇52~ ḃ/b2w!du1kdv.
~B21!

Comparing with Eqs.~B16! we find thatF5du and G5
2dv. The initial conditions are determined by the matric
F (N21) andG(N21) for N52. We have
-

u

B.

06211
s

F (1)5S 0 21 0

21 0 1

0 1 d8
D and G(1)5S 1 21 0

0 0 1

0 1 d8
D .

~B22!

Thus,

detF (1)52d8 ⇒ F15F~0!5du~0!52d8,

detG(1)521 ⇒ G15G~0!521⇒dv~0!51.
~B23!

Therefore, the solutions of Eqs.~B11! are

F~ t !5du~ t !e(2i /\)I and G~ t !52dv~ t !e(2i /\)I,
~B24!

subjected to the conditions~B23!. Substituting in~B2! we
get

~21!N21detM (N21)5@dv~T!2d9du~T!#e(2i /\)I,
~B25!

which is the final result.
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