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Abstract

We investigate the correlations of initially separable probability distributions in a globally
pure bipartite system with two degrees of freedom for classical and quantum systems. A clas-
sical version of the quantum linear mutual information is introduced and the two quantities are
compared for a system of oscillators coupled with both linear and non-linear interactions. The
classical correlations help to understand how much of the quantum loss of purity are due to
intrinsic quantum e4ects and how much is related to the probabilistic character of the initial
states, a characteristic shared by both the classical and quantum pictures. Our examples show
that, for initially localized Gaussian states, the classical statistical mutual linear entropy follows
its quantum counterpart for short times. For non-Gaussian states the behavior of the classical and
quantum measures of information are still qualitatively similar, although the 9ngerprints of the
non-classical nature of the initial state can be observed in their di4erent amplitudes of oscillation.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Entanglement has been a focus of intense investigation in the recent years due
to its relevance in quantum computation and quantum information [1–6]. From a
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fundamental point of view, entanglement is considered “the characteristic trait of quan-
tum mechanics, the one that enforces its entire departure from classical lines of thought”
(SchrLodinger) [7]. Entanglement reMects quantum correlations in the Hilbert space,
where state vectors are associated with probability distributions. In classical mechan-
ics, on the other hand, states are described by points in phase space, and no intrinsic
probabilistic character exists.
Probability distributions can be introduced in classical mechanics with the Liouville

formalism, and statistical averages on ensembles can be calculated. Initially independent
probability distributions can become correlated when evolved by a classical Hamilto-
nian with interaction terms. These correlations represent the dynamical emergence of
conditional probabilities in the classical statistical world.
In this paper, we consider the time evolution of a bipartite system whose Hilbert

space is the direct product of two subspaces. Initial states that are the tensor product
of kets in each subspace, usually evolve to non-product states, generating coherences
and entangling the two subsystems. A measure of the non-separability between them is
provided either by the Von Neumann or the linear entropies. In the case of a globally
pure bipartite system we argue that the latter is a convenient quantum measure of
non-separability. Next, as the main point of our work, we consider the time evolution of
probability densities in the phase space of the corresponding bipartite classical analogue.
Inspired on the quantum problem we propose a measure of the classical correlations
generated by the statistical ensembles of classical trajectories. We want to measure the
non-separability of the classical probability distribution evolving in time via Liouville
equations. Moreover, we want to compare behavior of this classical measure with the
loss of purity of the quantum system, particularly at short times. This comparison helps
to identify the time at which intrinsic quantum e4ects, such as interferences, begin to
be important.
In our approach we 9rst de9ne a classical statistical quantity and compare its be-

havior with the quantum linear entropy (QLE). Due to its formal similarity with the
quantum linear entropy, we call it classical statistical linear entropy (CSLE). A similar
classical quantity has recently been used in the study of quantum–classical correspon-
dence of intrinsic decoherence [8]. In spite of the direct correspondence between the
QLE and the CSLE, the latter may not be symmetric between the two subsystems
that make up the global bipartite system, i.e., the CSLE of each subspace does not
contain in general the same information. Also, the CSLE can assume negative values
and is restricted to initially separable distributions, not being a good measure in the
case of distributions that start o4 non-separable. We therefore de9ne a more general
classical measure, the classical statistical linear mutual information (CSLMI), based
on the concept of quantum mutual information (QMI) [9], that is always symmet-
ric and positive, and thus, best suited to measure the classical separability. We show
that for two bi-linearly coupled harmonic oscillators with Gaussian initial distributions,
the classical and quantum results coincide. For non-linear coupling the classical and
quantum entropies remain close for short times for both regular and chaotic regimes.
The outline of this work is as follows. In Section 2.1 we give some general def-

initions and show that the quantum linear entropy can be expressed in terms of
the non-diagonal terms of the density operator, providing a good measure of the
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entanglement between the subsystems. In Section 2.2 we present our de9nitions of
the classical statistical linear entropy with some considerations about the initial prob-
ability distributions. Next we introduce the quantum linear mutual information and its
classical statistical analogue. This allows us to treat cases where the two subsystems
have di4erent types of initial distributions in phase space. Section 3 is reserved to
the comparison between the QLMI and the CSLMI for a system of two oscillators
coupled with the following types of interactions: (1) bi-linear, (2) non-linear, and (3)
bilinear within the rotating wave approximation (RWA). As initial states we consider
both Gaussian and non-Gaussian distributions. Finally in Section 4 we present some
conclusions and discuss the adequacy and limitations of the present approach.

2. Theory

2.1. Quantum linear entropy

The density operator corresponding to an initially (normalized) pure state | 0〉 is

�(t) = U (t)| 0〉〈 0|U †(t) ; (1)

where U (t) = e−iHt=˝ is the evolution operator and H is the Hamiltonian. For a glob-
ally pure state, there are constraints connecting the diagonal and o4-diagonal matrix
elements of the density operator. This follows from the property Tr�2 =Tr�=1, which
can be written explicitly as∑

i

�2
ii +

∑
i

∑
k �=i

|�ik |2 =
∑

i

�ii = 1 ; (2)

where we have separated the diagonal and o4-diagonal terms in the left-hand side.
From this relation we de9ne

d(�) ≡
∑

i

∑
k �=i

|�ik |2 = 1−
∑

i

�2
ii : (3)

Consider now a bipartite system whose Hilbert space is the direct product of two
sub-spaces: E= E1 ⊗ E2. A measure of non-separability between these subsystems for
a globally pure state is provided either by the Von Neumann or by the linear entropies
[9,10]. The partial trace of � on system 2 de9nes the operator

�1(t) = tr2(�(t)) : (4)

The corresponding QLE is given by

S1(t) = 1− tr1(�2
1(t)) : (5)

The operator �2(t) and the QLE S2(t) are similarly de9ned.
For H =H1⊗ 12 + 11⊗H2 both �1(t) and �2(t) are projectors and S1(t)= S2(t)=0.

If couplings between the sub-spaces exist, they force the global state to evolve to
non-product states, entangling the subsystems and producing non-zero values for S1(t)
and S2(t).



R.M. Angelo et al. / Physica A 338 (2004) 458–470 461

In fact, for a globally pure bipartite system S1 = S2 = d(�). To see this we write

| 〉=
∑

i

�i|ai〉|bi〉 ; (6)

where {|ai〉} and {|bi〉} are orthonormal basis of subsystems 1 and 2, respectively, and
{�i} is the Schmidt spectrum [11]. Then,

�=
∑
i; j

�ij|ai〉|bi〉〈aj|〈bj| ; (7)

with �ij = �i�∗j . The reduced density of system 1 becomes

�1 =
∑

i

�ii|ai〉〈ai| ; (8)

and similarly for system 2. The subsystem linear entropy becomes trivial in this basis:

S1 = 1− Tr1(�2
1) = 1−

∑
i

�2
ii (9)

with a similar result for S2.
Comparing this result with Eq. (3) we see that

S1 = S2 =
∑

i

∑
k �=i

|�ik |2 = d(�) : (10)

Therefore, as long as any globally pure state of the system can be decomposed in the
Schmidt basis, we can conclude that the linear entropy indeed measures coherences
between the subsystems. Furthermore, because of the total conservation of coherences
(2), the linear entropy seems to be the most natural measure in the present situation.

2.2. Classical systems

A measure of non-separability for classical systems can be de9ned only at a statistical
level by considering ensembles of initial conditions [12–14]. Following Wehrl [15] we
de9ne a quantity that we call classical statistical linear entropy.
Consider a system with two degrees of freedom described by the classical Hamil-

tonian function H. Consider also several copies of this system with initial condi-
tions distributed according to the ensemble probability distribution P(x; t = 0), where
x ≡ (q1; p1; q2; p2). The classical time evolution of P(x; 0) is obtained via Liouville’s
equation

9P
9t = {H; P} ; (11)

whose solution is

P(x; t) = P(�−1
t (x); 0) ; (12)

where �−1
t (x) ≡ x0 is the initial condition that propagates to x in the time t and �t is

the phase space Mux, so that x=�t(x0). In words, the numerical value of the probability
P at point x and time t has the same numerical value of the probability at point x0 of
the initial distribution. This value is carried over to x in the time t. Liouville’s theorem
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guarantees the conservation of probability at all times. For integrable systems �t(x0)
might be determined analytically, otherwise numerical calculations can be performed.
Notice that P(x; t) is itself a constant of motion, but this is not enough to guarantee the
integrability of the system, since it is not generally in involution with the Hamiltonian.
The marginal probability distribution

P1(q1; p1; t) =
∫

dq2 dp2 P(q1; p1; q2; p2; t) (13)

allows us to de9ne the classical statistical linear entropy

Scl
1 (t) = 1−

∫
dq1 dp1 P2

1(q1; p1; t)∫
dq1 dp1 P2

1(q1; p1; 0)
: (14)

The normalization is necessary for dimensional reasons and to guarantee that Scl
1 (0)=0.

The initial classical distribution corresponding to a given quantum pure state �(0) is
chosen as the coherent states phase space projection

P(x; 0) =
1
N

〈�1; �2|�(0)|�2; �1〉 ; (15)

where N is a normalization constant and �i = (qi + –pi)=
√
2˝ is the usual complex

parametrization of the coherent states. Eq. (15) is the normalized Husimi distribution,
which is positive de9nite by construction. It is known that the Husimi distribution
does not reproduce the correct marginal probabilities. However, the constraint of a
positive probability distribution excludes the Wigner function [16] as a classical initial
distribution.
Eqs. (3) and (10) show that the quantum linear entropies S1 and S2 can be obtained

only from the diagonal elements of the global density matrix. Diagonal elements, on
the other hand, have classical analogues. Therefore it makes sense to compare the
dynamics of S1 and S2, which may be written either in terms of only o4-diagonal or
only diagonal elements, with the classical correlations.
An important di4erence between the classical and quantum linear entropies can be

made explicit in the coherent state basis. For one-dimensional systems we obtain

S(t) = 1−
∫

d2�
�

[〈�|U (t)�2(0)U †(t)|�〉] : (16)

On the other hand, de9ning the Liouvillian operator L such that {H; P} = LP,
Eq. (11) can be formally integrated and the CSLE can be written as

Scl(t) = 1−
∫

d2�
�

[
(eLt〈�|�(0)|�〉)2

M

]
; (17)

where M = N 2=�. In particular, at t = 0 the integrand of the classical entropy depends
on 〈�|�(0)|�〉2 instead of 〈�|�2(0)|�〉. Another important di4erence is of course in the
dynamics: the quantum evolution is determined by non-commuting operators, which
brings a number of corrections to the classical formalism. For more degrees of free-
dom, although the time evolution cannot be expressed in such a simple way, the two
di4erences pointed out above remain true.
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2.3. Quantum and CLMI

Although the CSLE seems to be the natural classical analogue of the quantum linear
entropy, it is not symmetric between the subsystems. Indeed, if the initial probability
distributions of each subsystem are not equal (for example a Gaussian distribution
for one subsystem and a Poissonian distribution for the other), we 9nd that Scl

1 (t) 
=
Scl
2 (t). The quantum linear entropy, on the other hand, always satis9es S1(t) = S2(t).
Another drawback of the de9nition Eq. (14) is that it gives Scl

1 (0) = Scl
2 (0) = 0 for

any initial classical distribution, correlated or not. Thus, it is interesting to de9ne a
more general quantity that avoids these diTculties and that takes into account the
contributions of both subsystem entropies symmetrically. At the quantum level we
de9ne the quantum linear mutual information (QLMI) that depends on the QLE as
I ≡ S(�1⊗�2)−S(�). This is based on the Von Neumann mutual information [9,17],
IVN =SVN (�1⊗�2)−SVN (�), where SVN is the Von Neumann entropy. By using Eq. (5)
we can write the QLMI as (notice that the linear entropy is not additive [10])

I(t) = S1(t) + S2(t)− S1(t)S2(t)− S(t) ; (18)

where Si and S are the subsystem and the global linear entropies, respectively. For
pure initial states S(t) = 0 and I(t) = S1 + S2 − S1S2.

We also de9ne a quantity that we call classical statistical linear mutual information
(CSLMI) as

I cl(t) = Scl
1 (t) + Scl

2 (t)− Scl
1 (t)S

cl
2 (t)− Scl(t) : (19)

Once again Scl(t)=0 for pure states. Note that the above de9nition can also be written
in form I cl = Scl(P1P2)− Scl(P) where Scl(P) is given by Eq. (14) with P1 replaced
by P.
We emphasize that the quantum and classical linear mutual information de9ned above

are also non-separability measures, like the QLE and CSLE. This can be made explicit
by re-writing Eqs. (18) and (19) as

I(t) = tr[�2(t)− �2
1(t)⊗ �2

2(t)]

= 1− tr[�2
1(t)⊗ �2

2(t)] ; (20)

I cl(t) =

∫
dx [P2(t)− P2

1(t)P
2
2(t)]∫

dx P2(0)

= 1−
∫
dx P2

1(t)P
2
2(t)∫

dx P2(0)
: (21)

The last equality is true since
∫
dx P2(0)=

∫
dx P2(t). When the two subsystems have

the same type of initial distributions, both I and I cl have the same contents of their
respective linear entropies. Moreover, since I cl is symmetric with respect to the two
subsystems, it does not present diTculties when the initial distributions are di4erent.
In the next section we compare I(t) with I cl(t) for three di4erent cases.
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3. Results

In order to show that our de9nition of a CSLMI is physically sensible, we consider
the following classical Hamiltonian with two degrees of freedom

H(q1; p1; q2; p2) =H1 +H2 +HI ; (22)

where Hi = 1
2(p

2
i + !2

i q
2
i ) are harmonic oscillators and HI is an interaction term. In

what follows we shall calculate both CSLMI and QLMI for three di4erent couplings:
a simple bilinear, a non-integrable and a rotating-wave approximation (RWA). In the
9rst and last cases the calculations can be performed analytically.

3.1. Bilinear coupling HI (q1; p1; q2; p2) = �q1q2 [18]

In this case, the classical equations of motion can be easily integrated and we 9nd

q1(t) = q1C+(t) + q2C−(t) + p1S+(t) + p2S−(t) ;

p1(t) = p1C+(t) + p2C−(t)− q1S+(t)− q2S−(t) ; (23)

and similar expressions for q2(t) and p2(t). C± and S± are quasi-periodic functions
of time

C±(t) =
1
2
(cos#xt ± cos#yt) ;

S±(t) =−1
2
(#x sin#xt ± #y sin#yt) ; (24)

where #x =
√
!2 + � and #y =

√
!2 − �.

As initial phase space distribution we choose a Gaussian centered at xc = (q1c; p1c;
q2c; p2c),

P(x; 0) =
1

4�2˝2 exp
{
− (x − xc)T(x − xc)

2˝

}
: (25)

This is the classical density as given by Eq. (15), corresponding to a coherent state
initial wave-function.
The probability distribution at time t is obtained using Eqs. (12) and (23). The result

can be written in the form

P(x; t) =
1

4�2˝2 e
−xTAx+2Bx+C ; (26)

where the matrix A and the vector B are functions of C±, S± and ˝. Replacing Eq. (26)
into (19) we get

I cl(t) = 1− 1
64˝6

1
det(&)2det(�− '&−1'T )

; (27)

where �, & and ' are 2× 2 matrices whose elements are combinations of C±, S± and
T±, with

T±(t) =−
(
sin#xt
#x

± sin#yt
#y

)
:
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Fig. 1. QLMI I(t) and CSLMI Icl(t) as a function of time (arbitrary units) for the linear coupling and initial
Gaussian distribution. The two curves are identical.

It is interesting to note that all the dependence on the center position of the initial
distribution has gone.
The reduced QLMI can also be analytically computed. Here, we simply write down

the result:

I(t) = 1−
[

4˝2(1− �2)

|Dx(t)| |Dy(t)|
√

det(O)

]4

: (28)

The coeTcients Di(t) are periodic functions of frequency #i. O is an 8×8 quasi-periodic
matrix depending on both #1 and #2. Expressions (27) and (28) are actually identical,
which shows that our de9nition of I cl and the choice of its normalization are both
appropriate. Fig. 1 displays an example for �= 0:9 that shows I1(t) = I cl1 (t).

3.2. Non-linear coupling

The exact coincidence between the classical statistical and quantum linear mutual
informations just presented, certainly has to do with both the quadratic nature of the
Hamiltonian and the Gaussian initial distributions. To study the role of non-linearities
we consider the interaction Hamiltonian

HI (q1; p1; q2; p2) =−q1p1p2 +
1
2
q21q

2
2 : (29)

The total Hamiltonian H is a canonically transformed version of a well-studied system
known as the Nelson potential [19]. Fig. 2 shows a typical mixed PoincarDe section for
parameter values !1 =

√
0:1, !2 =

√
2 and energy E = 0:05.

The calculation of I cl1 (t) (Eq. (14)) now has to be performed numerically. We use the
same initial distribution, Eq. (25). x0 = �−1

t (x) was calculated using standard Runge–
Kutta routines. The integrations in Eqs. (13) and (14) was done both by Monte Carlo
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Fig. 2. PoincarDe section for the Nelson potential at E = 0:05, q1 = 0 and p1 ¿ 0. The symbols stand for the
centers of the coherent states: 9lled circle for chaotic region and 9lled square for regular region.

and by direct trapezoidal techniques; the results of the two methods agree in the time
intervals we have considered. In Fig. 3(a) we show I(t) and the corresponding I cl(t).
The initial density matrix is the direct product of two coherent states, and the ini-
tial classical probability distribution is that given by (15). The center of the coherent
states is in the chaotic region of the corresponding PoincarDe section. The resemblance
between the QLMI and CSLMI is quite good even after two oscillations. Fig. 3(b)
shows a similar calculation with the coherent states centered at the regular region.
Once again the classical and quantum results coincide for short times. Surprisingly,
the two entropy-like quantities agree for longer times in the chaotic case. For both the
regular and chaotic cases, the classical and quantum calculations agree very well for
short times, although the classical mutual information is systematically larger than its
quantum counterpart for times larger than about 1. Also, the linear mutual information
grows faster for the chaotic case than for the regular case, in accordance with similar
previous results for the linear entropy [20]. Finally we note that the classical linear
entropies Eq. (14) may become negative. Similar behaviors were reported in
Refs. [10,15]. The linear mutual information, on the other hand, is always positive
and better suited for measuring the classical loss of separability.

3.3. RWA coupling: HI (q1; p1; q2; p2) = �(q1q2 + p1p2)

This is the classical version of a rotating-wave approximation of the interaction
Hamiltonian treated in example (1). In this case, Gaussian distributions in each
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Fig. 3. QLMI (continuous line, ˝ = 0:05) and CSLMI (dashed line) for the non-linear coupling and initial
Gaussian distributions centered on a chaotic orbit (a) and on a regular orbit (b).

subspace evolve coherently: I1(t)= I cl1 (t)=0. However, this is a very particular case of
a preferred basis state [21,22], and the same kind of coherent evolution is not expected
for more general initial states. For instance, in the case of Fock states (| 0〉= |1〉⊗|1〉)
the classical phase space distribution, given by the Husimi distribution, is

P(x; 0) =
e−(x−xc)T(x−xc)=2˝

4�2˝2
2∏

k=1

(
q2k + p2

k

2˝

)
: (30)

In the analytical calculation of the CSLMI we use the super-operator method [23]
modi9ed to conform with classical Poisson brackets computations. We 9nd

I(t) = 8u(t)[2− 8u(t)] (31)
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Fig. 4. Quantum and classical mutual linear information for the RWA coupling for !1 = !2 = � = ˝ = 1
and initial state | 0〉= |0〉 ⊗ |1〉. The continuous line shows the quantum result I(t) and the dashed line the
classical I cl(t).

and

I cl(t) = u(t)[2− u(t)] ; (32)

where

u(t) =
sin2 (2�t)

32
[5 + 3 cos (4�t)] = Scl

1 (t) = Scl
2 (t) : (33)

The quantum and the classical statistical linear entropies have similar qualitative be-
haviors, but the amplitude of their oscillations are markedly di4erent. They exhibit the
same puri9cation period -0 = �=2�.
Finally, we consider one of the subsystems in a coherent state and the other in the

number state (| 0〉= |�1〉 ⊗ |1〉). In this case, for �1 = 0, we obtain

I(t) =
sin2 (2�t)

8
[7 + cos (4�t)]

I cl(t) =
sin2 (2�t)

64
[15 + cos (4�t)] : (34)

These quantities are plotted in Fig. 4. The qualitative agreement of the oscillations is
remarkable, though the amplitudes are quite di4erent. If the classical information is
re-scaled so that its maximum at �=4 coincides with the quantum plot, the two curves
become very similar. This might seem a consequence of the normalization introduced
in I cl and not present in I (see Eq. (21)). Unfortunately this is not so: the classical
normalization is indeed necessary (at least for dimensional reasons) and choosing it in
a case-by-case basis does not seem to bring any important physical information. Our
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interpretation of the di4erences in the amplitudes is that they reMect the non-classical
character of the initial phase space distribution.

4. Conclusion

In this work we have de9ned the classical statistical linear mutual information, a
tool that quanti9es the non-separability of classical statistical distributions representing
pure states of a bipartite Hamiltonian system. The comparison of the quantum and
classical linear mutual information provides a measure of how much of the quantum
loss of purity is due to intrinsic quantum e4ects and how much is related only to
the probabilistic character of the initial distributions. We computed the classical and
quantum mutual information for a system of two oscillators subjected to di4erent types
of coupling. We found that the two measures follow each other closely in the case
of initially separable Gaussian states. For the case of linear coupling the classical and
quantum mutual information are identical, revealing the classical nature of the system
and the coherent evolution of the Gaussian wave-packets. For non-linear couplings the
classical mutual information follows the quantum one for short times. This follows from
the fact that the short time quantum evolution can be formulated in terms of Liouville
formalism [25,26]. This property is desirable for a measure of classical correlations
in view of Ehrenfest’s theorem [27], and con9rms that our de9nition is appropriate.
For longer times the folding of the wave-packets certainly introduces self-interferences
that have no classical counterpart. When quantum interferences become substantial
[24] the classical and quantum mutual information become signi9cantly di4erent. For
open systems, where interferences are eliminated by the coupling with an external
environment, we conjecture that the classical and quantum mutual information are
going to coincide for much longer times.
We have also investigated the role of non-Gaussian types of initial distributions

in the classical separability. We have shown that also in this case the CSLMI Icl(t)
is a meaningful quantity to measure the classical non-separability. Our example of
linearly coupled harmonic oscillators (RWA) shows that the time evolution of the
classical mutual information is qualitatively similar to that of its quantum counterpart.
The amplitude of the classical oscillations, however, is markedly di4erent from the
quantum ones, reMecting the non-classical nature of the initial state.
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