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We study the magnetic susceptibilityx of a two-dimensional noninteracting electron gas confined by a
smooth chaotic potential. The computation ofx for a wide range of magnetic field valuesB reveals that the
chaotic (B50) to regular (B→`) transition is dominated by bifurcations of short periodic orbits that become
stable asB increases. The families of stable orbits and tori contained in the associated stability islands do not
play any special role in this regime. Large contributions, however, are observed near the bifurcation points,
increasing the average susceptibility to values beyond those expected for regular systems.
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I. INTRODUCTION

The recent experiment of Le´vy et al. @1# has renewed
theoretical interest in the semiclassical behavior of a two-
dimensional~2D! ballistic electron gas subjected to a perpen-
dicular constant magnetic field@2–5#. Efforts in this direc-
tion have so far been concerned with the low-field and low-
temperature regime. The magnetic properties of these
‘‘mesoscopic’’ systems depend both on the underlying clas-
sical motion and on the characteristic thermodynamical en-
semble. In particular, it has been shown by Altshuler, Gefen,
and Imry @6#, that averaging the magnetic susceptibilityx
over an ensemble of ‘‘large’’ systems gives^x&.0 if it is
computed within the grand-canonical ensemble. In this case,
each subsystem is assumed to have a particular~fixed!
chemical potential. By contrast, averaging over the canonical
ensemble~CE! ~i.e., with the number of particles in each
subsystem held fixed! produces a large mean as compared to
the Landau susceptibility.

Based on these results, Ullmo, Richter, and Jalabert@5#
derived analytical expressions for^x& under the conditions
of the Lévy experiment, in which the electrons were confined
in a square billiard and subjected to a very weak magnetic
field. They then showed that the shortest family of periodic
orbits with a nonzero enclosed area gives the main contribu-
tion to the high values attained byx. In other words, the
one-parameter families of closed orbits existing in integrable
systems interfere constructively and give a total contribution
much larger than that of the isolated periodic orbits typical of
chaotic confining potentials.

In this paper we study the susceptibilityx for a system
subjected to a uniform magnetic fieldB. We compute
x(B) numerically at zero temperature for a wide range of
magnetic fields, with the classical dynamics varying from
regular to chaotic. For low fields, our results agree with the
previous theory, in that the regular case displays a larger
x. As the field increases, however, several short periodic
orbits become stable through isochronous~same period! and
period-doubling bifurcations, giving rise to semiclassically
divergent contributions tox at the bifurcation points. Quan-
tum mechanically these divergences are replaced by large but
finite peaks. It turns out that these dominate the behavior of

x for a large range of magnetic fields and make its average
larger than in an equivalent regular situation. After the bifur-
cations, each newly stable orbit carries with it a stability
island containing, to first approximation, a one-parameter
family of closed orbits. Interestingly, our numerical results
show that the contributions of these families are not relevant
here, unlike in the zero field limit.

This paper is organized as follows: in Sec. II we review
the semiclassical theory of a 2D noninteracting electron gas.
In Sec. III we present our model for the numerical calcula-
tions, then, in Sec. IV, we show the results forT50. Section
V is devoted to our conclusions.

II. REVIEW OF THE SEMICLASSICAL THEORY

The exact expressions for the magnetizationM and sus-
ceptibility x in the canonical ensemble~CE! can be derived
from the grand-canonical potential@6#

V52
1

bE dEr~E!ln~11eb~m2E!!, ~1!

where r is the density of states,b51/kBT, and m is the
chemical potential or Fermi level. Quantum mechanically,
r(E)5(d(E2En) for bound systems and
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Therefore, in the grand-canonical ensemble~GCE! we can
write explicitly
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where

gb~En!5
1

11eb~En2m! ~5!

is the Fermi function, and

db~En2m![
b

4cosh2 b
2 ~En2m!

~6!

is a smoothedd function.
The first term on the right side of Eq.~4! contains the

contributions from the energy level curvatures, while the sec-
ond term is responsible for dips in2xGCE whenever an en-
ergy level crosses the~fixed! value m. These dips tend to
disappear as the temperature is increased.

In the canonical ensemble we use the relation~see@6#!
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whereF is the free energy andP is the number of particles,
now held fixed. Therefore,

MCE52(
n

gb~En!
]En

]B
, ~8!

wheregb(En) is computed withm5m(B) obtained from the
constraint

P5 (
n51
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n51

`
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Differentiating Eq.~8! with respect toB gives
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At low temperatures the Fermi levelm(B) is approximately
thePth energy level,m(B)'EP(B), and the second term on
the right side does not contribute. In this limit, if the energy
levels exhibit narrowly avoided crossings2xCE will also
exhibit dips due to the sharpness of]2EP /]B

2. Again, even
very small temperatures will cause these to disappear.

Semiclassical expressions forM andx are easily obtained
with the help of Gutzwiller’s formula for the density of states
@7#. Rewriting the magnetization as~see@2#!

M5E
0

`

gb~E!
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dE, ~11!

where

N~E,B!5(
n

Q„E2En~B!… ~12!

is the staircase function, and using the semiclassical formula

N~E,B!'N̄~E,B!1Nosc~E,B! ~13!

we get, in the limit of low temperatures and for a 2D system,
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HereM̄ comes from the corrections to the Weyl formula for
N̄,

N̄5
1

\2E Q„E2H~p,q!…d2pd2q1O~\0! ~15!

and is usually very small. The second term in Eq.~14! is a
sum over primitive periodic orbits, (p) and their repetitions
( j ), Sp , sp , tp being the action, Maslov index and period of
the primitive orbits, respectively. The amplitude involves
both

Apj
215Audet~Mp

j 21!u

5H 2sinh~ ju/2! for direct unstable orbits

2sin~ ju/2! for stable orbits

2cosh~ ju/2! for inverse unstable orbits

~16!

whereMp is the Monodromy matrix, andap5]S/]B. All
quantities in Eq.~14! are evaluated at the Fermi energy
m5m(B) in the canonical ensemble or atm5m0 in the
grand-canonical ensemble.

Differentiating Eq. ~14! with respect toB, neglecting
terms ofO(\21), then gives
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wherexL5]M̄ /]B is the Landau susceptibility.
In 2D integrable systems the periodic orbits come in one-

parameter families~tori! on the energy shell, whereas in cha-
otic systems the orbits are isolated. It was shown in Ref.@5#
that nearly integrable systems have an enhanced susceptibil-
ity due to the existence of these families. This is a conse-
quence of the fact that the amplitude of the oscillatory part of
the level density is proportional to 1/\3/2 for integrable sys-
tems and only to 1/\ for chaotic systems.

The effect we are interested in concerns the transition, as
the magnetic field increases, from a chaotic to a more regular
phase space. This transition occurs generically through two
basic mechanisms: the first is the isochronous bifurcation, in
which a pair of periodic orbits, one stable and the other un-
stable, appears suddenly; this is also called a saddle-center
bifurcation. The second possibility is an inverse period-
doubling bifurcation, in which an unstable orbit becomes
stable generating a new unstable orbit with twice the original
period. If the Hamiltonian has at least one discrete symme-
try, the isochronous bifurcation can also occur via the pitch-
fork ~or inverse pitchfork! mechanism, if the periodic orbit is
symmetric@8,9#. Then, a pair of new asymmetric orbits~one
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being the reflection of the other! is generated. In both cases,
isochronous and period doubling, as the magnetic field is
increased further the newly born unstable orbits become
stable via subsequent period-doubling bifurcations. The
stable orbits in turn then undergo higher order bifurcations
whenever the stability angleu passes through 2pk/m (k,
m coprime, k,m). Ozorio de Almeida and Hannay@10#
have computed the amplitudesApj for these so-called reso-
nant cases. At the saddle-center bifurcation, for instance,
Ap1.1/\1/6. The higher order bifurcations withm.4, on the

other hand, contribute a factorAp1.1/\1/2 which, as re-
marked in Ref.@10#, is of the same magnitude as the resonant
periodic orbit contribution in integrable systems obtained by
Richens@11#. This means that in the transition regime be-
tween chaos and regularity, the susceptibility may be of the
same semiclassical order as in the integrable case, and hence
much larger than the small magnitudes expected atB50. A
numerical example showing this regular-to-chaotic transition
and the role of bifurcations in the susceptibility will be pre-
sented in the next two sections.

III. THE MODEL AND ITS PROPERTIES

In this section we investigate the zero temperature mag-
netic properties of the same model system considered in Ref.
@2#, namely,

H5
1

2 S px1 B

2
yD 21 1

2 S py2 B

2
xD 21S y2

x2

2 D 210.05x2.

~18!

FIG. 1. x2px Poincare´ sections at energyE50.0308
(\50.006,P530) and magnetic fields:~a! B50; ~b! B50.75.

FIG. 2. x2px Poincare´ sections at energyE50.0401
(\50.006,P550) and magnetic fields:~a! B50; B50.75.

TABLE I. Fermi energy atB50 for the relevant values ofP
and\.

P\\ 0.006 0.06

30 0.0308 0.3146
50 0.0401 0.4030
120 0.0620 -
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In order to compare regular versus chaotic features we
have performed calculations with two values of\. For
\50.006, the first 50 states have such small energies that the
corresponding classical trajectories are effectively regular for
any value ofB. For \50.06 the level spacing is larger and
most of the eigenstates move into the classically chaotic re-
gion ~of course, a few eigenstates—around seven in our
case—have low energies and still lie in the regular region!.

We have used two different basis states to diagonalize
H, depending on the value ofB. For B,0.6 we used
Fnm(x,y)5^nux&^muy2x2/2& whereun& and um& are eigen-
states of the harmonic part ofH with B50 ~see@12#!. For
B>0.6 we used the exact solutions ofHo5@px
1(B/2)y] 2/21@py2(B/2)x#2/21y210.05x2 as basis states.
For \50.006 we obtained 120 eigenstates with at least five
digits of precision forB in the range 0 to 1.5 in steps of
dB50.05, while for\50.06 only 70 eigenstates were con-
sidered.

The Weyl approximation for the staircase function is, in
this case,

NW~E!5
E2

2A0.2\2

and hence the energy of thenth level is proportional to\.
We must therefore scale the calculations for\50.006 by a
factor 10 before comparing them to those with\50.06.

According to the semiclassical results of the preceding
section, the behavior ofx is dictated by the classical orbits at
the Fermi energym, which, in turn, depends on the number
of particlesP and on the magnetic fieldB via Eq. ~9!. It is
therefore important to know whether the phase space at en-
ergy m and magnetic fieldB is mostly regular, mixed, or
mostly chaotic, in order to understand the magnitude and
oscillations ofx. We emphasize that the few regular states of
thechaotic case\50.06 do not play an important role, since

FIG. 3. Poincare´ sections at energyE50.062 (\50.006,P5120): ~a! and ~b! showx2px sections atB50 andB50.75; ~c! and ~d!
showy2py sections for the same values ofB.
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all classical quantities are calculated atm(B)5EP(B),
which is a chaotic energy shell forP>10.

In the next section we shall present results for the suscep-
tibility with P530 andP550 for both values of\, and for
P5120 when\50.006. The Fermi energy in each case at
B50 is given in Table I.

Figures 1 and 2 show thex2px Poincare´ sections at
B50 and B50.75 for the energies 0.0308
(P530, \50.006) and 0.0401 (P550, \50.006), respec-
tively. In all cases, the sections reveal a very regular phase-
space structure which, in fact, extends to all values ofB.
Figure 3 showsx2px and y2py sections atE50.0620
(P5120, \50.006). In this case the dynamics are clearly
mixed.

Figure 4 shows a detailed sequence of sixx2px Poincare´
sections atE50.3146 (P530, \50.06) for B50.4, 0.6,
0.7, 0.8, 1.0 and 1.2. As expected, the magnetic field tends
to regularize the dynamics. In Fig. 5, thex2px sections at
E50.4030 (P550, \50.06) forB50.5 andB51.0 show
basically the same behavior.

Although the Poincare´ sections allow a qualitative view of
the global behavior of the system, it is difficult to specify the
field value where any given periodic family bifurcates. Of
particular importance in our study is the behavior of
ap5]S/]B andM ~the monodromy matrix! versusB for the
principal periodic orbits of our model Hamiltonian. We have

computed these quantities and the results are shown in Fig.
6, for E50.3146 (P530) and E50.403 (P550). Here
dashed~full ! lines correspond to unstable~stable! families,
and the circles to bifurcations with period doubling. The
junction of full and dashed lines without symbols indicates
isochronous bifurcations. The labelsV, V2, V3, andV4 in-
dex the vertical family~the shortest orbit! and its bifurcations
~doubling, tripling, and quadrupling! @8,13#, which can easily
be identified in Figs. 4~b!, 4~d!, and 4~e!, respectively. The
labelsH,R, andL represent other families of periodic orbits.
These families appear more clearly iny2py sections, but
they are not very relevant here because their periods are
long.

The behavior ofV2 for low fields is the most significant
difference between Figs. 6~a! and 6~b!: for P530 this fam-
ily, initially stable, becomes unstable atB'0.4 and stable
again atB'0.47. ForP550, on the other hand,V2 is ini-
tially unstable and becomes stable atB'0.25~via an inverse
pitchfork bifurcation! creating a new unstable family that, in

FIG. 4. x2px Poincare´ sections at energyE50.3146
(\50.06, P530) and magnetic fields:~a! 0.4; ~b! 0.6; ~c! 0.7; ~d!
0.8; ~e! 1.0; ~f! 1.2.

FIG. 5. x2px Poincare´ sections at energyE50.403 (\50.06,
P550) and magnetic fields:~a! B50.5; ~b! B51.0.
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its turn, become stable atB'0.34@see inset#. This bifurcated
orbit turns out to be hard to follow numerically, and we show
only part of it in the figure.

IV. NUMERICAL RESULTS FOR THE SUSCEPTIBILITY

We have computed the susceptibility per particle at zero
temperature for the regular (\50.006) and chaotic
(\50.06) cases. In Figs. 7 and 8 we compare these two
cases forP530 andP550, respectively. As discussed in the
preceding section, the regular susceptibility should be scaled
by a factor of 10 in both figures because of our choices for
\. For P530 we see that, except for the sharp dips, the
regular susceptibility increases approximately linearly with

the field, at least up toB'1.0. This behavior can be under-
stood in terms of the harmonic oscillator model analyzed by
Németh@14#, since our model is essentially quadratic at this
energy.

The chaotic susceptibility, on the other hand, exhibits a
very different behavior. ForB up to 0.3 it has a negligible
value, which is the Landau susceptibility, and a very small
slope. For larger fields, however, we observe a clear transi-
tion to an oscillatory regime in which the magnitude ofx
reaches values comparable to, or even higher than, those at-
tained in the regular case. To understand these features semi-
classically, we go back to Figs. 4 and 6~a!. From the Poin-
caré sections we see that stable regions are seen only at
B50.6 and therefore cannot be responsible for the sudden
increase in2x atB'0.4. Figure 6~a!, however, reveals that
a series of bifurcations take place at that point. The values of
B where the bifurcations occur are marked in Fig. 7~b! by
vertical lines. We recall that at an isochronous bifurcation
~dashed vertical line! the semiclassical amplitudes are diver-

FIG. 6. Magnetic fieldB versusap5dS/dB for the principal
periodic orbits. ~a! E50.3146 (P530, \50.06) and ~b!
E50.403 (P550,\50.06). The full~dashed! lines indicate stable-
~unstable! regions and circles indicate period doubling bifurcations.
The transitions from full to dashed lines without symbols indicate
isochronous bifurcations.

FIG. 7. 2x as a function ofB for P530. ~a! shows the result
for the regular levels (\50.006) and~b! shows the result for the
chaotic levels (\50.06). The full ~dashed! vertical lines indicate
values ofB where period doubling~isochronous! bifurcations occur,
according to Fig. 6~a!.
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gent, whereas at a period-doubling bifurcation~continuous
vertical line! it is the amplitude corresponding to the newly
bifurcated orbit and the first repetition of the main orbit that
diverge.

Figures 8~a! and 8~b!, for P550, show the same qualita-
tive behavior, with the sudden increase in2x at B'0.3
related again to the bifurcations of periodic orbits, and not to
the size of stability islands. It is interesting to note that the
regularization process promoted by the magnetic field is trig-
gered sooner for P550 @Fig. 8~b!# than for P530 @Fig. 7~b!#,
despite the fact that the periodic orbits have a larger instabil-
ity exponent atE5E50(B50) than atE5E30(B50).

The comparison betweenx reg andxchaot for low fields is
more explicit in Fig. 9, where we plotx reg310 andx chaotfor
B<0.1 andP530. In this case, the regular Poincare´ section,
Fig. 1~a!, does not show any visible chaos while the chaotic
section, Fig. 4~a!, is entirely chaotic. So, we can see that for
low fieldsx reg@xchaot as expected@4#.

We now investigate the robustness of our results in terms

FIG. 8. 2x as a function ofB for P550. ~a! shows the result
for the regular levels (\50.006) and~b! shows the result for the
chaotic levels (\50.06). The full ~dashed! vertical lines indicate
values ofB where period doubling~isochronous! bifurcations occur,
according to Fig. 6~b!.

FIG. 9. 2x versusB for P530. The thick~thin! line indicates
xchaot (x reg310).

FIG. 10. 2x as a function ofP: ~a! regular levels and~b!
chaotic levels.
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of ensemble averages. For simplicity we consider a Gaussian
average defined by

^x&5
1

2DAp
(
P50

`

x~B,P!exp@2~P2 P̄!2/4D2#. ~19!

Figure 10 shows2x as a function ofP for some values of
the magnetic field for both the regular@Fig. 10~a!# and cha-
otic @Fig. 10~b!# cases. Here the differences between the two
are also visible. The regular case is very simple and, for a
fixedP, x reg increases with the field. In contrast, we see that
the chaotic case exhibits the opposite behavior for largeP
and a complex oscillation forP between 20 and 40. Figure
11 shows^x& as a function ofB for P̄530 andD55. At
intermediate field values the average chaotic susceptibility is
greatly enhanced in comparison with the regularx, further
emphasizing the effect of bifurcations.

Finally, we compare the canonical versus grand-canonical
averages for the chaotic case. As discussed by Altshuler,
Gefen, and Imry@6# we expect a vanishingly small suscepti-
bility if the average in Eq.~19! is performed in the grand-
canonical ensemble. Figure 12 displays these averages as a
function of P̄ for B50.8 and two values of the dispersion
parameterD, and clearly exhibits good agreement with the
theory.

V. CONCLUSIONS

We have studied the magnetic susceptibility of a mesos-
copic ensemble of noninteracting electrons at zero tempera-
ture confined by a smooth potential. We found thatx de-
pends strongly on the underlying classical dynamics. If the
magnetic field is weak enough, such that we can neglect its
effect on the classical orbits, the susceptibility will be larger
for a regular than for a chaotic confining potential, in agree-
ment with previous results@4#. However, when the field is
increased further, the nature of the classical dynamics inevi-
tably changes. For initially chaotic potentials, the magnetic
field will regularize the phase space by turning unstable pe-

riodic orbits into stable ones, or in other words, by inducing
bifurcations. We have shown here that these bifurcations
contribute significantly tox, even when the phase space is
still mostly chaotic. If the potential is initially regular, the
field will first introduce some chaos~except, of course, for
the case of radially symmetric potentials! and then, for
higher fields, regularize it again.

From the classical point of view, the magnetic fieldB
becomes important when the cyclotron radiusR5A2E/B
(e5m5c51) is comparable with the typical length scale of
the system,L. In fact, the effects ofB can be felt quite
strongly even whenR'10L for geometries like the square
billiard @15#. The quantum mechanical length scale, or mag-
netic length, on the other hand, is given byb5A\/B. There-
fore, at the Fermi energym52p\2r, the two scales are
related by

R5b2A4pr,

wherer is the electron density. In the experimental setup of
Lévy et al. @1#, whenb'L impliesR/b'102100, justifying
the approximation in which the bending of the classical tra-
jectories can be neglected. Therefore, we expect the suscep-
tibility to go to zero before any classical chaos~or any im-
portant bifurcations! sets in. In order to observe the effects
described in this paper a similar experimental setting would
require either a lower density of electrons~by a factor
102100) or larger squares~by a factor 5210).
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FIG. 11. 2^x& as a function ofB for P̄530 andD55. The
thick ~thin! line indicateŝ xchaot& (^x reg&310).

FIG. 12. 2^x& versus P̄ for the canonical~c! and grand-
canonical~gc! ensembles atB50.8 ~chaotic case only!. The thick-
~dotted! lines indicateD55(2) in Eq.~19!.
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