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Chaotic-to-regular transition in a semiclassical electron gas
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We study the magnetic susceptibilify of a two-dimensional noninteracting electron gas confined by a
smooth chaotic potential. The computationyofor a wide range of magnetic field valuBsreveals that the
chaotic B=0) to regular B— ) transition is dominated by bifurcations of short periodic orbits that become
stable adB increases. The families of stable orbits and tori contained in the associated stability islands do not
play any special role in this regime. Large contributions, however, are observed near the bifurcation points,
increasing the average susceptibility to values beyond those expected for regular systems.
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[. INTRODUCTION x for a large range of magnetic fields and make its average
larger than in an equivalent regular situation. After the bifur-
The recent experiment of ‘Mg et al. [1] has renewed cations, each newly stable orbit carries with it a stability
theoretical interest in the semiclassical behavior of a twoisland containing, to first approximation, a one-parameter
dimensional2D) ballistic electron gas subjected to a perpen-family of closed orbits. Interestingly, our numerical results
dicular constant magnetic fiel@-5]. Efforts in this direc- show that the contributions of these families are not relevant
tion have so far been concerned with the low-field and low-here, unlike in the zero field limit.
temperature regime. The magnetic properties of these This paper is organized as follows: in Sec. Il we review
“mesoscopic” systems depend both on the underlying clasthe semiclassical theory of a 2D noninteracting electron gas.
sical motion and on the characteristic thermodynamical enin Sec. Ill we present our model for the numerical calcula-
semble. In particular, it has been shown by Altshuler, Gefentions, then, in Sec. IV, we show the results Tor 0. Section
and Imry [6], that averaging the magnetic susceptibiligy V is devoted to our conclusions.
over an ensemble of “large” systems givég)=0 if it is
computed within the grand-canonical ensemble. In this case, ||. REVIEW OF THE SEMICLASSICAL THEORY
each subsystem is assumed to have a partic(iized) ) )
chemical potential. By contrast, averaging over the canonical The exact expressions for the magnetizatiérand sus-
ensemble(CE) (i.e., with the number of particles in each ceptibility x in the canonical ensembl€E) can be derived
subsystem held fixegproduces a large mean as compared td7om the grand-canonical potentig]
the Landau susceptibility.
Based on these results_, Ullmo, Richter, and Jalal!ﬁrt Q=— EJ dEp(E)In(1+efr=B), 1)
derived analytical expressions f¢x) under the conditions B
of the Levy experiment, in which the electrons were confined ) ) )
in a square billiard and subjected to a very weak magneti¥/here p is the density of stateg3=1/kgT, and n is the
field. They then showed that the shortest family of periodiccheémical potential or Fermi level. Quantum mechanically,
orbits with a nonzero enclosed area gives the main contribue(E) =2 6(E—E,) for bound systems and
tion to the high values attained by. In other words, the
one-parameter families of closed orbits existing in integrable Q=— EE In(1+ eBrEn), )
systems interfere constructively and give a total contribution Bn
much larger than that of the isolated periodic orbits typical of
chaotic confining potentials. Therefore, in the grand-canonical ensemi&CE) we can
In this paper we study the susceptibiligy for a system  Write explicitly
subjected to a uniform magnetic fielB. We compute
B) numerically at zero temperature for a wide range of - _ @Z _
X( S i ) : . Mgce= 2 9(En)
magnetic fields, with the classical dynamics varying from JB n
regular to chaotic. For low fields, our results agree with the
previous theory, in that the regular case displays a largeand
x- As the field increases, however, several short periodic 5
orbits become stable through isochrongsasme periogand _ ﬂ
period-doubling bifurcations, giving rise to semiclassicallyXGCE— 9B?
divergent contributions tg at the bifurcation points. Quan- S2E
tum mechanically these divergences are replaced by large but  _ _ n _
finite peaks. It turns out that these dominate the behavior of ; gB(E“)ﬁ_BT+; 2p(En 'u)(

JE
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J9E,
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2
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where N(E,B)~N(E,B)+ N°S(E,B) (13
9s(En)= — 5) we get, in the limit of low temperatures and for a 2D system,
is the Fermi function, and M=M(B)+ ,Bz_h% 2 Ajp’Tj?pSin Jh&_ gj T")
B e~ TTpilhB
Op(En—p)= 200 E (E— 1) (6) X e ZrrlliB- (14)
is a smoothed function. Here M comes from the corrections to the Weyl formula for

The first term on the right side of E@4) contains the N,
contributions from the energy level curvatures, while the sec- 1
ond term is responsible for dips i ygcg Whenever an en- N= _f O(E—H d20d2q+ O(%° 15
ergy level crosses théfixed) value u. These dips tend to h? ( (p.@))d"pdq+O(A5) 9
disappear as the temperature is increased.

In the canonical ensemble we use the relatieee[6]) and is usually very small. The second term in Ety) is a
sum over primitive periodic orbits,p) and their repetitions
JF a0 (1), Sp, op, T, being the action, Maslov index and period of
Mcf‘(@) =—<£) . (7)  the primitive orbits, respectively. The amplitude involves
P 1=3N|8 both
whereF is the free energy anB is the number of particles, AgJ-l: \ /|de(M'p— 1)]

now held fixed. Therefore,
2sin(ju/2) for direct unstable orbits
JE o .
Meg=— >, 9 En)&_Bn, (8) =4 2sin(ju/2) for stable orbits (16)
A 2cosltiju/2) for inverse unstable orbits

wheregg(E,) is computed withu = u(B) obtained from the

f where M, is the Monodromy matrix, and,=JdS/dB. All
constraint

quantities in Eqg.(14) are evaluated at the Fermi energy
o o 1 pu=w(B) in the canonical ensemble or at=uq in the
pP= (E (BN)=> — (99  9rand-canonical ensemble.
nzl 95(En(B) nzl 1+ ePEnB) =) Differentiating Eq. (14) with respect toB, neglecting

. o _ . terms ofO(% 1), then gives
Differentiating Eq.(8) with respect taB gives

2 A, a2 [jS, e "ol
FE X=Xt a2 2 p00’3<—p——1'0 )—7——zm g
XcE=— 2 gB(En)_Zr]+E Op(En—n) BRT T T h  277Pl1-e pl/hB
n &B
17
2 _
« (ﬁEn) _(0En ‘9_1“” (10) where y'=9M/4B is the Landau susceptibility.
JB dB J\ B In 2D integrable systems the periodic orbits come in one-

parameter familiegtori) on the energy shell, whereas in cha-

At low temperatures the Fermi levgl(B) is approximately  otic systems the orbits are isolated. It was shown in R&f.
the Pth energy levelu(B)~Ep(B), and the second term on that nearly integrable systems have an enhanced susceptibil-
the I’Ight Side doeS not Contribute. In th|S ||m|t, |f the energyity due to the existence Of these fami”esl Th|S iS a conse-
levels exhibit narrowly avoided crossingsxce Will also  quence of the fact that the amplitude of the oscillatory part of
exhibit dips due to the sharpness@Ep/JB>. Again, even  the level density is proportional to7d3? for integrable sys-
very small temperatures will cause these to disappear. tems and only to %/ for chaotic systems.

Semiclassical expressions fi andy are easily obtained  The effect we are interested in concerns the transition, as
with the help of Gutzwiller's formula for the density of states the magnetic field increases, from a chaotic to a more regular

[7]. Rewriting the magnetization dsee[2]) phase space. This transition occurs generically through two
basic mechanisms: the first is the isochronous bifurcation, in
M = fxgﬁ(E)ﬁdE, (12) which a pair of periodic orbitg, one stable and the other un-
0 JB stable, appears suddenly; this is also called a saddle-center
bifurcation. The second possibility is an inverse period-
where doubling bifurcation, in which an unstable orbit becomes

stable generating a new unstable orbit with twice the original
_ _ period. If the Hamiltonian has at least one discrete symme-
N(E.B) ; OE-Eq(B) (12 try, the isochronous bifurcation can also occur via the pitch-
fork (or inverse pitchforkmechanism, if the periodic orbit is
is the staircase function, and using the semiclassical formulaymmetric[8,9]. Then, a pair of new asymmetric orbiisne
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TABLE I. Fermi energy aBB=0 for the relevant values d? other hand, contribute a factdkplz 1412 which, as re-

and. marked in Ref[10], is of the same magnitude as the resonant
periodic orbit contribution in integrable systems obtained by
P\1 0.006 0.06 Richens[11]. This means that in the transition regime be-

tween chaos and regularity, the susceptibility may be of the

30 0.0308 0.3146 . . . .

same semiclassical order as in the integrable case, and hence
50 0.0401 0.4030 )
120 0.0620 i much larger than the small magnitudes expecte-abD. A

numerical example showing this regular-to-chaotic transition
and the role of bifurcations in the susceptibility will be pre-

being the reflection of the otheis generated. In both cases, Sentéd in the next two sections.

isochronous and period doubling, as the magnetic field is

increased further the newly born unstable orbits become IIl. THE MODEL AND ITS PROPERTIES

stable via subsequent period-doubling bifurcations. The |, this section we investigate the zero temperature mag-

stable orbits in turn then undergo higher order bifurcation,atic properties of the same model system considered in Ref.
whenever the stability angla passes through 2k/m (K, [2], namely

m coprime, k<m). Ozorio de Almeida and Hannajl0]

have computed the amplitudés,; for these so-called reso- 1 B \?2 1 B \? x2\? 5
nant cases. At the saddle-center bifurcation, for instance, H= 5| Px* 3¥| 5| Py=5X| +|y= 5| +0.0%%
A,1=1/1Y%, The higher order bifurcations witin>4, on the 18
p1 (18
0~4 T T T 0'4 T T T
(a) (a)
02 B 0.2 i
Py oot . Py oo} .
-0.2 | 4 -0.2 - 4
B=0.0 B=0.0
4% 05 00 05 10 4% 1.0
X
0.4 T T T 0.4
() (b)
02 E 0.2 + -
Px 0.0 - PX 0.0 F B
02| 1 02| .
B=0.75 o B=0.75
~0.4-1.0 . -OI.5 010 0!5 1.0 -OA—1.0 -OI‘S 010 0!5 ‘ 1.0
X X
FIG. 1. x—p, Poincare sections at energyE=0.0308 FIG. 2. x—py Poincare sections at energyE=0.0401

(A=0.006, P=30) and magnetic field§a) B=0; (b) B=0.75. (A=0.006,P=50) and magnetic fieldga) B=0; B=0.75.
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FIG. 3. Poincaresections at energi=0.062 ¢ =0.006, P=120): (a) and (b) showx— p, sections aB=0 andB=0.75;(c) and(d)
showy—p, sections for the same values Bf

In order to compare regular versus chaotic features we The Weyl approximation for the staircase function is, in
have performed calculations with two values &f For this case,
. =0.006, the first 50 states have such small energies that the
corresponding classical trajectories are effectively regular for E?
= ing i NW(E)= ——
any value ofB. For%=0.06 the level spacing is larger and W 2.0.212
most of the eigenstates move into the classically chaotic re- '

gion (of course, a few eigenstates—around seven in OUL 4 hence the energy of tieh level is proportional toh.
case—have low energies and still lie in the regular region We must therefore scale the calculations fior 0.006 by a
We have used two different basis states to diagonaliz?actor 10 before comparing them to those witkr 0.06.
H, depending on the \Z/alue d8. For B<0.6 we used According to the semiclassical results of the preceding
Ppm(x,y) =(n[x)(mly —x°/2) where|n) and|m) are eigen-  section, the behavior of is dictated by the classical orbits at
states of the harmonic part 6f with B=0 (see[12]). For  the Fermi energys, which, in turn, depends on the number
B=0.6 we used the exact solutions oH°=[p,  of particlesP and on the magnetic fielB via Eq.(9). It is
+(BI2)y]?/2+ [ py— (B/2)x]?2+y?+0.05¢ as basis states. therefore important to know whether the phase space at en-
For 2=0.006 we obtained 120 eigenstates with at least fiveergy u and magnetic field is mostly regular, mixed, or
digits of precision forB in the range 0 to 1.5 in steps of mostly chaotic, in order to understand the magnitude and
dB=0.05, while fora=0.06 only 70 eigenstates were con- oscillations ofy. We emphasize that the few regular states of
sidered. thechaotic caseéi =0.06 do not play an important role, since
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Py oo}l i
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(d)
-05 j
B=0.5
-1.0 t L
-1.5 0.5 0.5 1.6
X
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(b)
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px 0.0 | -
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FIG. 4. x—p, Poincare sections at energyE=0.3146 05 |- A
(A=0.06, P=30) and magnetic field¢a) 0.4; (b) 0.6; (c) 0.7; (d)
0.8;(e) 1.0;(f) 1.2.
. . B=1.0
all classical quantities are calculated at(B)=Ep(B), o . s

which is a chaotic energy shell fé1=10. 15 0.5 05 ' 15

In the next section we shall present results for the suscep- X
tibility with P=30 andP =50 for both values ofi, and for i
P=120 when#=0.006. The Fermi energy in each case at FIG. 5. x—py Poincaresections at energ=0.403 (. =0.06,
B=0 is given in Table I. P=50) and magnetic field§a) B=0.5; (b) B=1.0.

Figures 1 and 2 show thg—p, Poincaresections at
B=0 and B=0.75 for the energies 0.0308 computed these quantities and the results are shown in Fig.
(P=30, £#=0.006) and 0.0401R=50, % =0.006), respec- 6, for E=0.3146 P=30) and E=0.403 (P=50). Here
tively. In all cases, the sections reveal a very regular phasedashed(full) lines correspond to unstablstablg families,
space structure which, in fact, extends to all valueBof and the circles to bifurcations with period doubling. The
Figure 3 showsx—p, and y—p, sections atE=0.0620 junction of full and dashed lines without symbols indicates
(P=120, A#=0.006). In this case the dynamics are clearlyisochronous bifurcations. The labels V2, V3, andV4 in-
mixed. dex the vertical familythe shortest orbjtand its bifurcations

Figure 4 shows a detailed sequence ofwsixp, Poincare  (doubling, tripling, and quadrupling8,13], which can easily
sections atE=0.3146 P=30, #=0.06) for B=0.4, 0.6, be identified in Figs. &), 4(d), and 4e), respectively. The
0.7, 0.8, 1.0 and 1.2. As expected, the magnetic field tendgbelsH,R, andL represent other families of periodic orbits.
to regularize the dynamics. In Fig. 5, tixe-p, sections at These families appear more clearly yn-p, sections, but
E=0.4030 P=50, #=0.06) forB=0.5 andB=1.0 show they are not very relevant here because their periods are
basically the same behavior. long.

Although the Poincarsections allow a qualitative view of The behavior ov2 for low fields is the most significant
the global behavior of the system, it is difficult to specify the difference between Figs(& and &b): for P=30 this fam-
field value where any given periodic family bifurcates. Ofily, initially stable, becomes unstable Bt~0.4 and stable
particular importance in our study is the behavior ofagain atB~0.47. ForP=50, on the other hand/2 is ini-
a,=dS/gB andM (the monodromy matrixversusB for the tially unstable and becomes stableBat 0.25(via an inverse
principal periodic orbits of our model Hamiltonian. We have pitchfork bifurcation creating a new unstable family that, in
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.-_——————--———-—-——7-——-————--—

-0.04 '
0.0 0.3 0.6 0.9

B

00 ) , ‘ . ) FIG. 7. — x as a function oB for P=230. (a) shows the result
0.0 1.0 20 3.0 40 5.0 for the regular levels#{=0.006) and(b) shows the result for the
ap = —dS/dB chaotic levels £=0.06). The full(dashed vertical lines indicate

values ofB where period doublingsochronousbifurcations occur,

FIG. 6. Magnetic fieldB versusa,=dS/dB for the principal according to Fig. @&).

periodic orbits. (8 E=0.3146 (P=30, #=0.06) and (b)

E=0.403 (P=50,%=0.06). The full(dashedlines indicate stable-  the field, at least up t8~1.0. This behavior can be under-
(unstablé regions and circles indicate period doubling bifurcations. stqgod in terms of the harmonic oscillator model analyzed by
The transitions from full to dashed lines without symbols indicate nameth [14], since our model is essentially quadratic at this
isochronous bifurcations. energy.

The chaotic susceptibility, on the other hand, exhibits a
its turn, become stable Bt~0.34[see inset This bifurcated  very different behavior. FoB up to 0.3 it has a negligible
orbit turns out to be hard to follow numerically, and we showyalue, which is the Landau susceptibility, and a very small
only part of it in the figure. slope. For larger fields, however, we observe a clear transi-
tion to an oscillatory regime in which the magnitude yf
reaches values comparable to, or even higher than, those at-
tained in the regular case. To understand these features semi-

We have computed the susceptibility per particle at zerclassically, we go back to Figs. 4 an@ab From the Poin-
temperature for the regular%E0.006) and chaotic care sections we see that stable regions are seen only at
(A=0.06) cases. In Figs. 7 and 8 we compare these tw=0.6 and therefore cannot be responsible for the sudden
cases folP=30 andP =50, respectively. As discussed in the increase in— y atB~0.4. Figure 6a), however, reveals that
preceding section, the regular susceptibility should be scaled series of bifurcations take place at that point. The values of
by a factor of 10 in both figures because of our choices foB where the bifurcations occur are marked in Figh)7by
f. For P=30 we see that, except for the sharp dips, thevertical lines. We recall that at an isochronous bifurcation
regular susceptibility increases approximately linearly with(dashed vertical linethe semiclassical amplitudes are diver-

IV. NUMERICAL RESULTS FOR THE SUSCEPTIBILITY
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FIG. 8. — x as a function o8 for P=50. (a) shows the result
for the regular levels#{=0.006) and(b) shows the result for the
chaotic levels £ =0.06). The full(dashed vertical lines indicate
values ofB where period doublingsochronousbifurcations occur,
according to Fig. ).

gent, whereas at a period-doubling bifurcati@ontinuous
vertical ling it is the amplitude corresponding to the newly
bifurcated orbit and the first repetition of the main orbit that
diverge.

Figures 8a) and 8b), for P=50, show the same qualita-
tive behavior, with the sudden increase iy at B~0.3
related again to the bifurcations of periodic orbits, and not to
the size of stability islands. It is interesting to note that the
regularization process promoted by the magnetic field is trig-
gered sooner for P50[Fig. 8b)] than for P=30[Fig. 7(b)],
despite the fact that the periodic orbits have a larger instabil-
ity exponent aE=Egy(B=0) than atE=E3,(B=0).

The comparison betweepg and xcnao: for low fields is
more explicit in Fig. 9, where we plogyX 10 andg( chaotfOr
B=<0.1 andP=30. In this case, the regular Poincaetion,
Fig. 1(a), does not show any visible chaos while the chaotic
section, Fig. 4a), is entirely chaotic. So, we can see that for
low fields x e Xchaot@S €Xxpectedid].

0.005 , ,
0.004 | ////-
0.003 ]
0.002 | |

0.001 b

0.000 L - L L
0.00 0.02 0.04 0.06 0.08 0.10

FIG. 9. — x versusB for P=30. The thick(thin) line indicates

Xchaot (Xreg>< 10).

0.008 T T T T T

0.006

0.004

0.002

0.000

-0.002 !
0 80 100 120

0.06

0.04

0.02

0.00

-0.02
0

FIG. 10. —x as a function ofP: (a) regular levels andb)

We now investigate the robustness of our results in termshaotic levels.
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0.00 | T e ]
0.00 . : ‘ .
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B
FIG. 11. —(x) as a function ofB for P=30 andA=5. The FIG. 12. —(x) versus P for the canonicdt) and grand-
thick (thin) line indicates( xchaoy ({Xreg X 10). canonicalgc) ensembles aB=0.8 (chaotic case only The thick-

(dotted lines indicateA =5(2) in Eq.(19).
of ensemble averages. For simplicity we consider a Gaussian

average defined by riodic orbits into stable ones, or in other words, by inducing

bifurcations. We have shown here that these bifurcations
1 — contribute significantly tgy, even when the phase space is
)= WFZO x(B,P)ex —(P—P)74A%]. (19 still mostly chaotic. If the potential is initially regular, the
i field will first introduce some chao&xcept, of course, for

Figure 10 shows- y as a function ofP for some values of the case of radially symmetric potentialand then, for
the magnetic field for both the regulffig. 10@)] and cha- higher fields, regularize it again. o
otic [Fig. 1ab)] cases. Here the differences between the two From the classical point of view, the magnetic fied
are also visible. The regular case is very simple and, for #ecomes important when the cyclotron rad®s: \2E/B
fixed P, x.egincreases with the field. In contrast, we see thaf(e=m=c=1) is comparable with the typical length scale of
the chaotic case exhibits the opposite behavior for ld*ge the systemL. In fact, the effects oB can be felt quite
and a complex oscillation foP between 20 and 40. Figure strongly even wherR~10L for geometries like the square
11 shows(x) as a function o8 for P=30 andA=5. At  billiard [15]. The quantum mechanical length scale, or mag-
intermediate field values the average chaotic susceptibility isetic length, on the other hand, is giventy \#/B. There-
greatly enhanced in comparison with the regylarfurther  fore, at the Fermi energy.=2w#2p, the two scales are
emphasizing the effect of bifurcations. related by
Finally, we compare the canonical versus grand-canonical
averages for the chaotic case. As discussed by Altshuler,
Gefen, and Imry6] we expect a vanishingly small suscepti-
bility if the average in Eq(19) is performed in the grand- R=b?\4mp,
canonical ensemble. Figure 12 displays these averages as a
function of P for B=0.8 and two values of the dispersion
parameterA, and clearly exhibits good agreement with the Wherep is the electron density. In the experimental setup of
theory. Levy et al.[1], whenb~L impliesR/b~ 10— 100, justifying
the approximation in which the bending of the classical tra-
V. CONCLUSIONS jectories can be neglected. Therefore, we expect the suscep-
tibility to go to zero before any classical cha@s any im-
We have studied the magnetic susceptibility of a mesosportant bifurcationssets in. In order to observe the effects
copic ensemble of noninteracting electrons at zero temperatescribed in this paper a similar experimental setting would
ture confined by a smooth potential. We found thatle-  require either a lower density of electrorfby a factor

pends strongly on the underlying classical dynamics. If thejo—100) or larger square@y a factor 5-10).
magnetic field is weak enough, such that we can neglect its

effect on the classical orbits, the susceptibility will be larger

for a regular than for a chaotic confining potential, in agree- ACKNOWLEDGMENTS

ment with previous resultg4]. However, when the field is

increased further, the nature of the classical dynamics inevi- Itis a pleasure to thank J. P. Keating, R. Connors, and T.
tably changes. For initially chaotic potentials, the magnetidO. de Carvalho for helpful discussions. This paper was partly
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