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Abstract

The semiclassical formula for the quantum propagator in the coherent state representation
hz00je�iĤT=�hjz0i is not free from the problem of caustics. These are singular points along the complex
classical trajectories specified by z 0, z00 and T where the usual quadratic approximation fails, leading
to divergences in the semiclassical formula. In this paper, we derive third order approximations for
this propagator that remain finite in the vicinity of caustics. We use Maslov’s method and the dual
representation proposed in Phys. Rev. Lett. 95, 050405 (2005) to derive uniform, regular and tran-
sitional semiclassical approximations for coherent state propagator in systems with two degrees of
freedom.
� 2007 Elsevier Inc. All rights reserved.

PACS: 02.30.Mv; 03.65.Sq; 31.15.Gy
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1. Introduction

Semiclassical methods are the fundamental tool in the study of the quantum-classical
connection. In the limit where typical actions S become much larger than Planck’s con-
stant �h, it is possible to use classical ingredients, usually classical trajectories, to produce
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approximations to quantum mechanical objects, like matrix elements, wavefunctions and
propagators. In Feynman’s path integral approach to quantum mechanics, semiclassical
approximations consist in realizing that the classical paths become dominant as S� �h
and it suffices to add together the contributions of a small set of neighboring paths in
the vicinity of the classical one. This apparently simple procedure, however, has two well
known caveats that make the application of such formulas difficult: the existence of non-
contributing classical solutions and the presence of focal points or caustics.

The first of these issues, which is not going to be further discussed in this paper, is clo-
sely related to the Stokes Phenomenon, which is the abrupt change in the number of con-
tributing solutions to an asymptotic formula when a certain boundary in parameter space
is crossed [1–3]. Although a general criterion to decide whether a trajectory should be
included or not as a true contribution to the formula exists, it is usually hard to verify
in practice. An example of a careful study of these solutions can be found in [4]. More gen-
erally, one resorts to a simple a posteriori criterion: the contribution of each trajectory is
computed and, if it leads to non-physical results, it is discarded. This kind of prescription
has been widely used in the last years as, for example, in the semiclassical formula of the
coherent state propagator in one [5] and two [6] spatial dimensions, in the momentum
propagator [7] and in the semiclassical evolution of gaussian wave packets [8].

Singularities due to caustics are the other recurrent problem in semiclassical formulas.
In the WKB theory [9] the semiclassical wavefunction in the position representation
diverges at the turning points _q ¼ 0. In the momentum representation the equivalent prob-
lem occurs at the points where _p ¼ 0. In addition, for the Van-Vleck propagator, which is
a semiclassical formula of the propagator in the coordinate representation, hq00je�iĤT=�hjq0i,
singularities occur at the focal points [10]. These are points along the trajectory from
q(0) = q 0 to q(T) = q00 where an initial set of trajectories issuing from the same initial point
q(0) but with slightly different momenta, get together again, focusing at the same point
q(t).

The failure of the semiclassical approximation at these points, and the reason why a sin-
gularity develops there, is that the usual quadratic approximation used to derive such for-
mulas becomes degenerate and third order contributions around the stationary points
become essential. The standard procedure to obtain improved formulas valid at caustics
is due to Maslov [11] and it consists in changing to a dual representation where the singu-
larity does not exist [11,12]. For a singularity in coordinates, one uses the momentum
representation and vice-versa. The trick is that, when transforming back to the represen-
tation where the singularity exists, one should go beyond the quadratic approximation,
otherwise the singularity re-appears.

The subject of the present paper is the treatment of singularities due to caustics in the
semiclassical formula of the coherent state propagator in two spatial dimensions
Kðz00�; z0; T Þ � hz00je�iĤT=�hjz0i. In spite of the fact that this is a phase space representation,
where no turning points exist, this propagator is not free from caustics [5,6,13,14],
although earlier works on the subject indicated so [15–18]. These points have been termed
phase space caustics.

The caustics in KSCðz00�; z0; T Þ have the same origin as the focal point divergence in the
Van-Vleck propagator, namely, the breakdown of the quadratic approximation. There-
fore, it is natural to look for a dual representation as in Maslov’s method to derive higher
order approximations. However, since both coordinates and momenta are used in the
coherent states, there seems to be no room for a natural dual representation. In a recent
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paper [19] we have proposed the construction of an application between f(z*) = Æzjwæ and
an associate function ~f ðwÞ that plays the role of the dual representation for the coherent
state propagator. Using this auxiliary mapping we were able to derived a uniform approx-
imation for the propagator of one-dimensional systems that is finite at phase space caus-
tics. In this paper, we use such a representation to derive regular, transitional and uniform
semiclassical approximation for the coherent state propagator of two-dimensional sys-
tems, which is the simplest case where conservative chaos is possible. The resulting formu-
las involve, as expected, the Airy function and the third derivatives of the action function.

This article is organized as follows: in Section 2, we review the semiclassical formula for
the coherent state propagator in two dimensions and discuss its singularities. In Section 3,
we review the dual representation proposed in Ref. [19] and generalize it for two-dimen-
sional systems. In Section 4, we use this representation and the Maslov method to derive
regular, transitional and uniform approximations for the coherent state propagator. Our
conclusions and final remarks are presented in Section 5.

2. The semiclassical limit of the coherent state propagator

In this section, we briefly discuss the usual semiclassical formula for the propagator in
the coherent state representation. The 2-D non-normalized coherent state jzæ is the direct
product of two 1-D states, jzæ ” jzxæ � jzyæ, where

jzri ¼ ezr âyr j0i;

âyr ¼
1ffiffiffi
2
p q̂r

br
� i

p̂r

cr

� �
;

zr ¼
1ffiffiffi
2
p �qr

br
þ i

�pr

cr

� �
:

ð1Þ

The index r assumes the values x or y. j0æ is the ground state of a harmonic oscillator of
frequency xr ¼ �h=ðmb2

r Þ, âyr is the creation operator and �qr, �pr are the mean values of the
position q̂r and momentum p̂r operators, respectively. The widths in position br and
momentum cr satisfy brcr = �h. In addition, the complex number zr is eigenvalue of âr with
eigenvector jzræ.

The coherent state propagator Kðz00�; z0; T Þ � hz00je�iĤT=�hjz0i represents the probability
amplitude that the initial coherent state jz 0æ evolves into another coherent state jz00æ after
a time T, according to the Hamiltonian Ĥ . Notice that, since the initial and final coherent
states are non-normalized, all the propagators considered in this paper should be multi-
plied by e�

1
2jz
0 j�1

2jz
00 j2 to get the usual propagators with normalized bras and kets.

The semiclassical approximation for this propagator was firstly considered by Klauder
[20–22] and Weissman [23]. More recently, however, a detailed derivation was presented
for systems with one degree of freedom [24]. The expression for two-dimensional systems
is [6]

Kð2ÞSC z00�; z0; Tð Þ ¼
X
traj:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

j det M vvj

s
exp

i

�h
F

� �
; ð2Þ

where the index (2) was inserted to indicate explicitly that this formula was obtained by
means of a second order saddle point approximation. The factors Mvv and F depend

656 A.D. Ribeiro, M.A.M. de Aguiar / Annals of Physics 323 (2008) 654–672



Author's personal copy

on (generally complex) classical trajectories. These trajectories are best represented in
terms of new variables u and v, instead of the canonical variables q and p, defined by

ur ¼
1ffiffiffi
2
p qr

br
þ i

pr

cr

� �
and vr ¼

1ffiffiffi
2
p qr

br
� i

pr

cr

� �
: ð3Þ

The sum in Eq. (2) runs over all trajectories governed by the complex Hamiltonian
~Hðu; vÞ � hvjĤ jui. They must satisfy the boundary conditions u(0) ” u 0 = z 0 and
v(T) ” v00 = z00*. Notice that qr and pr are complex variables, while the propagator labels
(�q0r, �p0r for the initial state and �q00r , �p00r for the final one) are real. In Eq. (2), F is given by

Fðv00; u0; T Þ ¼ Sðv00; u0; T Þ þ Gðv00; u0; T Þ � �h
2
rvv; ð4Þ

where S, the complex action of the trajectory, and G are

Sðv00; u0; T Þ ¼
Z T

0

i�h
2
ð _uv� u_vÞ � ~H

� �
dt � i�h

2
½u00v00 þ u0v0�; ð5Þ

Gðv00; u0; T Þ ¼ 1

2

Z T

0

o
2 ~H

ouxovx
þ o

2 ~H
ouyovy

� �
dt: ð6Þ

The matrix Mvv is a block of the tangent matrix defined by

du00

dv00

� �
¼

Muu Muv

M vu M vv

� �
du0

dv0

� �
; ð7Þ

where du and dv are small displacements around the complex trajectory. We use a single
(double) prime to indicate initial time t = 0 (final time t = T). The elements of the tangent
matrix can be written in terms of second derivatives of the action (see Ref. [6]). Finally, rvv

is the phase of detMvv.
The classical trajectories contributing to the propagator are functions of nine real

parameters: four initial labels �q0x, �q0y , �p0x and �p0y , four final labels �q00x , �q00y , �p00x and �p00y , and
the propagation time T. As one changes one of these parameters continuously, it might
happen that two independent solutions become very similar to each other. In the limit sit-
uation they might coalesce into a single trajectory, characterizing a phase space caustic, or
a bifurcation point. At the immediate neighborhood of the caustic these solutions will sat-
isfy identical boundary conditions. Therefore, close to the caustic, we can set small initial
displacements du 0 = 0 and dv 0 „ 0 in such a manner that, after the time T, du00 „ 0 and
dv00 = 0. Eq. (7) then reduces to

du00

0

� �
¼

Muu Muv

M vu M vv

� �
0

dv0

� �
; ð8Þ

implying that detMvv = 0. Therefore, at the caustic the pre-factor of the Eq. (2),
jdetMvvj�1/2, diverges and the semiclassical formula cannot be used. The main purpose
of this paper is to correct the semiclassical formula in these situations, replacing the sin-
gular pre-factor by a well behaved Airy-type function.

As mentioned in Section 1, in addition to the divergence of the pre-factor, the semiclas-
sical formula (2) can exhibit other peculiarities, which we shall not address here. For
example, for some complex trajectories the imaginary part of F can be large and negative,
giving unreasonably large contributions to the propagator. This problem is related to the
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Stokes Phenomenon, and lead to the exclusion of some trajectories from the sum in Eq. (2)
in order to eliminate the unphysical results they produce [4–8,13].

3. Dual representation for the coherent state propagator

The main difficulty in dealing with phase space caustics is the lack of a dual represen-
tation for the coherent state propagator. Caustics in position representation can be
removed by changing to the momentum representation and vice-versa. For the coherent
state propagator, since both position and momentum are being used, it is not clear what
to do to bypass the phase space caustics. In Ref. [19] we defined an application that plays
the role of a dual representation for the coherent state basis and used it to find a uniform
formula for the semiclassical propagator for one-dimensional systems. The purpose of this
section is to extend the formalism of Ref. [19] for systems with two degrees of freedom.

Based on the relations

uðT Þ � u00 ¼ i

�h
oS

ov00
and vð0Þ � v0 ¼ i

�h
oS

ou0
; ð9Þ

which can be demonstrated by differentiating the complex action of Eq. (5), we perform a
Legendre transform on Sðv00; u0; T Þ replacing the independent variable v00 by
u00 ¼ ði=�hÞðoS=ov00Þ. The transformed function ~S depends on the variables u 0 and u00,
instead of u 0 and v00,

~Sðu00; u0; T Þ ¼ Sðv00; u0; T Þ þ i�hu00v00; ð10Þ

and satisfies the relations

v00 ¼ � i

�h
o~S

ou00
and v0 ¼ i

�h
o~S

ou0
: ð11Þ

With these properties in mind we define a dual representation ~Kðu00; u0; T Þ for the propa-
gator K(v00,u 0,T) by

~Kðu00; u0; T Þ ¼ 1

2p

Z
C

Kðv00; u0; T Þe�u00v00d2v00; ð12Þ

Kðv00; u0; T Þ ¼ 1

2p

Z
~C

~Kðu00; u0; T Þeu00v00d2u00; ð13Þ

where C and ~C are convenient paths that, as specified in [19], are chosen in such a way that
Eqs. (12) and (13) are a Laplace and a Mellin transform, respectively. The analogy be-
tween these two expressions and the corresponding coordinate and momentum represen-
tations is not complete. This is because, while K(v00,u 0,T) is the quantum propagator,
~Kðu00; u0; T Þ does not seem to correspond to an explicit quantum matrix element. It is a
mathematical artifice that allows for the continuation of the propagator in an auxiliary
phase space, rather than a quantity with a direct physical interpretation.

In order to obtain a semiclassical formula for ~Kðu00; u0; T Þ, we insert Eq. (2) into (12),

~KSCðu00; u0; T Þ ¼
1

2p

Z
C

e
i
�hSðv

00;u0 ;T Þþ i
�hGðv

00;u0;T Þ� i
2rvv�1

2 ln j det Mvvj�u00v00d2v00: ð14Þ

Rigorously, Eq. (14) says that to calculate ~KSC for a set of parameters u00, u 0 and T, we need
to calculate the contribution of the trajectory beginning at u(0) = u 0 and ending at
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v(T) = v00, and sum over all v00 lying in the path C. Notice that, for each trajectory, the va-
lue of the variable u at time T is function of u 0, v00 and T, namely, u(T) ” u(v00,u 0,T). In the
semiclassical limit this integral can be solved by the steepest descent method [3], according
to which the critical value v00c of the integration variable satisfies

o

ov00
½S þ i�hu00v00�

� �				
v00c

¼ 0 or u00 ¼ i

�h
oS

v00

				
v00c

; ð15Þ

where we have considered that G and ln jdetMvvj varies slowly in comparison with S, since
the former is of order �h while the later is of order �h0 (see Ref. [24]). Eq. (15) says that the
critical trajectory satisfies u(0) = u 0 and uðT Þ ¼ uðv00c ; u0; T Þ ¼ u00, i.e., the critical value v00c of
the integration variable is equal to v(T) of a trajectory satisfying these boundary condi-
tions. This shows that the integration path C must coincide with (or be deformable into)
a steepest descent path through v00c . Expanding the exponent up to second order around
this trajectory and performing the resulting Gaussian integral we obtain

~Kð2ÞSCðu00; u0; T Þ ¼
X
traj:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

j det Muvj

s
exp

i

�h
~Sðu00; u0; T Þ þ i

�h
~Gðu00; u0; T Þ � i

2
ruv

� �
; ð16Þ

where, again, the index (2) is used to indicate the method of integration used. The sum
over stationary trajectories was included because more than one of them may exist. To de-
rive the last equation, we have also used the result

� det
Sv00x v00x Sv00x v00y

Sv00y v00x Sv00y v00y

 !
¼ �h2 j det Muvj

j det M vvj
eiðruv�rvvÞ; ð17Þ

with Sab � o2S=oaob, for a; b ¼ v00x or v00y , and ruv is the phase of detMuv. This last equa-
tion can be obtained by considering small variations of Eq. (9), rearranging the terms so as
to write du00 and dv00 as function of du 0 and dv 0, and comparing with Eq. (7).

The new semiclassical propagator ~KSC is a function of complex classical trajectories sat-
isfying u 0 = u(0) and u00 = u(T). Muv is given by Eq. (7), ~Gðu00; u0; T Þ is the function G cal-
culated at the new trajectory, and ~Sðu00; u0; T Þ is given by Eq. (10). It is easy to see from
Eq. (8) that, when detMvv is zero, detMuv is not. This is a fundamental property that
one has to bear in mind when deriving approximations for K(v00,u 0,T) inserting ~Kð2ÞSC into
Eq. (13). Three such approximations will be derived in the next section.

4. Coherent state propagator from its dual representation

Replacing Eq. (16) back into Eq. (13) we obtain

KSCðv00; u0; T Þ ¼
1

2p

Z
~C

e
i
�h
~Sðu00 ;u0 ;T Þþ i

�h
~Gðu00;u0 ;T Þ� i

2ruv�1
2 ln j det Muvjþu00v00d2u00: ð18Þ

To solve KSC for the parameters v00, u 0 and T, we need to sum the contributions of all tra-
jectories beginning at u 0 and ending at u00 lying in ~C. The saddle point u00c of the exponent
satisfies

o

ou00
½~S � i�hu00v00�

� �				
u00c

¼ 0 or v00 ¼ � i

�h
oS

v00

				
u00c

; ð19Þ
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which says that the most contributing trajectories are those with boundary conditions
v(T) = v00 and u(0) = u 0, exactly as in Eq. (2). Therefore, expanding the exponent up to sec-
ond order around the critical trajectory, solving the remaining Gaussian integral, and
using the result (see Eq. (A.22) of the appendix)

� det
~Su00x u00x

~Su00x u00y

~Su00y u00x
~Su00y u00y

 !
� � det ~Su00u00 ¼ �h2 j det M vvj

j det Muvj
eiðrvv�ruvÞ; ð20Þ

we recover Eq. (2).
Clearly, the connection between the propagators of Eqs. (2) and (16) via steepest des-

cent approximation with quadratic expansion of the exponent works only in the regions
where both detMuv and detMvv are non-zero. Close to caustics, where detMvv = 0, ~Kð2ÞSC

is still well defined and KSC can be obtained by doing the inverse transform (18) but
expanding the exponent to at least third order. There are, however, several ways to handle
such an expansion, depending on how close to the caustic a given stationary trajectory is.
In the next subsections, we show how to obtain three approximate formulas for the
propagator:

In Section 4.1, we evaluate Eq. (18) by expanding its integrand up to third order around
the stationary trajectories. As a result we find that each contribution already present in
Kð2ÞSC appears multiplied by a correction term IR. This regular formula for the semiclassical
propagator is good only if the stationary trajectories are not too close to caustics, so that
second and third order terms contribute to the integral.

In Section 4.2, we consider the situation where two contributing solutions are so close
each other that, if we used the regular formula, the contributions would be counted twice.
We therefore perform a transitional approximation, where the exponent of (18) is
expanded around the trajectory that lies exactly at the phase space caustic. Since this tra-
jectory is not generally stationary, this approach works only if the stationary solutions are
sufficiently close to the caustic.

Finally, in Section 4.3, we derive a uniform approximation, which is applicable both near
and far from the caustics but might not be so accurate as the two previous expressions.

4.1. Regular formula

The philosophy of the regular approximation is to correct the contribution of each
stationary trajectory by including third order terms in the expansion of the exponent of
Eq. (18). When this expansion is performed we obtain

Kð3ÞSCðv00; u0; T Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

j det M vvj

s
e

i
�hF

( )
� IRðv00; u0; T Þ; ð21Þ

where the quantities between brackets are the same as in Eq. (2), and the correction term
IR is given by

IR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det ~Su00u00

4p2�h2

s Z
d2½du00�ei

�hfAdu002x þBdu00x u00yþCdu002y þDdu003x þEdu002x du00yþF du002y du00xþGdu003y g ð22Þ

and
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A ¼ 1

2
~Su00x u00x ; B ¼ ~Su00x u00y ; C ¼ 1

2
~Su00y u00y ;

D ¼ 1

6
~Su00x u00x u00x ; E ¼ 1

2
~Su00x u00x u00y ; F ¼ 1

2
~Su00x u00y u00y and G ¼ 1

6
~Su00y u00y u00y : ð23Þ

All functions and constants in Eq. (21) are calculated at the critical trajectory. In Eq. (23),
we define ~Sabc � ðo3 ~S=oaobocÞ and ~Sab � ðo2 ~S=oaobÞ, for a; b; c ¼ u00x or u00y . The integra-
tion contour of Eq. (22) is chosen to coincide with the steepest descent of the saddle point.

The integral (22) has no direct solution. However, it can be largely simplified in the
coordinate system (du+,du�) that diagonalizes the matrix of the quadratic terms,

A B=2

B=2 C

� �
¼ 1

2
~Su00u00 : ð24Þ

Therefore, we perform the change of variables

du00x
du00y

" #
¼ 1

B=2ðk� � kþÞ
NþðA� k�Þ �N�ðA� kþÞ

NþB=2 �N�B=2

� �
duþ
du�

� �
; ð25Þ

where N± are normalization constants and k± are eigenvalues of 1
2
~Su00u00 ,

N	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB=2Þ2 þ ðA� k	Þ2

q
and k	 ¼

tr~Su00u00

4
1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

det ~Su00u00

ðtr~Su00u00 Þ2

s( )
: ð26Þ

In the new variables Eq. (22) becomes

IR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� kþk�

p2�h2

r Z
d½duþ�d½du��e

i
�hfkþdu2

þþk�du2
�þD0du3

þþE0du2
þdu�þF 0duþdu2

�þG0du3
�g; ð27Þ

where the new coefficients, D 0, E 0, F 0 and G 0, are combinations of those in Eq. (23). Our
final formula depends just on G 0, which amounts to

G0 ¼ N�
kþ � k�

� �3 A� kþ
B=2

� �3

Dþ A� kþ
B=2

� �2

E þ A� kþ
B=2

� �
F þ G

" #
: ð28Þ

According to Eqs. (20) and (24), when detMvv fi 0, det ~Su00u00 also tends to zero, causing
the breaking down of the quadratic approximation. However, in terms of the variables du+

and du�, we see that det ~Su00u00 ð¼ 4kþk�Þ goes to zero in a particular way: while k� vanishes,
k+ generally remains finite. Therefore Eq. (27) is always of a gaussian type integral in the
variable du+, since we are still able to neglect third order terms in this direction. Solving
the integral in du+ leads to

IR 

ffiffiffiffiffiffiffiffiffiffiffi
�ik�
p�h

r Z
d½du��e

i
�hfk�du2

�þG0du3
�g: ð29Þ

Now we perform a last changing of variables, t ¼ ð3G0

�h Þ
1=3½du� þ k�

3G0�, and obtain

IR 
 2
ffiffiffi
p
p

�we
2
3�w6

fið�w4Þ; ð30Þ

where �w ¼ ð�ik�=�hÞ1=2

ð3G0=�hÞ1=3 and fi(w) is given by
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fiðwÞ ¼
1

2p

Z
Ci

dt exp i wt þ 1

3
t3

� �� �
; ð31Þ

for i = 1, 2, 3. The index i refers to three possible paths of integration Ci, giving rise to
three different Airy’s functions (see Ref. [3]). Rigorously the choice of the path should
be done according to Cauchy’s Theorem, since it must be obtained by a deformation
of the original contour of integration. In practice, however, it might be very difficult to
find the correct path in this way, and we have to use physical criteria to justify the
choice of Ci.

Inserting (30) into Eq. (21) and considering the existence of more than one critical tra-
jectory, we finally find the regular formula

Kð3ÞSCðv00; u0; T Þ ¼
X
traj:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

j det M vvj

s
e

i
�hF v00 ;u0 ;Tð Þ

" #
� 2

ffiffiffi
p
p

�we
2
3�w6

fið�w4Þ
h i( )

: ð32Þ

In this equation, each stationary trajectory gives a contribution which is that of the qua-
dratic approximation multiplied by a correction factor IR that depends only on the
parameter �w. Close to a caustic k� is very small but G 0 (generally) remains finite. Exactly
at the caustic j�wj is zero, getting larger and larger as we move away from it. Therefore we
expect that IR should go to 1 as j�wj goes to infinity, since the regular expression should
recover Kð2ÞSC in this limit. To verify this assertion, we look at the asymptotic formulas
for the Airy’s functions [25],

f1ðwÞ �
1

2
ffiffiffi
p
p w�1=4e�

2
3w3=2

;

f2ðwÞ �
�i

2
ffiffiffi
p
p w�1=4e

2
3w3=2

;

f3ðwÞ �
i

2
ffiffiffi
p
p w�1=4e

2
3w3=2

:

ð33Þ

Using these expressions in Eq. (30), we see that only f1(w) produces the desired asymptotic
result, indicating that this is the proper choice of Airy function far from the caustic. How-
ever, this is so only because we have taken the principal root in the definition of �w. As the
physical results should not depend on the arbitrariness of branches in the complex plane,
the choice of a different root would lead to a different path Ci, so that physical results
remain the same. A careful discussion about this point can be found in [4].

Exactly at the caustic, �w ¼ 0, the regular formula becomes

Kð3ÞSCðv00; u0; T Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i�hp
kþðdet MuvÞ

s
�h

3G0

� �1=3

fið0Þe
i
�h½SþG�; ð34Þ

where the sum was excluded because the critical trajectories coalesce at this point.

4.2. Transitional formula

Each contribution to the semiclassical propagator calculated in the last section (as well
as those of Eq. (2)) has information about the critical trajectory plus its vicinity. If two
trajectories are very close each other, like in the vicinity of a phase space caustic, their
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regions of influence might overlap. The regular formula cannot be used in these situations,
since it assumes that the trajectories can still be counted independently. To find an approx-
imation for K(v00,u 0,T) valid in this scenario, we shall perform the integral (18) expanding
the exponent about the (non-stationary) trajectory corresponding to the phase space caus-
tic itself, defined by the point �u00 where j det ~Su00u00 j and therefore jdetMvvj [see Eq. (20)] are
zero. Evaluating this single contribution to third order should be equivalent to include and
sum over each stationary trajectory.

The condition det ~Su00u00 ¼ 0 leads to the PSC trajectory that begins at u(0) ” u 0 and
v(0) ” v 0, and ends at uðT Þ � �u00 and vðT Þ � �v00, where �v00 is assumed to be close to v00.
Expanding the exponent of Eq. (18) up to third order around this new trajectory
yields

KPSC
SC ðv00; u0; T Þ ¼ ðdet MuvÞ�1=2e

i
�hfSð�v

00;u0;T ÞþGð�v00 ;u0 ;T Þ�i�h�u00ðv00��v00ÞgIT; ð35Þ
where

IT ¼
1

2p

Z
d2½du00�ei

�hfXdu00xþY du00yþAdu002x þBdu00x u00yþCdu002y þDdu003x þEdu002x du00yþF du002y du00xþGdu003y g; ð36Þ

with X ¼ o~S=ou00x � i�hv00x and Y ¼ o~S=ou00y � i�hv00y . The functions appearing in Eq. (35) and
all the coefficients are calculated at the PSC trajectory.

We solve Eq. (36) using the same technique described in the last section, with the use of
the transformation (25). However, as we deal with the PSC trajectory, k+ = A + C and
k� = 0. The integral IT becomes

IT ¼
1

2p

Z
d½duþ�d½du��e

i
�hfaduþþbdu�þkþdu2

þþD0du3
þþE0du2

þdu�þF 0duþdu2
�þG0du3

�g; ð37Þ

where the only coefficients that appear in the final formula are

a ¼ � Nþ
kþ � k�

� �
A� k�

B=2

� �
X þ Y

� �
; b ¼ N�

kþ � k�

� �
A� kþ

B=2

� �
X þ Y

� �
ð38Þ

with k� = 0 and G 0, given by Eq. (28).
The integral over du+ can be performed neglecting terms of third order. We obtain

IT ¼
1

2p

ffiffiffiffiffiffiffi
ip�h
kþ

s
e
� i

�h
a2

4kþ

Z
d½du�� exp

i

�h
bdu� þ G0du3

�

 �� �

: ð39Þ

By setting t ¼ ð3G0

�h Þ
1=3du�, the last equation can be written as

IT ¼

ffiffiffiffiffiffiffi
ip�h
kþ

s
e
� i

�h
a2

4kþ
�h

3G0

� �1=3

fið~wÞ; ð40Þ

where ~w ¼ b=�h

ð3G0=�hÞ1=3 and the function fi(w) refers to the Airy’s functions (31). Finally, we
write the transitional formula by combining Eq. (40) with Eq. (35),

KPSC
SC ðv00; u0; T Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�hp

kþðdet MuvÞ

s
�h

3G0

� �1=3

e
� i

�h
a2

4kþfi ~wð Þei
�h½SþG��i�h�u00ðv00��v00Þ: ð41Þ

Eq. (41) depends on the PSC trajectory, which satisfies u(0) = u 0 and vðT Þ ¼ �v00, and is
valid only if �v00 is close to v00.
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Far from the caustic Eq. (41) does not make sense, since the PSC trajectory becomes
completely different from the actual stationary trajectories. On the other hand, when
the propagator is calculated exactly at the PSC, Eqs. (41) and (32) should furnish the same
result. This can be verified by setting �v00 ¼ v00 and a ¼ b ¼ ~w ¼ 0 in Eq. (41), which reduces
directly to Eq. (34).

4.3. Uniform formula

The regular formula is good as long as one is not too close to a phase space caustic,
whereas the transitional formula is good only very close to it. In either cases the expres-
sions we derived cannot be used everywhere in the space spanned by the parameters u 0,
v00 and T. The uniform approximation provides such a global formula [26]. The basic idea
is to map the argument of the exponential in (18) into a function having the same structure
of saddle points as the original one, i.e., two saddle points that may coalesce on the phase
space caustic depending on a given parameter.

In order to simplify our calculation, we shall use the variables u00þ and u00�, instead of the
original u00x and u00y [see Eq. (25)]. In these variables the exponent of Eq. (18)

Eðu00; u0; T Þ ¼ i

�h
~Sðu00; u0; T Þ þ i

�h
~Gðu00; u0; T Þ � i

2
ruv �

1

2
ln j det Muvj þ u00v00; ð42Þ

becomes

Eðu00þ; u00�Þ � E½u00ðu00þ; u00�Þ; u0; T �; ð43Þ

where we omit the dependence on the variables u 0 and T because they are not being inte-
grated. The integral (18) then becomes

1

2p

Z
eEðu

00
þ;u
00
�Þ du00þ du00�: ð44Þ

Since the main contributions to this integral come from the neighborhood of the saddle
points, we can map the exponent Eðu00þ; u00�Þ into a new function N(x,y), where x ¼ xðu00þÞ
and y ¼ yðu00�Þ. We restrict ourselves to the case where there are only two critical points,
u001 ¼ ðu00þ; u00�Þ1 and u002 ¼ ðu00þ; u00�Þ2, which, depending on the parameters u 0 and T, may coa-
lesce at the phase space caustic. Then

1

2p

Z
eEðu

00
þ;u
00
�Þ du00þdu00� 


1

2p

Z
Jðx; y; ÞeNðx;yÞ dxdy: ð45Þ

The simplest function with these properties is

Nðx; yÞ ¼ A� By þ y3

3
þ Cx2; ð46Þ

where A, B and C may depend on u 0 and T. The mapping requires that the saddle points of
N(x,y), which are ð0;	

ffiffiffiffi
B
p
Þ, coincide with the critical points u001;2:

Eðu001Þ � E1 ¼ Nð0;
ffiffiffiffi
B
p
Þ ¼ A� 2

3
B3=2;

Eðu002Þ � E2 ¼ Nð0;�
ffiffiffiffi
B
p
Þ ¼ Aþ 2

3
B3=2; ð47Þ

implying that
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A ¼ 1

2
ðE1 þ E2Þ and B ¼ 3

4
ðE2 � E1Þ

� �2=3

: ð48Þ

Another condition required to validate the method is to impose the equivalence between
the vicinity of critical points of N(x,y) and Eðu00þ; u00�Þ,

dN þ 1

2
d2N þ 1

6
d3N þ . . .

� �				
ð0;	

ffiffiffi
B
p
Þ
¼ dE þ 1

2
d2E þ 1

6
d3E þ . . .

� �				
u00

1;2

: ð49Þ

This equation allows us to find how to transform an arbitrary infinitesimal vector
ðdu00þ; du00�Þ into (dx,dy), around the critical points. It provides, therefore, information
about the Jacobian J(x,y) of the transformation calculated at the critical points,
namely, J 1 � Jð0;

ffiffiffiffi
B
p
Þ and J 2 � Jð0;�

ffiffiffiffi
B
p
Þ.

As the first derivatives of E and N vanish at the critical points, Eq. (49) implies that

1

2
dx dyð Þ

o2N
ox2 þ 1

3
o3N
ox3 dx o2N

oxoy þ o3N
oyox2 dx

o2N
oyoxþ o3N

oxoy2 dy o2N
oy2 þ 1

3
o3N
oy3 dy

0
@

1
A
						
ð0;	

ffiffiffi
B
p
Þ

dx

dy

� �
ð50Þ

should be equal to

1

2
du00þ du00�
� 
 o2E

ou00þ
2 þ 1

3
o3E

ou00þ
3 du00þ

o2E
ou00þou00�

þ o3E

ou00�ou00þ
2 du00þ

o2E
ou00�ou00þ

þ o3E

ou00þou00�
2 du00�

o2E

ou00�
2 þ 1

3
o3E

ou00�
3 du00�

0
@

1
A
						
u00

1;2

du00þ
du00�

� �
: ð51Þ

Writing du00þ ¼ aþdx and du00� ¼ a�dy this equality results in

o2E

ou00þ
2
þ 1

3

o3E

ou00þ
3
ðaþdxÞ

" #
a2
þ

( )
u00

1;2

¼ 2C;

o2E

ou00þou00�
þ o3E

ou00�ou00þ
2
ðaþdxÞ

" #
aþa�

( )
u00

1;2

¼ 0;

o
2E

ou00�ou00þ
þ o

3E

ou00þou00�
2

a�dyð Þ
" #

aþa�

( )
u00

1;2

¼ 0;

o2E

ou00�
2
þ 1

3

o3E

ou00�
3
ða�dyÞ

� �
a2
�

� �
u00

1;2

¼ 	2
ffiffiffiffi
B
p
þ 2

3
dy: ð52Þ

In the limit of small �h, G and detMuv vary slowly in comparison with S and the first and
last of equations (52) become, respectively,

i

�h
f½kþ þ D0ðaþdxÞ�a2

þgju00
1;2
¼ C;

i

�h
f½k� þ G0ða�dyÞ�a2

�gju00
1;2
¼ 	

ffiffiffiffi
B
p
þ 1

3
dy:

ð53Þ

Moreover, the second and third (52) imply that E 0 = F 0 = 0. We emphasize that D 0, E 0, F 0

and G 0 are the same coefficients as those of Section 4.1.
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Eq. (53) can be solved if we neglect the terms containing dx and dy. We find

ðaþÞju00
1;2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i�hC
ðkþÞju00

1;2

s
and ða�Þju00

1;2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i�h

ffiffiffiffi
B
p

ðk�Þju00
1;2

vuut ; ð54Þ

so that the Jacobian at the saddle points becomes

J 1;2 ¼ ðaþa�Þju00
1;2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��h2C

ffiffiffiffi
B
p

ðkþk�Þju00
1;2

vuut : ð55Þ

The full Jacobian can therefore be conveniently written in the vicinity of the saddle points as

Jðx; yÞ ¼ JðyÞ ¼ 1

2
ðJ 1 þ J 2Þ �

y

2
ffiffiffiffi
B
p ðJ 2 � J 1Þ; ð56Þ

and the uniform approximation for the propagator becomes

KUN
SC ðv00; u0; T Þ ¼

1

2p

Z
Jðx; yÞeA�Byþy3=3þCx2

dxdy: ð57Þ

Performing the integral over x we obtain the final expression

KUN
SC ðv00; u0; T Þ ¼ i

ffiffiffi
p
p

eA
g2 � g1ffiffiffiffi

B
p

� �
f 0i ðBÞ þ ðg1 þ g2ÞfiðBÞ

� �
; ð58Þ

where fi is given by Eq. (31), f 0i ¼ dfi=dy and

g1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	�h2

ffiffiffiffi
B
p

ð4kþk�Þju00
1;2

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffiffi
B
p det Muv

det M vv

� �				
u00

1;2

s
: ð59Þ

Eq. (58) is the uniform formula for the two-dimensional coherent state propagator. As
in Sections 4.1 and 4.2, the determination of the proper path of integration Ci is done by
physical criteria.

Eq. (59) shows us how the singularity in the coalescence point is controlled. When
detMvv goes to zero, the difference between E1 and E2 also vanishes, so that the quotientffiffiffiffi
B
p

= det M vv [see also Eq. (48)] remains finite. Notice, however, that this fraction might
become extremely fragile close to a caustic, because both numerator and denominator
go to zero. Exactly at the caustic we can return to the second of Eq. (53) to find the correct
value of a�:

aPSC
� ¼ �i�h

3G0

� �1=3

) J PSC ¼
�i�hC
kþ

� �1=2 �i�h
3G0

� �1=3

: ð60Þ

One should also remember that, if �h is not sufficiently small, the derivatives of G and
detMvv may become important, specially when k� fi 0.

It is interesting to check that the uniform approximation (58) recovers the quadratic
approximation away from the caustics, i.e., in the limit B!1. According to Eq. (33)
we find that, for large w,
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w�1=2f 01ðwÞ � �1
2
ffiffi
p
p w�1=4e�

2
3w3=2

;

w�1=2f 02ðwÞ � �i
2
ffiffi
p
p w�1=4e

2
3w3=2

;

w�1=2f 03ðwÞ � i
2
ffiffi
p
p w�1=4e

2
3w3=2

:

ð61Þ

Inserting Eqs. (33) and (61) into the uniform approximation results in

KUN
SC ðv00; u0; T Þ 


�ig2eA�
2
3B

3=2
B�1=4; by using f 1

�g1eAþ
2
3B

3=2
B�1=4; by using f 2

g1eAþ
2
3B

3=2
B�1=4; by using f 3

8><
>: : ð62Þ

It’s easy to see that using the contour C1 + C2 we find jKUN
SC j ¼ jK

ð2Þ
SCj.

Another way to arrive at the same conclusion is as follows: if u001 and u002 are not close
each other, we can individually evaluate the contribution of each one through the second
order saddle point method and sum the contributions at the end. Starting from Eq. (57) we
get

KUN
SC ðv00; u0; T Þ ¼ �i

2
ffiffi
p
p
R

JðyÞeA�Byþy3=3 dy

¼ �i
2
ffiffi
p
p

P
y0¼	

ffiffiffi
B
p
fJðy0ÞeA�By0þy3

0
=3
R

ey0ðy�y0Þ2 dyg

¼ i�he
A�2

3
B3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ~Su00u00ð Þ
u00

1

q þ i�he
Aþ2

3
B3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ~Su00u00ð Þ
u00

2

q ¼ �Kð2ÞSCðv00; u0; T Þ:

ð63Þ

Finally we consider the uniform formula evaluated exactly at the caustic. To do so we
rewrite Eq. (57) using the uniform Jacobian given by Eq. (60):

KUN
SC ðv00; u0; T Þ ¼

1

2p
ip�h
kþ

� �1=2 �i�h
3G0

� �1=3
" #

eA
Z

ey3=3 dy: ð64Þ

Since ð�iÞ1=3

2p

R
ey3=3 dy ¼ e�2pi=3fið0Þ, we find the same result as found previously with the for-

mulas of the Sections 4.1 and 4.2 calculated at phase space caustics.

5. Final remarks

Semiclassical approximations for the evolution operator seem to be plagued by focal
points and caustics in any representation. A relatively simple way to derive improved
expressions that avoid the singularities of such quadratic approximations is provided by
the Maslov method. The method explores the fact that, for example, the coordinate rep-
resentation of the propagator, ÆxjK(T)jx 0æ can be written as the Fourier transform of the
propagator in its dual representation, hxjKðT Þjx0i ¼

R
hxjpihpjKðT Þjx0idp. If the trajectory

from x 0 to x in the time T corresponds to a focal point, we can still use this integral expres-
sion and the usual quadratic approximation for ÆpjK(T)jx 0æ, as long as we perform the inte-
gral over p expanding the exponents to third order around the stationary point. This
results in a well behaved approximation for the coordinate propagator in terms of an Airy
function. In this paper, we have shown that a similar procedure can be applied to the
coherent state representation and derived three similar third order formulas that can be
used depending on how far the stationary trajectory is from the phase space caustics.
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Although we have considered only systems with two degrees of freedom the extension to
higher dimensions is immediate. We note that a uniform formula for the coherent state
propagator was previously derived in [27] for a particular Hamiltonian.

The regular formula (32) is the simplest of our three approximations and consists of a
sum over the same complex trajectories that enter in the quadratic approximation. The
contribution of each trajectory is regularized by a term that avoids divergences at phase
space caustics. We emphasize that this regularization deals just with the problem of caus-
tics, so that we still need to identify contributing and non-contributing trajectories in order
to get acceptable results. This approximation holds as far as the contributing trajectories
are not too close to the caustics, otherwise the vicinities of different trajectories can start to
overlap and their contributions would be miscounted. The transitional formula (41) works
exactly in this situation. It involves the contribution of the PSC trajectory alone, and
therefore is valid only very close to the caustic. Finally, the uniform formula (58) is valid
everywhere, near of far a caustic. The formula we derived deals with the simplest topology
of caustics [28].

All three semiclassical formulas derived here involve the calculation of third order
derivatives of the action. We present an algorithm to evaluate these derivatives numeri-
cally in Appendix A. Numerical results using these expressions will presented in a future
publication.

Acknowledgments

M.A.M.A. and A.D.R. acknowledge financial support from CNPq, FAPESP and
FINEP. ADR especially acknowledges FAPESP for the fellowship #00/00063-2 and
04/04614-4, and also A.F.R. de Toledo Piza for stimulating discussions.

Appendix A. Derivatives of the action ~S

In this appendix, we show how second and third derivatives of ~Sðu0; u00; T Þ can be
calculated for a given trajectory. This procedure can be used with any set of variables
(for example, (u 0,v00,T) or (q 0,q00,T)) with minor modifications.

A.1. The tangent matrix and the tangent tensor

The equations of motion in the u and v variables can be written in compact form as

_ri ¼ J ijH 0j ðA:1Þ

where the vector r and the matrix J are given by

r ¼

ux

uy

vx

vy

0
BBB@

1
CCCA and J ¼

0 0 �i=�h 0

0 0 0 �i=�h

i=�h 0 0 0

0 i=�h 0 0

0
BBB@

1
CCCA; ðA:2Þ

and
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~H 0i ¼
o ~H
ori

: ðA:3Þ

Expanding Eq. (A.1) up to second order around a reference trajectory �rðtÞ, we obtain

d_ri ¼ J ijH 00jkdrk þ
1

2
J ijdrlH 000lkjdrk; ðA:4Þ

where

~H 00ij ¼
o2 ~H
oriorj

				
�r

and ~H 000ijk ¼
o3 ~H

oriorjork

				
�r

: ðA:5Þ

The solution of Eq. (A.4) can be expressed in terms of the initial displacement dr(0) as

driðtÞ ¼ MijðtÞdrjð0Þ þ drkð0ÞU kliðtÞdrlð0Þ; ðA:6Þ

where the tangent matrix M and the tangent tensor U satisfy M(0) = 1 and U(0) = 0.
Differentiating this equation with respect to t and by using Eq. (A.4), we obtain the differ-
ential equations satisfied by M and U directly:

_MijðtÞdrjð0Þ þ drkð0Þ _UkliðtÞdrlð0Þ ¼ J ijH 00jkMkldrlð0Þ þ J ijH 00jmdrkð0ÞU klmdrlð0Þ

þ 1

2
J ijdrkð0ÞMnkH 000nmjMmldrlð0Þ; ðA:7Þ

where we have discarded terms of third order in dri(0). This leads to

_Mij ¼ J ilH 00lkMkj ðA:8Þ

and

_Uijk ¼ J klH 00lmUijm þ
1

2
J klMniH 000nmlMmj: ðA:9Þ

These two sets of differential equations can be solved for a given reference trajectory �rðtÞ
and boundary conditions M(0) = 1 and U(0) = 0.

A.2. Derivatives of ~S

Here, we show how to obtain the second and third derivatives of ~S in terms of M and
U. We start from Eq. (11), which can be written as

V i ¼ Kij
~S0j; ðA:10Þ

where

V ¼

v0x
v0y
v00x
v00y

0
BBB@

1
CCCA; U ¼

u0x
u0y
u00x
u00y

0
BBB@

1
CCCA; K ¼

i=�h 0 0 0

0 i=�h 0 0

0 0 �i=�h 0

0 0 0 �i=�h

0
BBB@

1
CCCA ðA:11Þ

and ~S0i ¼ o~S=oUi.
Considering variations on Eq. (A.10) around the reference trajectory and expanding up

to second order, we get
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dV i ¼ Kij
~S00jkdU k þ

1

2
KijdU l

~S000lkjdUk; ðA:12Þ

where

~S00ij ¼
o2 ~S

oUioU j

					
�r

and ~S000ijk ¼
o3 ~S

oU ioUjoU k

					
�r

: ðA:13Þ

The idea now is to manipulate Eq. (A.12) so that final displacements are written in terms
of the initial ones. To do this we write

dU ¼ Adrð0Þ þ BdrðT Þ
dV ¼ Cdrð0Þ þ DdrðT Þ ðA:14Þ

where A, B, C and D are 4 · 4 matrices that can be written in terms of 2 · 2 blocks as

A ¼
1 0

0 0

� �
; B ¼

0 0

1 0

� �
; C ¼

0 1

0 0

� �
; D ¼

0 0

0 1

� �
: ðA:15Þ

Replacing Eqs. (A.14) into (A.12) and solving for dr(T) produces

drðT Þ ¼ ðD� K~S00BÞ�1ðK~S00A� CÞdrð0Þ þ 1

2
K�1w; ðA:16Þ

where K � K�1ðD� K~S00BÞ and

wi ¼ dul
~S000lmidum

¼ ½Adrð0Þ þ BdrðT Þ�l ~S000lmi½Adrð0Þ þ BdrðT Þ�m

 ½Adrð0Þ þ BMdrð0Þ�l ~S000lmi½Adrð0Þ þ BMdrð0Þ�m
¼ ½Ldrð0Þ�l ~S000lmi½Ldrð0Þ�m:

ðA:17Þ

In this expression, we have discarded terms of third order in dr(0) and we have defined the
auxiliary matrix L = A + BM. Computing all these matrices explicitly, we find

ðD� K~S00BÞ�1 ¼ i�h~S�1
u0u00 0

~Su00u00
~S�1

u0u00 1

 !
; ðA:18Þ

ðK~S00A� CÞ ¼ ði=�hÞ~Su0u0 �1

�ði=�hÞ~Su00u0 0

 !
; ðA:19Þ

L�1 ¼
1 0

�M�1
uv Muu M�1

uv

� �
; K ¼ �i�h

�M�1
uv 0

M vvM�1
uv �1

 !
: ðA:20Þ

Comparing linear terms of Eq. (A.16) with (A.6), we find

M ¼
Muu Muv

M vu M vv

� �
¼ �~S�1

u0u00
~Su0u0 �i�h~S�1

u0u00

ði=�hÞ ~Su00u00
~S�1

u0u00
~Su0u0 � ~Su00u0

� 

�~Su00u00

~S�1
u0u00

 !
ðA:21Þ

or
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~S00 ¼
~Su0u0

~Su0u00

~Su00u0
~Su00u00

 !
¼ i�h

M�1
uv Muu �M�1

uv

�ðM vvM�1
uv Muu þM vuÞ M vvM�1

uv

 !
: ðA:22Þ

Finally, comparing the quadratic terms,

1

2
K�1

ik wk ¼
1

2
K�1

ij Lnkdrk
~S000nmjLmldrl

� drkU klidrl ðA:23Þ

or

1

2
K�1

ij Lnk
~S000nmjLml ¼ Ukli: ðA:24Þ

Solving for the third derivatives of ~S produces

~S000ijk ¼ 2L�1
mi KknU mlnL�1

lj ; ðA:25Þ

where K and L�1 are given by (A.20).
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