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We propose a conjugate application of the Bargmann representation of quantum mechanics. Applying
the Maslov method to the semiclassical connection formula between the two representations, we derive a
uniform semiclassical approximation for the coherent-state propagator which is finite at phase space
caustics.
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Semiclassical approximations have been widely used in
many areas of physics. They are fundamental to the con-
ceptual understanding of the quantum-classical connection
and are also very important in practical situations where
quantum calculations are difficult, as in systems with many
degrees of freedom or with complicated potential func-
tions. However, semiclassical formulas are often not glob-
ally valid; i.e., they are not appropriate to describe the
corresponding quantum function in all regions of the space
of parameters. The WKB formula for the eigenfunctions of
a particle in a one-dimensional potential well provides a
simple example [1]: on the classically allowed side of the
well the wave function is oscillatory, whereas on the clas-
sically forbidden side it is given by a single decreasing
exponential. At the boundary between the two regions, the
turning point, the WKB formula becomes singular. The
formula actually fails in a whole neighborhood of the
singularity, whose size goes to zero as @ goes to zero. For
nonstationary wave functions the singularities occur at
focal points or caustics. After a focal point, but sufficiently
away from it, the semiclassical formulas for wave func-
tions or propagators still provide good approximations,
provided the proper Morse phases are added [2].

This general problem of semiclassical expressions,
which leads to divergences and discontinuities in the semi-
classical results, can usually be eliminated by properly
connecting the semiclassical expressions on the different
regions of validity and eliminating spurious contributions.
The most direct way to do that is to solve the Schrödinger
equation in the vicinity of the singularity and extend the
solution towards the two regions. For the WKB problem
this amounts to linearizing the potential about the turning
point, leading to the well known solution involving the
Airy function [1]. For nonstationary wave functions, how-
ever, this approach is not usually possible and the Maslov
method has to be used [2–4]. It consists basically of
changing to a dual representation, where the singularity
does not exist. For a singularity in coordinates, one uses the
momentum representation and vice versa. The trick is that,
when transforming back to the original representation, one
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should go beyond the quadratic approximation, otherwise
the singularity reappears. Usually, a stationary phase ap-
proximation with the exponent expanded up to cubic terms
is enough, giving rise once again to corrections involving
Airy functions.

In this Letter, we study the singularities of the semiclas-
sical propagator in the coherent-state representation. These
singularities, called phase space caustics (PSC), have been
first identified in [5] and later studied in [6–8]. All these
previous works were concerned with ways to identify the
singularities and prune the branches of spurious contribu-
tions arising from them. Here we tackle the problem of how
to improve the semiclassical formula in order to avoid its
divergence at the caustics. This is a very peculiar situation,
since the phase space representation provided by the co-
herent states makes use of both coordinate and momentum,
leaving no room for a natural dual representation. In this
Letter we define an application that works as the canonical
conjugate of the Bargmann representation [9] and we use it
to derive a uniform semiclassical formula for the coherent-
state propagator valid in the vicinity of the phase space
caustics. For the sake of clarity, we restrict ourselves to
systems with 1 degree of freedom. Results for multidimen-
sional systems, which can be treated along the same lines,
and detailed numerical applications, will be published
elsewhere.

The non-normalized coherent state jz0i is defined as

jz0i � ez0â
y
j0i; (1)
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Here j0i is the ground state of a harmonic oscillator of
frequency ! � @=mb2, ây is the creation operator, and q0,
p0 are the mean values of the position q̂ and momentum p̂
operators, respectively. The widths in position b and mo-
mentum c satisfy bc � @ and z0 is complex. The semiclas-
sical approximation for the coherent-state propagator
K�z	f; z0; T
 � hzfje�iĤT=@jz0i is given by [10–12]
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whereMvv and F depend on (generally complex) classical
trajectories. These trajectories are best represented in terms
of the variables u and v, instead of the canonical variables
q and p, defined by
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The sum in Eq. (3) runs over all trajectories governed by
the complex Hamiltonian ~H�u; v
 � hvjĤjui and satisfy-
ing the boundary conditions u�0
 � u0 � z0 and v�T
 �
v00 � z	f. Notice that q and p are complex variables, while
the propagator labels, q0, p0 for the initial state and qf, pf
for the final one, are real. In Eq. (3), F is given by

F�v00; u0; T
 � S�v00; u0; T
 �G�v00; u0; T
 �
@

2
�; (5)

where S, the complex action of the trajectory, and G are
given by
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Finally Mvv, and its phase �, are elements of the tangent
matrix defined by

�u00

�v00

� �
�

Muu Muv

Mvu Mvv

� �
�u0

�v0

� �
; (6)

where �u and �v are small displacements around the
complex trajectory. We use a single (double) prime to
indicate initial time t � 0 (final time t � T). The elements
of the tangent matrix can also be written in terms of second
derivatives of the action (see Ref. [12]). Note that Eq. (5)
differs from the formula given in [12] because we are using
non-normalized coherent states.

Phase space caustics occur when Mvv � 0, causing the
semiclassical propagator to diverge. Close to these points
the semiclassical formula provides only a poor approxima-
tion to the quantum propagator. For a discussion of the
mechanisms that lead to caustics in systems with 1 degree
of freedom, see [6,13,14].

Caustics in the semiclassical propagator in a given rep-
resentation can usually be circumvented by applying the
Maslov method. This requires the calculation of the semi-
classical propagator in the respective conjugate represen-
tation, followed by the transformation back to the original
one, with this last step performed with an approximation
better than quadratic. For the case of coherent states,
although there is no natural dual representation to be
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used with K�v00; u0; T
, the complex action S�v00; u0; T

satisfies the relations
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which suggests a Legendre transformation S ! ~S by the
change of variables v00 ! �i=@
�@S=@v00
. The transformed
function ~S depends on u0 and u00, instead of u0 and v00,

~S�u00; u0; T
 � S�v00; u0; T
 � i@u00v00; (8)

and satisfies the relations
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These properties, on the other hand, suggest the following
definition for the dual representation of the semiclassical
propagator:

~K�u00; u0; T
 �
1��������
2�i

p
Z
C
K�v00; u0; T
e�u

00v00dv00; (10)

where the path C will be specified below.
In the semiclassical limit this integral can be solved by

the steepest descent method [15] and an explicit expression
for ~K can be obtained. Inserting Eq. (3) into (10) we find
the saddle point condition

@
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i
@

@S
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; (11)

where we have considered that G varies slowly in com-
parison with S (see Ref. [12]). Equation (11) says that the
stationary trajectory satisfies u�0
 � u0 and u�T
 � u00,
i.e., the saddle point value v00c of the integration variable
is equal to v�T
 of a trajectory satisfying these boundary
conditions. This imposes that the integration path C must
coincide with (or be deformable into) a steepest descent
path through v00c . Expanding the exponent up to second
order around this trajectory and performing the Gaussian
integral we obtain

~K�u00; u0; T
 �

������������
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jMuvj
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e�i=@
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(12)

We emphasize that ~K depends on classical trajectories
satisfying u0 � u�0
 and u00 � u�T
. Muv is given by
Eq. (6), ~� is its phase, ~G�u00; u0; T
 is the function G
calculated at the new trajectory, and ~S�u00; u0; T
 is given
by Eq. (8). The PSC affecting ~K correspond to trajectories
for which Muv � 0, which generally do not coincide with
the PSC of K.

The inverse transformation of Eq. (10) is given by

K�v00; u0; T
 �
1��������
2�i

p
Z

~C

~K�u00; u0; T
eu
00v00du00: (13)

Replacing Eq. (12) into (13) and doing the integral again
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by the steepest descent approximation up to second order
gives back the original propagator of Eq. (3).

The pairs of Eqs. (3)–(12) and (10)–(13) look very much
like the corresponding transformation for the propagators
in coordinates and momenta, K�xf; x0; T
 and K�pf; x0; T
.
In that case the classical trajectory goes from x0 to xf in
one case and from x0 to pf in the other. However, although
the coherent states define a true quantum mechanical rep-
resentation [9], and the propagatorK�z	f; z0; T
 corresponds

to the matrix element hzfje�iĤT=@jz0i, there is no represen-
tation such that ~K�zf; z0; T
 also corresponds to a similar
matrix element. ~K would involve two kets, jz0i and jzfi
instead of a ket jz0i and a bra hzfj.

Therefore, since ~K is not a matrix element of the evolu-
tion operator we must formalize its quantum mechanical
definition so that the previous transformations make pre-
cise sense. This is done as follows: given a ket jfi and its
Bargmann representation f�z	
 � hzjfi [9], for each
coherent-state ket jwi we define the application

~f�w
 �
1��������
2�i

p
Z
�

hzjfi
hzjwi

dz	 �
1��������
2�i

p
Z
�
f�z	
e�z

	wdz	:

(14)

The path � must be chosen in such a manner that the
integral becomes a Laplace transform. This definition is
suggestive of the need to, so to speak, ‘‘cancel the bra hzj
and replace it by a ket jwi.’’ At the same time it provides
just the right Legendre transform we need in the semiclas-
sical limit when jfi � e�iHT=@jz0i. The inverse transfor-
mation is defined as

f�z	
 �
1��������
2�i

p
Z
�0
~f�w
hzjwidw �

1��������
2�i

p
Z
�0
~f�w
ez

	wdw;

(15)

with �0 chosen so that the integral is a Mellin transform.
To illustrate the transformation we apply it to the har-

monic oscillator. Let jfi be an eigenstate jmi of the
Hamiltonian operator. Then hzjmi �  m�z

	
 �

�z	
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������
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p
and
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p
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�
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Writing w � jwjei! and z	 � re�i#, the path � is defined
by # � ! with r varying from 0 to 1. This produces

~ m�w
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1��������
2�i

p

������
m!

p

wm�1 : (17)

The inverse transformation is given by

� m�z
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������
m!

p

2�i

Z
�0

ez
	w

wm�1 dw: (18)

Writing z � jzjei and choosing �0 so that w � ��#�
it
ei , with #> 0 fixed and t varying from �1 to �1, we
can solve the integral by the method of residues and we
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find exactly � m�z	
 �  m�z	
. For the propagator we set
jfi � e�iHT=@jz0i and obtain

K�z	f; z0; T
 � hzfje�iĤT=@jz0i � ez0z
	
fe

�i!T�i!T=2 (19)

and

~K�w; z0; T
 �
1��������
2�i

p
e�i!T=2

w� z0e
�i!T : (20)

Eqs. (14) and (15) show that the semiclassical propaga-
tor ~K given by Eq. (12) is the semiclassical approximation
of a true quantum mechanical function, namely, Eq. (14)
with f�z	
 � K�z	; z0; T
. This function, although not a
matrix element in a mixed representation like
K�pf; x0; T
 � hpfje�iHT=@jx0i, is well defined provided
the integral over � converges. The application defined by
Eqs. (14) and (15) can be thought of as conjugate to the
Bargmann representation, and they provide the tools to the
application of the Maslov method to the coherent-state
propagator.

The connection between the propagator, Eq. (3), and its
conjugate function, Eq. (12), via the steepest descent ap-
proximation with quadratic expansion of the exponent
works only in the regions where both Muv and Mvv are
nonzero. Close to caustics, where two stationary trajecto-
ries coalesce and Mvv � 0, ~K is still well defined and K
can be obtained by doing the inverse transform (13) using a
uniform approximation [16]. The basic idea is to map the
function in the exponent of the integrand into an auxiliary
cubic function of a new variable X. The new function is
chosen in such a way that its stationary points coincide
with those of the original function. Inserting Eq. (12) into
Eq. (13) we define the new integration variable X � X�u00

by

1

@
�~S � ~R� � iu00v00 � A� BX� X3=3; (21)

where ~R � ~G � �i lnjMuvj � ~�
@=2 contains the slowly
varying terms and A and B are functions of u0, v00, and T.
Differentiating both sides with respect to X and discarding
the variation of ~R yields	

1

@

@~S
@u00

� iv00


@u00

@X
� i�v�T
 � v00�

@u00

@X
� �B� X2:

(22)

The stationary condition v�T
 � v00 has generally two
solutions, u00� and u00�, in the vicinity of a caustic. These
two stationary points, that coalesce at the caustic, are
mapped into X� � �B1=2, while the caustic itself corre-
sponds to X � 0. Substituting X � X� in (21) and solving
for A and B we find

A �
1

2@
�S� � ~R� � S� � ~R�
;

B �

	
�

3

4@
�S� � ~R� � S� � ~R�




2=3
;

(23)
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FIG. 1. Square modulus of diagonal propagator for fixed z.
The lines correspond to the exact result (full line), bare semi-
classical (dotted line), and uniform (dashed line).
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where S� is the action S � ~S� i@u00v00 calculated at the
stationary trajectories defined by u00�.

The change of variables from u00 to X also produces a
Jacobian f�X
 � @u00=@X. Since the X intervals that con-
tribute significantly to integral are those close to the sta-
tionary points, we need to specify the Jacobian only in
these regions. Writing f�X
 � C�G�X� B1=2
 �

H�X� B1=2
 and defining f� � f�X�
 we find

f�X
 � �f� � f�
=2� X�f� � f�
=2B1=2: (24)

Differentiating (22) with respect to X once again and
calculating at X� we obtain

f� �

�
�
2M�

uvB
1=2

iM�
vv

�
1=2
: (25)

Putting everything together we find the following uniform
approximation for the propagator:

K�u0; v00; T
 �
1�������
2�

p
Z
f�X
ei�A�BX�X

3=3
dX: (26)

Far from the caustic, where the contribution of each
stationary trajectory can be computed separately, f�X

reduces to f� and the integral can be written in terms of
an Airy function. In this case the Airy function can be
evaluated by the method of steepest descent, with the
integration path chosen according to the phase of its argu-
ment z � �B. Therefore the argument of z automatically
indicates whether the two stationary points of the exponent
contribute to the propagator or if only one of them do.
Expanding the exponent to second order about the contrib-
uting points [X� or X� or both, depending on the arg�z
],
and doing the resulting Gaussian integral recovers the
quadratic approximation Eq. (3).

As an illustration we consider the Hamiltonian Ĥ �
�aya� 1=2
2. Figure 1 shows the square modulus of the
diagonal propagator hzje�iĤTjzi (b � c � @ � 1) as a
function of T for z � 1=�2

���
2

p

. The dotted line displays

the bare semiclassical result, showing a large increase for
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T * 2:0, due to a nearby caustic. The exact result is the full
line and the uniform approximation is shown by the dashed
line, which is indeed uniformly good at all times. Detailed
numerical applications will be published elsewhere.

Equation (26) and the definition of the conjugate appli-
cation and its inverse, Eqs. (14) and (15), constitute the
main results of this Letter. Although the idea of a conjugate
application to the Bargmann representation is used here
just as a tool to derive the above uniform approximation, it
may be useful in other situations. For instance, a transi-
tional approximation, valid only close to the caustics, can
also be derived. In addition, the Fourier frequencies of the
transformed propagator are the eigenvalues of the
Hamiltonian, and it might be simpler to extract those
eigenvalues from the transformed propagator than from
the Bargmann propagator. This is certainly the case for
the Harmonic oscillator, since the time dependence of
~K�w;w; T
, see Eq. (20), is trivial.
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