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The eigenvalues and eigenvectors of the connectivity matrix of complex networks contain infor-
mation about its topology and its collective behavior. In particular, the spectral density ρ(λ) of this
matrix reveals important network characteristics: random networks follow Wigner’s semicircular
law whereas scale-free networks exhibit a triangular distribution. In this paper we show that the
spectral density of hierarchical networks follows a very different pattern, which can be used as a
fingerprint of modularity. Of particular importance is the value ρ(0), related to the homeostatic
response of the network: it is maximum for random and scale free networks but very small for
hierarchical modular networks. It is also large for an actual biological protein-protein interaction
network, demonstrating that the current leading model for such networks is not adequate.

The network concept has been gaining recognition as
a fundamental tool in both biological and social sciences,
where the theory of complex systems finds fertile ground.
Biological examples include food webs in ecology [1], ner-
vous systems [2], cellular metabolism [3], protein confor-
mation [4] and a protein-protein interaction network [5].
Social networks include scientific collaboration, citation,
problem solving and linguistic networks [6]. Most bi-
ological and social networks studied are not randomly
connected, they follow a scale free behavior (see [7] and
references therein). In random networks the probabil-
ity that a node has k connections, P (k), is Poisson dis-
tributed and, therefore, every node has about the same
number of connections. In scale free networks P (k) fol-
lows a power law, a property that can be constructed by
sequential preferential attachment of nodes, where new
nodes are more likely to connect to already highly con-
nected ones. The properties of such networks are often
characterized by the presence of a few highly connected
nodes, the hubs, whereas most of the remaining nodes
have a small number of connections. The importance of
such networks, originally couched in terms of robustness
of static connectivity to failure despite sensitivity to at-
tack [8], may perhaps be better characterized in terms of
their response dynamics, that provides both robustness
and sensitivity[9].

Although scale free networks describe several statisti-
cal properties of biological networks, they fail to take into
account one important aspect, namely, the modularity
exhibited by most complex systems [10–12]. The concept
of modularity assumes that the full network of interac-
tions can be partitioned into a number of sub-networks or
modules. Each module is composed of several elements
which are more interconnected than they are connected
to the rest of the network. Modular systems may be or-
ganized in a structural hierarchy, with multiple levels of
modular decomposition. Molecules, organelles, cells, tis-
sues, organs and organisms, families, communities, etc.,
are an example of such a hierarchy of structures. Net-
works incorporating both modular hierarchy and scale
free character were recently discussed by Barabási [13]
(see also [14]). One property often used to character-
ize modular networks is their clustering coefficient—the

degree to which neighbors of a node are connected to
each other—which is larger than that of generic scale-
free models.

In this work we investigate the spectral properties of
modular networks. We show that the density of states
of the connectivity matrix (particularly its randomized
version where elements are set to ±1) provides a connec-
tion between the structure and the dynamic response of
a network. This enables us to distinguish between vari-
ous models and actual systems in a manner that may be
directly relevant to considering the behavior of system re-
sponse to perturbations. In particular, we are able to dis-
tinguish clearly between random, scale-free and modular
networks. However, none of these standard model net-
works capture the properties of an actual protein-protein
interaction network.

The connectivity (or adjacency) matrix A represents
the topology of the system, indicating which variables
are interconnected. It is defined as Aij = 1 if nodes i
and j are connected and zero otherwise. If we consider
the network as an influence network, where each link may
have a strength and phase that is not specified, a model
of the interactions between nodes AR can be constructed
from A by changing each of the entries 1 of A into−1 with
50% probability (keeping Aij = Aji, since they represent
the same connection). The spectral properties of AR con-
tain information about the dynamics of the network. If
the network is in equilibrium and a perturbation is intro-
duced, this perturbation propagates through the nodes
according to AR. In a linear approximation the state of
the nodes are updated according to xt+1

i =
∑

j ARijx
t
j .

Below we study the spectral properties of A and AR and
show they are in many cases similar, or otherwise can be
related.

The smoothed density of states of the network is de-
fined by

ρ̄ε(λ̄) =
1
N

∑

i

δε(λ̄− λi) (1)

where λi are the eigenvalues of the connectivity matrix
and N is the total number of nodes. Since the A is sym-
metric all eigenvalues are real. δε(x) is a smoothed delta
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FIG. 1: Smoothed density of state for a random, scale free,
Barabasi’s hierarchical network (all with 1024 nodes) and the
protein-protein interaction network (with 1297 nodes).

function that tends to the real Dirac delta as ε → 0.
Choosing ε to be a few units of the mean level spacing
produces a smooth level density even for small networks,
which is easier to visualize than the spiked density pro-
duced by the delta functions. Following Farkas et al [15]
we define scaled variables ρ and λ by

λ = λ̄/
√

Np(1− p) ρ = ρ̄
√

Np(1− p) (2)

where p = k̄/N is the average number of links per node
divided by the total number of nodes. For random net-
works the density of states can be computed analytically
from random matrix theory and the result is the so called
Wigner’s semicircular law. In the scaled variables it be-
comes simply ρ(λ) =

√
4− λ2/2π if |λ| < 2 and zero

otherwise.
Figure 1 shows the density of states for four differ-

ent networks. All networks have N = 1024 nodes, ex-
cept for the protein-protein network which has N =
1297. Fig.1(a) shows ρ(λ) for a random network with
p = 0.0057, following closely Wigner’s semicircular law.
Fig.1(b) shows a Scale Free network with p = 0.0058,
exhibiting a triangular profile [15, 16]. Fig.1(c), corre-
sponding to Barabasi’s hierarchical network [13], has a
peculiar density, that we shall discuss in more detail. Fi-
nally fig.1(d) shows ρ(λ) for a protein-protein interac-
tion network [5] and also has a distinct behavior, looking
more like a superposition of two independent scale free
networks.

Figure 2 shows the density of states for the same net-
works obtained with the randomized connectivity matri-
ces AR. For each network we diagonalized 20 matrices
with random distributions of ±1’s and calculated the av-
erage density over this ensemble. The averaged density
satisfies ρ(λ) = ρ(−λ). The scale free and random net-
works are not sensitive to sign randomization, since their
original spectra are already symmetric. Barabasi’s hi-
erarchical network density of states, on the other hand,
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FIG. 2: Smoothed density of state for the randomized net-
works of Fig.1.

changes considerably. It keeps the minimum at λ = 0,
whereas all other networks have a peak there. Also, the
density has sharp peaks with high intensity at certain
values of |λ|, becoming very small away from the peaks.
Interestingly, this type of spectrum has also been ob-
served in the context of percolation theory for random
three dimensional networks near the percolation thresh-
old [17]. The biological network also has an interesting
structure, deviating from the pure scale free case. How-
ever, in contrast to Barabasi’s network it has a peak at
λ = 0.

Barabasi’s hierarchical network is built from a fully
connected network with 4 nodes. This unit is then repli-
cated three times and the four identical networks are
connected together. The network thus formed is then
viewed as the new unit, and the replicating and connect-
ing process is repeated [13]. Although the exact repeti-
tion of this process is artificial, one expects real modular
networks to exhibit some type of self-similar structure.
In what follows we shall show that networks built from
such basic units have indeed a very characteristic spec-
trum, that can be used to identify its modular nature.

Consider first a fully connected network with N nodes.
The connectivity matrix is (AN )ij = 1− δij . The eigen-
values of AN can be calculated immediately and we find
λ1 = N − 1, λ2 = λ3 = ... = λN = −1. The first
eigenvector |w1〉, corresponding to the largest eigenvalue
λ1, has components w1,i = 1. All the other eigenvectors
are degenerate and satisfy

∑
i wj,i = 0. It is possible to

choose them so as to have very few non-zero elements.
The linear update equations xt+1 = ANxt decouples into
yt+1

i = λiy
t
i and yt

i = λt
iy

0
i . The dominant mode is the

‘center of mass’ y1, meaning that the network synchro-
nizes and responds as a unit to the perturbation. All
other modes involve fewer nodes and correspond to os-
cillations of fixed amplitude. The density of states for
a fully connected network has only two peaks: one at
λ = −1 and the other at λ = N − 1, the former being
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FIG. 3: Smoothed density of state for Barabasi’s hierarchi-
cal network for the original and the randomized connectivity
matrix with N = 16, 64 and 256 nodes. The smoothing para-
meter is 5 times the average level spacing, except for N = 16,
where it is 2 times the average level spacing.

N − 1 times larger than the latter.
Next we consider star networks, which are character-

ized by a single hub, i.e., a single central node to which
all other nodes are connected. Star networks emerge in
systems in which preferential attachment is superlinear,
meaning that the probability that a new node attaches to
old nodes increases faster than expected by linear pref-
erential attachment [18]. Star-like clusters are very com-
mon in biological networks (see for instance [19]) and
their eigenvalues and eigenvectors can also be computed
exactly. In the idealized star network the nodes con-
nect only to the central node, which we label 1. The
connectivity matrix is given by Ai1 = A1i = 1 for
i = 2, 3, ..., N and Aij = 0 otherwise. The eigenval-
ues are λ1 =

√
N − 1, λ2 = λ3 = ... = λN−1 = 0 and

λN = −√N − 1. Star like structures are known sources
of zero eigenvalues [16]. The first eigenvector |w1〉 has
components w11 =

√
N − 1 and w1i = 1 for i ≥ 2. The

last eigenvector |wN 〉 is given by wN1 =
√

N − 1 and
wNi = −1 for i ≥ 2. All the others degenerate eigenvec-
tors satisfy wj,1 = 0 and

∑N
i=2 wj,i = 0.

Now we consider a network whose connectivity matrix
has a modular organization consisting of 4 main blocks,
each one very similar to the others. The number 4 is
chosen only for comparison with Barabasi’s model, but
could be any number. We assume that the blocks are
fully connected, so that we know their eigenvectors and
eigenvalues when they are decoupled. Let |wα

i 〉 be the

i − th eigenvector of the block labelled by α. Since the
blocks are all identical, the eigenvalues are degenerate:
λα

1 = M − 1 and λα
i = −1 for i 6= 1, where M is the

dimension of the blocks. The connectivity matrix can
represented in block form by

A =




AM v12 v13 v14

vT
12 AM v23 v24

vT
13 vT

23 AM v34

vT
14 vT

24 vT
34 AM


 ≡ A0 + V (3)

where AM are fully connected M by M matrices, A0 is
the unperturbed matrix, with the 4 uncoupled AM blocks,
and V is a sparse perturbation, representing the weak
connection between nodes of different blocks.

The perturbation breaks the degeneracy between the
blocks. The first eigenvalue becomes λ = λ0 + µ and
the corresponding eigenvector |vα

1 〉 =
∑

β aαβ |wβ
1 〉 + |ξ〉

where the sum over β runs over the blocks and represents
the linear combination between the originally degenerate
vectors and the last term is the correction due to the
perturbation. Writing the eigenvalue equation for |vα

1 〉
and keeping only linear terms in the perturbation V leads
to the condition

∑

β

aαβ

[
〈wα

1 |V |wβ
1 〉 − µδαβ

]
= 0 . (4)

For all the other eigenvectors, whose degeneracy is
much bigger, we write |vα

n〉 =
∑

βm anm
αβ |wβ

m〉+ |ξ〉 where
the sum now runs over β and m, with n,m 6= 1. The
eigenvalue equation for this case is

∑

βm

anm
αβ

[〈wα
n |V |wβ

m〉 − µδαβδnm

]
= 0 . (5)

However, each matrix element 〈wα
n |V |wβ

m〉 is obtained by
adding elements of the matrix V with coefficients that
add up to zero. Since V is sparse, we expect most of these
elements to be zero and, when they are not zero, there
will likely be cancellations. Therefore, the corrections to
the eigenvalues are going to be small, and the density of
states of A should still have a large peak around λ = −1.

On the other hand, the elements of |wβ
1 〉 are all 1 inside

the β block and zero outside:

〈wα
1 |V |wβ

1 〉 =
∑

k,l

wα
1,kVklw

β
1,l ≡ Kαβ (6)

where Kαβ is the number of 1’s in the block vαβ . At this
point we have to distinguish between random and scale
free networks:

random coupling - We can assume that all the
coupling blocks vαβ are similar, so we write Kαβ = a
where a is the average number of 1’s in each of the v
blocks. The 4× 4 matrix to be diagonalized in Eq.(4) is
identical to the connectivity matrix of a completely con-
nected network of 4 nodes. Therefore, the 4 uncoupled
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eigenvalues M − 1 unfold into 1 eigenvalue M − 1 + 3a
and 3 eigenvalues M − 1 − a. For random coupling we
expect three main peaks in the density of states: a large
peak at λ = −1, a smaller one at M − 1− a and an even
smaller one at M − 1 + 3a.

scale free coupling - In this case the blocks are them-
selves not connected randomly, they attach preferentially
to, say, the first block. The 4× 4 matrix to be diagonal-
ized has the form




0 a a a
a 0 b b
a b 0 b
a b b 0


 (7)

where a >> b. In first approximation we neglect b and
the resulting matrix is that of a 4×4 star network. There-
fore, the eigenvalues become: M−1−√3a, M−1 (doubly
degenerate) and M − 1 +

√
3a. Together they contribute

a single symmetric peak around M − 1 with half width√
3a. Therefore, for scale free modular matrices we ex-

pect only two main peaks in the density of states: a large
one at λ = −1 and a smaller one at λ = M − 1.

Figure 3 shows the density of states for Barabasi’s hi-
erarchical network with 16, 64 and 256 nodes. The two
peaks structure is clear and consistent with our analysis
of a modular scale free network. The protein network
shown in Fig.1 is certainly not completely modular. But
it is also not generically scale free either. The two peaks
at zero and −1 (in non-scaled units) suggest the exis-
tence of many star like structures (where the eigenvalue
0 abounds) and many fully connected modules (where
the eigenvalue -1 abounds).

Randomized connectivity matrices. A similar analy-

sis can made for the case of the randomized connectiv-
ity matrices. For example, starting from a single fully
connected unit of 4 nodes, the eigenvalue equation can
be seen to be λ4 − 6λ2 − 2λ(a23a24a34 + a12a24a14 +
a12a13a23 +a13a14a34)−2(a12a13a24a34 +a12a14a23a34 +
a14a13a24a23) + 3 = 0. For random aij ’s, the term mul-
tiplying λ averages to zero, whereas the constant term
in parenthesis averages to either -1 or +1. The averaged
equation is λ4 − 6λ2 + 1 = 0 or λ4 − 6λ2 + 5 = 0. The
result is a spectrum with two pairs of symmetric eigen-
values. When a modular network is constructed out of
these random units, we obtain a density of state with four
symmetric peaks. This can be seen in Fig.3 for Barabasi’s
network with 16, 64 and 256 nodes.

To summarize, we have applied linear algebra and per-
turbation analysis to the spectral analysis of modular
networks. We have shown that the density of states con-
tains crucial information not only about the topology of
the network but also about its response to external per-
turbations. By comparing ρ(λ) for a random, a scale-free
and Barabasi’s hierarchical network, we have shown that
it exhibits clear fingerprints of the networks they repre-
sent. More importantly, we have shown that neither of
these model networks can describe the density of states of
a real protein-protein interaction network, showing that
better network models are necessary to understand bio-
logical systems. In particular, the behavior of ρ(0), which
indicates that the real biological network has a robust
homeostatic response, is not reproduced by Barabasi’s
hierarchical model. Our analysis also indicates the pres-
ence of several star like and fully connected modules in
the biological network, suggesting that these structures
might have to be incorporated explicitly in more realist
models.
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