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Abstract
We derive the semiclassical limit of the coherent state propagator for systems
with two degrees of freedom of which one degree of freedom is canonical and
the other a spin. Systems in this category include those involving spin–orbit
interactions and the Jaynes–Cummings model in which a single electromagnetic
mode interacts with many independent two-level atoms. We construct a
path integral representation for the propagator of such systems and derive
its semiclassical limit. As special cases we consider separable systems, the
limit of very large spins and the case of spin-1/2.

PACS numbers: 03.65.Sq, 31.15.Gy

1. Introduction

The spin–orbit interaction plays important roles in many areas of physics, from atomic physics
to condensed matter. The quantum description of systems with such interactions requires the
use of Hilbert spaces which are the direct product of the orbital space (for which the coordinate
or the momentum eigenstates form a basis) times the intrinsic space of the spin.

In quantum optics a similar situation arises in the study of the interaction between atoms
and electromagnetic modes in a cavity. When only two states of the atoms are relevant, as
for example in the ammonia maser, these two states can be formally represented by a spin
1/2. The state of a set of N such atoms can be likewise represented by the states of an angular
momentum of larger magnitude. The Hamiltonian describing their interaction with a single
electromagnetic mode of a cavity can therefore be written in terms of the operators â and â†,
which annihilate and create excitations of the quantized electromagnetic mode, and Ĵ z, Ĵ +

and Ĵ−, of the angular momentum.
The semiclassical behaviour of such systems has drawn attention for quite a long time.

One natural representation for the study of this limit is that of coherent states. The semiclassical
limit of the coherent state propagator for both the Weyl and the SU(2) group has already been
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studied in detail. The purpose of this paper is to derive the semiclassical limit of the coherent
state propagator for general systems with two degrees of freedom in which one degree is
canonical and the other a spin.

The quantum propagator K(b′′∗, b′, T ) ≡ 〈b′′| e−iĤT /h̄|b′〉 represents the probability
amplitude that the initial state |b′〉 be measured as |b′′〉, after a time T, when evolved by the
Hamiltonian Ĥ . The propagator is the essential ingredient for quantum dynamical calculations
and it is also fundamental in the study of the quantum-classical connection. Semiclassical
approximations of the propagator in the coordinates and momentum representations were
studied initially by Feynman [1] and later by many others [2]. Semiclassical formulae for the
propagator in the basis of coherent states appeared for the first time in the works of Klauder
[3, 4]. Although these papers have treated the propagator for both canonical coherent states |z〉
and spin coherent states |s〉, not much work has been done on these two bases simultaneously.
The development of the semiclassical theory occurred independently on each representation.

For canonical coherent states, Weissman [5, 6] re-derived the results of Klauder using
the semiclassical theory of Miller [7]. In Weissman’s work, and also in the original
Klauder’s papers, the fluctuations around the critical trajectory have not been accurately
performed, and a ‘phase’ factor was missed. In spite of this, a first numerical application
of the semiclassical formula was performed by Adachi [8] for a two-dimensional chaotic
map, obtaining good agreement with exact quantum results. The correct evaluation of the
second-order fluctuations appeared in the works of Baranger and Aguiar [9], Xavier and
Aguiar [10–12] and, independently, by Kochetov [13]. However, a detailed derivation of the
semiclassical coherent state propagator for one-dimensional systems has appeared only later
in [14]. Extensions of the formula for two-dimensional degrees of freedom and applications
to chaotic systems have been performed in [15].

There are two differences between the semiclassical formula of Baranger et al and that
of Klauder and Weissman. First, there is the extra ‘phase’ in the new formula, which is
usually complex and, in fact, is a signature of the basis of coherent states. It is related to the
overcompletness of the basis, since changing the resolution of the unity also changes this term
[14, 16]. A second difference consists in replacing the Weyl symbol H of the Hamiltonian
operator Ĥ by the average H̃ z ≡ 〈z|Ĥ |z〉. This implies that the classical trajectories entering
in the formula are subjected to H̃ z instead of H. The dynamics with H̃ actually appears
naturally in the work by Klauder, but it was changed back to H to be consistent with the lack
of the extra exponential factor of the formula. As discussed in [14], both these changes are
essential to get good agreement between quantum and semiclassical results. We note that the
semiclassical coherent state propagator also presents singularities and discontinuities due to
phase space caustics and the Stokes phenomenon [8, 15, 17–19].

Approximations for spin coherent states have also been studied by Kuratsuji and Suzuki
[20]. The basic difference between their approach and Klauder’s is that the later represents
the classical trajectories in a Bloch sphere by means of angle variables while Kuratsuji and
Suzuki represent the same dynamics in terms of a stereographic projection of the Bloch sphere
on a complex plane. As is the case of canonical coherent states, a detailed derivation in the
spin coherent state propagator only appeared later with Solari [21], where features similar
to those appearing in the canonical case were found: an extra exponential term, and the
underlying classical dynamics governed by the average Hamiltonian H̃ s ≡ 〈s|Ĥ |s〉. Vieira
and Sacramento [22] and Kochetov [23] have also derived the same formula independently.
Yet another detailed derivation has also been presented by Stone et al [24], focusing on the
importance of the extra term (see also [25]), which has received the name of Solari–Kochetov
phase. The singularities and discontinuities of the semiclassical spin propagator are discussed
in [26, 27].
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In spite of the extensive work on the semiclassical theory for the canonical and spin
representations, there are very few results considering the two bases simultaneously. Alscher
and Grabert [28] have calculated the semiclassical coherent state propagator for the spin-
1/2 Jaynesn–Cummings model showing that it corresponds to the exact quantum result.
Pletyukhov et al [29, 30] derived a semiclassical trace formula for systems with spin, but did
not consider the semiclassical propagator itself in detail. An overview of the semiclassical
approaches for spin–orbit interactions and associated trace formulae was recently published by
Amann and Brack [31], and a general semiclassical theory for Hamiltonians which are linear
in spin operators has also been formulated [29, 30, 32–34] (see also [35, 36] for stationary
approximations).

In this paper we derive a semiclassical formula for general canonical-spin systems using
path integrals. We show that our formula agrees with the previous results [14, 21–23] in the
separable case (no spin–orbit interaction) and that it reduces to the 2D canonical coherent
state propagator in the limit of very large spins. Finally we discuss the limit of validity of the
approximation for spin-1/2 systems.

2. Basic definitions

The propagator in the canonical-spin representation is given by

K(z′′∗, s ′′∗, z′, s ′, T ) = 〈z′′, s ′′| e−iĤT /h̄|z′, s ′〉, (2.1)

where |z, s〉 ≡ |z〉⊗|s〉 is the product of a canonical coherent state |z〉 and a spin coherent state
|s〉. While |z〉 is defined in the ‘particle’ Hilbert space, |s〉 is defined in the (2j +1)-dimensional
space of an angular momentum j . These states can be written as

|z〉 = exp

(
zâ† − 1

2
|z|2
)

|0〉 and |s〉 = esĴ +

(1 + |s|2)j |−j 〉, (2.2)

where z and s are complex numbers, â† is the canonical creator operator, Ĵ + is the raising spin
operator, |0〉 is the harmonic oscillator vacuum state and |−j 〉 is the extremal eigenstate of Ĵ 3

with eigenvalue −j . The coherent states are non-orthogonal with

〈z1|z2〉 = exp

(
−1

2
|z1|2 + z∗

1z2 − 1

2
|z2|2

)
and 〈s1|s2〉 = (1 + s∗

1 s2)
2j

(1 + |s1|2)j (1 + |s2|2)j ,

(2.3)

and satisfy∫
dx dy

π
|z〉〈z| ≡ 1(z) and

2j + 1

π

∫
dX dY

(1 + |s|2)2
|s〉〈s| ≡ 1(s), (2.4)

where x and y are the real and imaginary parts of z and X and Y the real and imaginary parts
of s. Throughout this paper we shall use lower case letters to refer to the canonical variables
and corresponding upper case letters to refer to the spin variables.

Finally, the complex number z labelling the canonical coherent state can be written
explicitly in terms of position and momentum variables as

z = 1√
2

(q

b
+ i

p

c

)
, (2.5)

where q and p are the average values of the position and momentum operators, respectively,
and the variances b and c satisfy bc = h̄.
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3. Path integral formulation

In this section we construct a path integral representation for the quantum propagator (2.1).
As usual we divide the time T into N small intervals of size ε = T/N and insert resolutions of
unity between each propagation step. We obtain

K(z′′∗, s ′′∗, z′, s ′, T ) = lim
ε→0

∫ N−1∏
k=1

{(
2j + 1

π2

)
dxk dyk dXk dYk

(1 + |sk|2)2

}

×
N−1∏
k=0

〈zk+1, sk+1| e−iĤ ε/h̄|zk, sk〉, (3.1)

where we define |z0, s0〉 ≡ |z′, s ′〉 and 〈zN, sN | ≡ 〈z′′, s ′′|. In the limit ε → 0 the infinitesimal
propagators can be written as

〈zk+1, sk+1| e−iĤ ε/h̄|zk, sk〉 = 〈zk+1, sk+1|zk, sk〉 exp
{
− i

h̄
εH̃ k+1/2

}
, (3.2)

where

H̃ k+1/2 ≡ 〈zk+1, sk+1|Ĥ |zk, sk〉
〈zk+1, sk+1|zk, sk〉 (3.3)

and

〈zk+1, sk+1|zk, sk〉 = (1 + s∗
k+1sk)

2j

(1 + |sk+1|2)j (1 + |sk|2)j exp

(
−1

2
|zk+1|2 + z∗

k+1zk − 1

2
|zk|2

)
. (3.4)

With these considerations the propagator can be written as

K(z′′∗, s ′′∗, z′, s ′, T ) = lim
ε→0

(
2j + 1

π2

)N−1 ∫ N−1∏
k=1

{dxk dyk dXk dYk} eF , (3.5)

where

F = Fz + Fs − i

h̄

N−1∑
k=0

εH̃ k+1/2, (3.6)

with

Fz = i

h̄

N−1∑
k=0

ih̄

2
[zkz

∗
k − 2z∗

k+1zk + z∗
k+1zk+1] (3.7)

and

Fs = i

h̄

{
−ih̄j

N−1∑
k=0

ln

[
(1 + s∗

k+1sk)
2

(1 + s∗
k sk)(1 + s∗

k+1sk+1)

]
− 2ih̄

N−1∑
k=1

ln

[
1

(1 + s∗
k sk)

]}
. (3.8)

Equation (3.5) is a discretized path integral representation of the propagator (2.1). In the
following sections we shall consider the formal semiclassical limit h̄ → 0 and j → ∞,
keeping the product jh̄ ≡ J constant.

4. The semiclassical limit

In the semiclassical limit, the integrals in equation (3.5) can be performed by the saddle point
method. The method consists basically in approximating the exponent F by a quadratic form
and performing the resulting Gaussian integrals. The quadratic form is obtained by expanding
F around its critical points. In the next subsections we shall (a) find the critical points of F,
and therefore the critical path; (b) compute F at the critical path; (c) expand F to second order
around the critical path and compute the Gaussian integrals.
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4.1. The critical path

We begin by looking for critical points of F. They satisfy the equations
∂F

∂zm

= ∂F

∂z∗
m

= ∂F

∂sm

= ∂F

∂s∗
m

= 0, m = 1, . . . , N − 1. (4.1)

As H̃ k+1/2 = H̃ k+1/2(z
∗
k+1, s

∗
k+1, zk, sk), these equations can be explicitly written as

iε

h̄

∂H̃m+1/2

∂zm

= z∗
m+1 − z∗

m,
iε

h̄

∂H̃m−1/2

∂z∗
m

= zm−1 − zm, (4.2)

and
iε

2h̄

∂H̃m+1/2

∂sm

= j

{
s∗
m+1

1 + s∗
m+1sm

− s∗
m

1 + s∗
msm

}
− s∗

m

1 + s∗
msm

,

iε

2h̄

∂H̃m−1/2

∂s∗
m

= −j

{
sm

1 + s∗
msm

− sm−1

1 + s∗
msm−1

}
− sm

1 + s∗
msm

.

(4.3)

It is important to emphasize that, because m = 1, . . . , N − 1, the variables z∗
0, s

∗
0 , zN , sN do

not enter in equations (4.2) and (4.3): the critical path, defined by the set of critical points,
depends only on z0, s0, z

∗
N and s∗

N , and not on z∗
0, s

∗
0 , zN , sN .

In the limit ε → 0 equations (4.2) become

i

h̄

∂H̃

∂z
= ż∗ and

i

h̄

∂H̃

∂z∗ = −ż, (4.4)

where H̃ ≡ 〈z, s|Ĥ |z, s〉. In terms of q and p (see equation (2.5)) this corresponds to the
usual Hamilton’s equations

∂H̃

∂p
= q̇ and

∂H̃

∂q
= −ṗ. (4.5)

For equations (4.3) the calculation is slightly more involved but the result is also very
simple. We obtain, in the limit ε → 0 and h̄ → 0 with j = J/h̄,

∂H̃

∂s
= − 2iJ ṡ∗

(1 + s∗s)2 and
∂H̃

∂s∗ = 2iJ ṡ

(1 + s∗s)2 . (4.6)

The trajectories described by equations (4.4) and (4.6) define the critical path of the
Feynman integral (3.5). Nevertheless, these trajectories must satisfy the boundary conditions
z(0) = z′, s(0) = s ′, z∗(T ) = z′′∗ and s∗(T ) = s ′′∗, as can be seen from equations (4.2) and
(4.3). As discussed in detail in [14], these trajectories are usually complex and the variables z

and z∗ are not generally the complex conjugate of each other, the same happening between s
and s∗. Therefore, it is convenient to set a new notation

z = u, s = U, z∗ = v and s∗ = V. (4.7)

In terms of these new variables, the equations of motion (4.4) and (4.6) become

i

h̄

∂H̃

∂u
= v̇,

i

h̄

∂H̃

∂v
= −u̇,

i

h̄

∂H̃

∂U
= 2jV̇

(1 + UV )2 ,
i

h̄

∂H̃

∂V
= −2jU̇

(1 + UV )2
,

(4.8)

with boundary conditions

u(0) = z′, U(0) = s ′, v(T ) = z′′∗, V (T ) = s ′′∗. (4.9)

Since z′∗, s ′∗, z′′ and s ′′ do not appear in the boundary conditions, the value of u(T ), U(T ), v(0)

and V (0) are determined by the integration of equations (4.8). From now on we shall use this
new notation to refer to the complex classical trajectories. The discrete variables zm, sm, z∗

m

and s∗
m shall also be replaced by um,Um, vm and V m, respectively.
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4.2. The complex action

The function F appearing in equation (3.6) can now be calculated at the classical trajectory.
We use a bar over the variables to indicate that they are calculated at the critical path. We have

F = i

h̄

N−1∑
k=0

{
ih̄

2
[ūkv̄k − 2v̄k+1ūk + v̄k+1ūk+1] − ih̄j ln

[
(1 + V̄ k+1Ū k)2

(1 + V̄ kŪ k)(1 + V̄ k+1Ū k+1)

]}

− i

h̄

N−1∑
k=0

εH̃ k+1/2(v̄
k+1, V̄ k+1, ūk, Ū k) − 2

N−1∑
k=1

ln(1 + V̄ kŪ k)

− 1

2
(z′z′∗ + z′′z′′∗ − ū0v̄0 − ūN v̄N ) − j ln

[
(1 + s ′s ′∗)(1 + s ′′s ′′∗)

(1 + Ū 0V̄ 0)(1 + ŪN V̄ N)

]
.

(4.10)

As usual we have replaced z′∗, s ′∗, z′′, s ′′ by v̄0, V̄ 0, ūN , v̄N in the first line and corrected for
this in the last line. Taking the limit ε → 0 we find, after some algebra,

F = i

h̄
S(z′′∗, s ′′∗, z′, s ′, T ) − � − 2

N−1∑
k=1

ln(1 + V̄ kŪ k), (4.11)

where S(z′′∗, s ′′∗, z′, s ′, T ) is the complex action

S(z′′∗, s ′′∗, z′, s ′, T ) =
∫ T

0

{
ih̄

2
( ˙̄uv̄ − ˙̄vū) − ih̄j

(
Ū ˙̄V − V̄ ˙̄U

1 + Ū V̄

)
− H̃

}
dt

− ih̄

2
(ū′v̄′ + ū′′v̄′′) − ih̄j ln[(1 + Ū ′V̄ ′)(1 + Ū ′′V̄ ′′)] (4.12)

and

� = 1
2 (|z′|2 + |z′′|2) + j ln[(1 + |s ′|2)(1 + |s ′′|2)] (4.13)

is a ‘normalization term’. The limit ε → 0 has not been taken on the last term of
equation (4.11) because this term is going to get cancelled later on.

It can be checked that
∂S
∂ū′ = −ih̄v̄′,

∂S
∂v̄′′ = −ih̄ū′′, (4.14)

∂S
∂Ū ′ = −2ih̄j V̄ ′

1 + Ū ′V̄ ′ ,
∂S
∂V̄ ′′ = −2ih̄j Ū ′′

1 + V̄ ′′Ū ′′ , (4.15)

and
∂S
∂T

= −H̃ , (4.16)

where a single (double) prime to denote the initial (final) time.

4.3. Fluctuations around the critical path

In the semiclassical limit, the only relevant points in the path integral of equation (3.5) are the
saddle points. In the present case, they define trajectories governed by equations (4.8) (or by
their discretized forms, equations (4.2) and (4.3)). The exponent F in equation (3.5) has to be
integrated over the intermediate points x ≡ (u1, U 1, v1, V 1, . . . , uN−1, UN−1, vN−1, V N−1)T .
Expanding F around the critical trajectory x̄ we obtain

F(x) = F(x̄) − 1
2δxT [−δ2F(x̄)]δx, (4.17)
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where δx ≡ x − x̄. The matrix [−δ2F(x̄)] contains the second derivatives of F calculated at
the critical trajectory. Substituting this result in equation (3.5) and considering the Jacobian

{dxk dyk dXk dYk} → − 1
4 {dzk dz∗

k dsk ds∗
k } ≡ − 1

4 {duk dvk dUk dV k},
we find

K = eF(x̄) lim
ε→0

{(
2j + 1

−4π2

)N−1 ∫ N−1∏
k=1

{d[δuk] d[δvk] d[δUk] d[δV k]}

× exp

(
−1

2
δxT [−δ2F(x̄)]δx

)}
, (4.18)

where F(x̄) is given by equation (4.11). The matrix [−δ2F(x̄)] is written as


HN−1
11 HN−1

21 1 0
∣∣∣ 0 0 0 . . .

HN−1
21 HN−1

22 0 BN−2
∣∣∣ 0 0 0 . . .

1 0 HN−2
33 HN−2

43

∣∣∣HN−2
13 − 1 HN−2

23 0 . . .

0 BN−2 HN−2
43 HN−2

44

∣∣∣ HN−2
41 HN−2

24 − BN−2 0 . . .

0 0 HN−2
31 − 1 HN−2

41

∣∣∣ HN−2
11 HN−2

21 1 . . .

0 0 HN−2
23 HN−2

42 − BN−2
∣∣∣ HN−2

21 HN−2
22 0 . . .

0 0 0 0
∣∣∣ 1 0 HN−3

33 . . .

0 0 0 0
∣∣∣ 0 BN−3 HN−3

43 . . .
...

...
...

...

∣∣∣ ...
...

...
. . .




,

where

Bm = 2(j + 1)

(1 + V̄ mŪm)2
, Bm = 2j

(1 + V̄ m+1Ūm)2
(4.19)

and Hm
ij ≡ ∂2H̃m+1/2

/
∂χ

mi

i ∂χ
mj

j . In this last definition we are using the compact notation

χ1 ≡ u, χ2 ≡ U, χ3 ≡ v and χ4 ≡ V. (4.20)

In addition, mi (mj ) equals to m + 1 when i (j) is equal to 3 or 4, and equals to m when i
(j) is equal to 1 or 2. In order to cancel the last term in equation (4.11) and also the factor
(2j + 1)N−1 in the pre-factor of equation (4.18) we change the variables associated with the
spin by the transformation δUm = δŨm/

√
Bm and δV m = δṼ m/

√
Bm. Equation (4.18) then

becomes

K = exp
( i

h̄
S(x̄) − �

)
lim
ε→0

{( −1

4π2

)N−1 ∫ N−1∏
k=1

{d[δuk] d[δvk] d[δŨ k] d[δṼ k]}

× exp

(
−1

2
δx̃T [−δ2F̃ (x̄)]δx̃

)}
, (4.21)

where S(x̄) and � are given by equations (4.12) and (4.13), respectively, δx̃ ≡
(δu1, δŨ 1, δv1, δṼ 1, . . . , δuN−1, δŨN−1, δvN−1, δṼ N−1)T and [−δ2F̃ (x̄)] is the matrix

−δ2F̃ (x̄) =




WN−1 RN−1 0 . . .

(RN−1)T WN−2 RN−2 . . .

0 (RN−2)T WN−3 . . .

...
...

...
. . .


 , (4.22)
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where

Wk =




Hk
11 bkHk

21 1 0

bkHk
21 (bk)2Hk

22 0 1

1 0 Hk−1
33 bkHk−1

43

0 1 bkHk−1
43 (bk)2Hk−1

44




and

Rk =




0 0 0 0

0 0 0 0

Hk−1
13 − 1 bk−1Hk−1

23 0 0

bkHk−1
41 bkbk−1

(
Hk−1

24 − Bk−1
)

0 0


 .

The matrix (Rm)T is the transpose of Rm and bm ≡ 1/
√

Bm.
The Gaussian integral in equation (4.21) can be solved immediately and the result is

∫ N−1∏
k=1

{d[δuk] d[δvk] d[δŨ k] d[δṼ k]} exp

{
−1

2
δx̃T [−δ2F̃ (x̄)]δx̃

}
=
√

(2π)4(N−1)

det[−δ2F̃ (x̄)]
.

(4.23)

The evaluation of the fluctuation determinant is the lengthiest step of the whole calculation.
Here we shall only briefly describe the main steps of the calculation.

We call �N the determinant of [−δ2F̃ (x̄)] and we solve it by the Laplace method of
reducing it to smaller determinants. In this process we are lead to define five auxiliary
matrices whose determinants, together with �N , form a closed set of six discrete recurrence
relations. The five determinants are called �N

0 and �N
ij , for i, j = 1 or 2. The former

is the determinant of [−δ2F̃ (x̄)] without the first two lines and columns, while �N
ij is the

determinant of [−δ2F̃ (x̄)] without the first, second and ith lines and without the first, second
and jth columns. Taking the limit of N → ∞ in the mentioned set of relations we obtain the
following set of linear differential equations:

Ḋ = i

h̄




0 −H22 −H11 −H21 −H21 0
H44 −2H24 0 −H41 −H41 −H11

H33 0 −2H13 −H23 −H23 −H22

H43 −H23 −H41 −H+ 0 H21

H43 −H23 −H41 0 −H+ H21

0 H33 H44 −H43 −H43 −2H+




D, (4.24)

where DT (t) = (�(t),�11(t),�22(t),�12(t),�21(t),�0(t)) is a vector containing the
original determinant �(t) and the five auxiliary ones. Hij are elements of the matrix

H ≡




∂2H̃
∂u∂u

d ∂2H̃
∂u∂U

∂2H̃
∂u∂v

d ∂2H̃
∂u∂V

d ∂2H̃
∂U∂u

d2
[

∂2H̃
∂U∂U

+ 2V
1+UV

∂H̃
∂U

]
d ∂2H̃

∂U∂v
d2
[

∂2H̃
∂U∂V

+
V ∂H̃

∂V
+U ∂H̃

∂U

1+UV

]
∂2H̃
∂v∂u

d ∂2H̃
∂v∂U

∂2H̃
∂v∂v

d ∂2H̃
∂v∂V

d ∂2H̃
∂V ∂u

d2
[

∂2H̃
∂U∂V

+
V ∂H̃

∂V
+U ∂H̃

∂U

1+UV

]
d ∂2H̃

∂V ∂v
d2
[

∂2H̃
∂V ∂V

+ 2U
1+UV

∂H̃
∂V

]




,

calculated at the classical trajectory where d = (1 + Ū V̄ )/
√

2j and H± ≡ H13 ± H24.
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Setting D′ = D e− i
h̄

∫
H+dt we obtain the more symmetric form

Ḋ′ = i

h̄
AD′ (4.25)

with

A =




H+ −H22 −H11 −H21 −H21 0
H44 H− 0 −H41 −H41 −H11

H33 0 −H− −H23 −H23 −H22

H43 −H23 −H41 0 0 H21

H43 −H23 −H41 0 0 H21

0 H33 H44 −H43 −H43 −H+




. (4.26)

The equations for D′ are intimately related to the linearized equations of motion around
the critical trajectory. To see this we go back to our notation as is equations (4.20). Setting
the small displacements δχi(t) ≡ χi(t) − χ̄i(t) around the critical trajectory and defining

ξ1(t) = δu(t), ξ2(t) =
√

2j

(1 + U(t)V (t))
δU(t), (4.27)

ξ3(t) = δv(t), ξ4(t) =
√

2j

(1 + U(t)V (t))
δV (t), (4.28)

we can construct an anti-symmetric tensor Tik(t) = ξi(t)ξ
′
k(t) − ξ ′

i (t)ξk(t), where ξi(t)

and ξ ′
i (t) are independent displacements from the critical trajectory. The tensor T has

six independent components, which can be arranged into a new vector defined by T T =
(T34(t), T23(t), T41(t), T13(t), T42(t), T12(t)) whose equation of motion is exactly Ṫ = iAT /h̄.
Putting things together we find that

det[−δ2F̃ (x̄)] ≡ �(T ) = T34(T ) exp

{
− i

h̄

∫ T

0
H+ dt

}
. (4.29)

Since T34 is related to the linearized motion around the critical trajectory, it can be easily
written in terms of the tangent matrix or in terms of second derivatives of the action. Working
out the details we find

�(T ) = (1 + U(0)V (0))

(1 + U(T )V (T ))
[det Mbb] exp

(
− i

h̄

∫ T

0
H+ dt

)
, (4.30)

where Mbb is the lower right 2 × 2 block of the tangent matrix in the coordinates χi :

M(T ) =




M11(T ) M12(T ) M13(T ) M14(T )

M21(T ) M22(T ) M23(T ) M24(T )

M31(T ) M32(T ) M33(T ) M34(T )

M41(T ) M42(T ) M43(T ) M44(T )


 ≡

(
Maa Mab

Mba Mbb

)
. (4.31)

Differentiating both sides of equations (4.14) and (4.15) and conveniently re-arranging the
terms we identify

Mbb = ih̄
∂2S

∂u′∂v′′
∂2S

∂U ′∂V ′′ − ∂2S
∂u′∂V ′′

∂2S
∂U ′∂v′′

(
− ∂2S

∂U ′∂V ′′ 2j
(

1
1+U ′V ′

)2 ∂2S
∂u′∂V ′′

∂2S
∂U ′∂v′′ −2j

(
1

1+U ′V ′
)2 ∂2S

∂u′∂v′′

)
. (4.32)
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4.4. The final formula

Collecting all the results for the exponent and pre-factor, the final formula for the semiclassical
limit of the canonical-spin coherent state propagator becomes

K(z′′∗, s ′′∗, z′, s ′, T ) =
[(

1 + U ′′V ′′

1 + U ′V ′

)
1

det Mbb

]1/2

exp
{ i

h̄
(S + G) − �

}
, (4.33)

where

S(z′′∗, s ′′∗, z′, s ′, T ) =
∫ T

0

{
ih̄

2
(u̇v − v̇u) − ih̄j

(
UV̇ − V U̇

1 + UV

)
− H̃

}
dt (4.34)

− ih̄

2
(u′v′ + u′′v′′) − ih̄j ln[(1 + U ′V ′)(1 + U ′′V ′′)],

G(z′′∗, s ′′∗, z′, s ′, T ) = 1

2

∫ T

0

{
∂2H̃

∂v∂u
+

1

2

[
∂

∂V

(1 + V U)2

2j

∂H̃

∂U
+

∂

∂U

(1 + V U)2

2j

∂H̃

∂V

]}
dt

≡ 1

2

∫ T

0
H+ dt, (4.34)

and

� = 1
2 (|z′|2 + |z′′|2) + j ln[(1 + |s ′|2)(1 + |s ′′|2)]. (4.35)

Alternatively, the pre-factor can be written explicitly in terms of derivatives of the action
according to equation (4.32),[(

1 + U ′′V ′′

1 + U ′V ′

)
1

det Mbb

]1/2

→
[
(1 + U ′′V ′′)(1 + U ′V ′)

2j
[det 	]

]1/2

, (4.36)

where

	 = i

h̄

(
∂2S

∂u′∂v′′
∂2S

∂u′∂V ′′

∂2S
∂U ′∂v′′

∂2S
∂U ′∂V ′′

)
. (4.37)

All quantities are to be calculated at the stationary trajectory (we have removed the bar on top
these quantities to simplify the notation).

5. Simple applications

In this section we shall apply the semiclassical formula equation (4.33) to three simple
situations: (a) non-interacting spin and field operators; (b) the limit of very large spins
and; (c) the case of spin-1/2. In each case we shall see that the propagator obtained from
equation (4.33) reduces to well-known results.

5.1. Non-interacting Hamiltonian

If the Hamiltonian can be separated into Ĥ = Ĥ z + Ĥ s , where Ĥ z = Ĥ z(â, â†) and Ĥ s =
Ĥ s(Ĵ +, Ĵ−, Ĵ z), then H̃ ≡ 〈z, s|Ĥ |z, s〉 = H̃ z + H̃ s , where H̃ z ≡ 〈z|Ĥ z|z〉 = H̃ z(z

∗, z) and
H̃ s ≡ 〈s|Ĥ s |s〉 = H̃ s(s

∗, s). Therefore, the complex action of equation (4.12) takes the form

S(z′′∗, s ′′∗, z′, s ′, T ) = Sz(z
′′∗, z′, T ) + Ss(s

′′∗, s ′, T ), (5.1)

where

Sz(z
′′∗, z′, T ) =

∫ T

0

{
ih̄

2
(u̇v − v̇u) − H̃ z

}
dt − ih̄

2
(u′v′ + u′′v′′),

(5.2)

Ss(s
′′∗, s ′, T ) =

∫ T

0

{
−ih̄j

(
UV̇ − V U̇

1 + UV

)
− H̃ s

}
dt − ih̄j ln[(1 + U ′V ′)(1 + U ′′V ′′)].
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Moreover, the term G of equation (4.34) becomes

G(z′′∗, s ′′∗, z′, s ′, T ) = Gz(z
′′∗, z′, T ) + Gs(s

′′∗, s ′, T ), (5.3)

where

Gz(z
′′∗, z′, T ) = 1

2

∫ T

0

∂2H̃

∂v∂u
dt,

(5.4)

Gs(s
′′∗, s ′, T ) = 1

4

∫ T

0

[
∂

∂V

(1 + UV )2

2j

∂H̃

∂U
+

∂

∂U

(1 + UV )2

2j

∂H̃

∂V

]
dt.

Finally, the det 	 simplifies to

det 	 = − 1

h̄2

[
∂2Sz

∂u′∂v′′
∂2Ss

∂U ′∂V ′′

]
. (5.5)

Therefore, for non-interacting systems, equation (4.33) amounts to

K(z′′∗, s ′′∗, z′, s ′, T ) ≡ Kz(z
′′∗, z′, T ) × Ks(s

′′∗, s ′, T ), (5.6)

where

Kz(z
′′∗, z′, T ) =

√
i

h̄

∂2Sz

∂u′∂v′′ exp

(
i

h̄
(Sz + Gz) +

1

2
|z′|2 +

1

2
|z′′|2

)
,

Ks(s
′′∗, s ′, T ) =

√
i

h̄

(1 + U ′′V ′′)(1 + U ′V ′)
2j

∂2Ss

∂U ′∂V ′′

× exp
( i

h̄
(Ss + Gs) − j ln[(1 + |s ′|2)(1 + |s ′′|2)]

)
(5.7)

are exactly the semiclassical propagators known in the literature for the Weyl and SU(2)
groups, respectively (see, for example, [14] and [24]).

5.2. The limit of large spin

Following Perelomov [37], we set s = w/
√

2j, Ĵ + = √
2j â† and let j → ∞. In this limit

the spin coherent states transform into canonical coherent states:

|s〉 → |w〉 = exp{wâ†}(
1 + |w|2/2

j

)j |−j 〉 ≈ exp

(
wâ† − 1

2
|w|2

)
|0〉. (5.8)

In this case, discarding terms smaller than j−1 we obtain

j
sṡ∗ − ṡs∗

1 + ss∗ → 1

2
(wẇ∗ − ẇw∗),

j ln[(1 + s ′s ′∗)(1 + s ′′s ′′∗)] → −1

2
(w′w′∗ + w′′w′′∗), (5.9)

∂

∂s∗
(1 + ss∗)2

2j

∂H̃

∂s
+

∂

∂s

(1 + ss∗)2

2j

∂H̃

∂s∗ → 2
∂2H̃

∂w∂w∗

and

(1 + s ′′s ′′∗)(1 + s ′s ′∗)
2j

det

(
i
h̄

∂2S
∂z′∂z′′∗

i
h̄

∂2S
∂z′∂s ′′∗

i
h̄

∂2S
∂s ′∂z′′∗

i
h̄

∂2S
∂s ′∂s ′′∗

)
→ det

(
i
h̄

∂2S
∂z′∂z′′∗

i
h̄

∂2S
∂z′∂s ′′∗

i
h̄

∂2S
∂w′∂z′′∗

i
h̄

∂2S
∂w′∂w′′∗

)
. (5.10)

Equations (5.9) and (5.10) applied to equations (4.33) and (4.36) produces the two-dimensional
semiclassical propagator for canonical coherent states [15].
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5.3. Spin-1/2 systems

The semiclassical approximation developed in sections 2–4 employed explicitly the limit
j → ∞. In this subsection we discuss the application of equation (4.33) to spin-1/2 systems,
whose general Hamiltonian is given by

Ĥ = Ĥ 0 + Ĥ s ≡ Ĥ 0(â, â†) + h̄ŝ · Ĉ(â, â†). (5.11)

In this case the classical Hamiltonian reads

H̃ (u, v, U, V ) = 〈z|H̃ 0|z〉 + h̄〈s|ŝ|s〉 · 〈z|Ĉ|z〉 = H̃ 0(u, v) +
h̄

2
H̃ s(u, v, U, V ), (5.12)

where

H̃ s(u, v, U, V ) = C1(u, v)
U + V

1 + UV
− iC2(u, v)

V − U

1 + UV
− C3(u, v)

1 − UV

1 + UV
. (5.13)

and 〈z|Ĉ|z〉 ≡ (C1(u, v), C2(u, v), C3(u, v)).
The equations of motion are given explicitly by

v̇ = i

h̄

∂

∂u

(
H̃ 0 +

h̄

2
H̃ s

)
,

u̇ = − i

h̄

∂

∂v

(
H̃ 0 +

h̄

2
H̃ s

)
,

(5.14)
V̇ = i

2
[(C1 + iC2) − (C1 − iC2)V

2 + 2C3V ],

U̇ = i

2
[(C1 + iC2)U

2 − (C1 − iC2) − 2C3U ].

In the limit of small h̄ we can drop the terms h̄
2 H̃ s on the first two equations and decouple

u and v from the spin variables U and V . These, on the other hand, describe the precession of
the spin in the external field C(u, v) generated by the orbital motion. In this approximation the
orbital part of the action also separates from the total action and the semiclassical propagator
can be written as

K(z′′∗, s ′′∗, z′, s ′, T ) = Kz(z
′′∗, z′, T ) × Ks [u,v](s

′′∗, s ′, T ), (5.15)

where Kz is the one-dimensional canonical propagator and Ks [u,v] can be written as [23]

Ks [u,v](s
′′∗, s ′, T ) = a∗(t) − b∗(t)s ′ + b(t)s ′′∗ + a(t)s ′′∗s ′

(1 + |s ′′|2)(1 + |s ′|2) . (5.16)

The coefficients a(t) and b(t) are obtained from the differential equation
dW

dt
= − i

2
σ · C(t)W(t), (5.17)

where

W(t) =
(

a(t) b(t)

−b∗(t) a∗(t)

)
, (5.18)

σ are the Pauli matrices and W(0) = 1. Since equation (5.16) is the exact propagator for a
spin in an external field, equation (5.15) can also be derived directly from the path integral
approach

K(z′′∗, s ′′∗, z′, s ′, T ) =
∫ D[u]D[v]

π
Ks [u,v](s

′′∗, s ′, T ) exp
( i

h̄
Fz0[u, v, T ]

)
, (5.19)

where the steepest descent approximation is performed only in the orbital action Fz0 (which
contains only H0). The spin propagator Ks is viewed as a slow varying pre-factor and is
simply calculated at the stationary trajectory [32, 33]. This shows that the semiclassical
formula equation (4.33) can also be used for systems with spin j = 1/2, in spite of the large
spin limit considered in its derivation.
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