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Short-range interactions in a two-electron system: Energy levels and magnetic properties
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The problem of two electrons in a square billiard interacting via a finite-range repulsive Yukawa potential
and subjected to a constant magnetic field is considered. We compute the energy spectrum for both singlet and
triplet states and for all symmetry classes as a function of the strength and range of the interaction and
magnetic field. We show that the short-range nature of the potential suppresses the formation of ‘‘Wigner
molecule’’ states for the ground state, even in the strong-interaction limit. The magnetic susceptibilityx(B)
shows low-temperature paramagnetic peaks due to exchange induced singlet-triplet oscillations. The position,
number, and intensity of these peaks depend on the range and strength of the interaction. The contribution of
the interaction to the susceptibility displays paramagnetic and diamagnetic phases as a function ofT.
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I. INTRODUCTION

The study of mesoscopic systems has proved to be a
field to investigate explicit manifestations of quantum pro
erties in nanometer and micron scales.1 In such systems, the
electron coherence length scales and mean free paths a
general larger than the typical sample sizes, so that the
derlying classical electronic motion plays an important ro
The nature of the classical motion—regular, mixed,
chaotic—reflects itself on some of the quantum propertie
the system, particularly in the energy level distributio
These features have long been studied for noninteract2

and weakly interacting systems.3

In quantum dots, where few electrons are latera
confined,4 the electron-electron interaction is usually ve
efficiently shielded by positively charged fixed ions a
other effects, so that the independent electron gas theory
often be used to understand the basic features of
system.5–11 However, the residual interaction that surviv
the shielding can sometimes play important roles. In rec
years, much attention has been given to interaction-indu
effects in mesoscopic systems.3,12–17 These effects are par
ticularly important in the large-dot regime, where th
electron-electron Coulomb interaction overcomes the kin
energy, forcing the ground state into aWigner moleculetype
of configuration.14

In mesoscopic systems the electronic interaction is u
ally not well approximated by a bare long-range Coulom
force, due exactly to screening effects.18 The strength and
range of the residual interaction, or the efficiency of t
screening, depend on many parameters, like the electron
sity and size of the dot. It is therefore important to und
stand the effects of the interaction as a function of its eff
tive intensity and range. In this work we give a contributi
in this direction, presenting exact results for the problem
two electrons in a square quantum dot interacting via a
pulsive finite-range Yukawa type of interaction,V(r )
5V0e2ar /r , and subjected to a uniform and constant ma
netic field of strengthB applied perpendicular to the do
This model system was inspired by the experimental work
0163-1829/2002/66~16!/165309~11!/$20.00 66 1653
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Levy et al.7 where the orbital magnetic susceptibility wa
measured for an ensemble of square dots containing of
order of 1000 electrons each. Although the independent
ticle semiclassical theory explained most of the experime
findings,5–11 the behavior of the susceptibility with temper
ture does not come out correctly in this approach and
puzzles the theorists. The idea that the slow decay of
susceptibility observed experimentally~as opposed to the ex
ponential decay expected from semiclassical theory!, could
be due to electron-electron interactions was first investiga
in Ref. 3 for a weak contact~Dirac d) type of interaction
using perturbation methods. In this article we study the
fects of electronic interactions in a much simpler syste
with only two electrons, but we present exact~numerical!
results.

The choice of a Yukawa type of potential allows us
interpolate between the pure Coulomb (a50) and short-
range interactions. Besides, the calculation of the Ham
tonian matrix elements can be reduced to one-dimensio
integrals, which can be calculated numerically. This allo
us to compute the energy spectrum for the four rotatio
symmetry classes as a function of the interaction strengthV0
and range 1/a for both singlet and triplet states. We als
consider these results as a function of a constant magn
field of strengthB applied perpendicular to the square. W
compute the magnetic susceptibility at finite values of
magnetic field and temperature via the partition function.

Our main results can be summarized as follows:~1! V0
introduces avoided crossings between the energy le
within each symmetry class, one of the signatures of qu
tum chaos.~2! a has a very important role in determining th
probability profile of the ground state, suppressing in so
cases the Wigner molecule type of behavior even for str
interactions.~3! The effect of the interaction on the magnet
susceptibilityx(B) depends ona. In particular, for large
magnetic fields, singlet-triplet oscillations of the ground-st
level lead to paramagnetic fluctuations on the two-elect
susceptibilityx(B), in contrast to the noninteracting diama
netic susceptibility. The position and intensity of these pe
change with the range of the interaction.~4! The contribution
©2002 The American Physical Society09-1
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to the susceptibility induced by the interaction at zero m
netic field shows paramagnetic and diamagnetic phases
function of the temperature. This type of behavior has a
been found for weak Diracd interactions.3

This paper is organized as follows: In Sec, II we descr
the system in detail. We discuss its symmetry properties
compute the matrix elements of the Hamiltonian. In Sec.
we present numerical results for the energy spectrum
ground-state electronic density as a function of the stren
and range of the interaction. In Sec. IV we consider the m
netic properties of the system, and in Sec. V we discuss
results.

II. HAMILTONIAN AND MATRIX ELEMENTS

We consider a system where two electrons are confine
a square-shaped two-dimensional billiard of sizeL interact-
ing via an Yukawa type of potential and subjected to a u
form and constant magnetic field of strengthB applied per-
pendicular to the dot. The Hamiltonian is given by

H5
1

2m*
(

i 51,2
~pxi1eByi /2!21~pyi2eBxi /2!2

1V0

e2aurW12rW2u

urW12rW2u
1Vwalls , ~1!

wherem* is the quasiparticle electron mass andVwalls is the
square well potential.
r
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The eigenfunctions of a single particle in this square
with zero magnetic field are given by a normalized prod
of sine functions,

wmn~x,y!5S 2

L D sin
mp

L
x sin

np

L
y, ~2!

and the eigenenergies are simply

Emn5
\2

2m* L2
p2~m21n2!. ~3!

The square billiard is a highly symmetric system. It is inva
ant under the action of eight symmetry operations~four ro-
tations plus four reflections! which form theC4v symmetry
group. When the time-reversal symmetry is broken~e.g., by
the application of a magnetic field!, the Hamiltonian is no
longer invariant under reflections. The group then reduce
C4, formed by the four rotations generated byĈ4 ~rotation by
p/2). The symmetric eigenfunctions can be written as a
ear combination of a particular eigenfunction and
symmetry-related counterparts:

c~x,y!5w~x,y!1Ĉ4w~x,y!1Ĉ4
2w~x,y!1Ĉ4

3w~x,y!.
~4!

Rotatingc leads toĈ4c5eiuc with (eiu)451. This, in turn,
leads to four solutions foreiu: namely, 11, 21,1 i , and
2 i . We can thus separate the general eigenfunctions~2! in
four ‘‘classes’’~or representations! using the group’s charac
ter table,19 as follows:
cmn
(11)~x,y!5H wmn~x,y! if n5m ~both odd!,

1

A2
@wmn~x,y!~6 !wnm~x,y!# if nÞm;1~2 ! if n,m both odd~even!,

cmn
(21)~x,y!5H wmn~x,y! if n5m ~both even!,

1

A2
@wmn~x,y!~7 !wnm~x,y!# if nÞm;2~1 ! if n,m both odd ~even!,

cmn
(1 i )~x,y!5

1

A2
@wmn~x,y!6 iwnm~x,y!#1~2 ! if m even ~odd! n odd ~even!,

cmn
(2 i )~x,y!5

1

A2
@wmn~x,y!7 iwnm~x,y!#2~1 ! if m even ~odd! n odd ~even!. ~5!
y

e-
These equations can be written in a more compact fo
as

c l
(C)5Fl

(C)~w l1Sl
(C)w l̄ !, ~6!

where l[(m,n) and l̄ [(n,m). HenceFl
(C) is either 1 or
m1/A2 andSl
(C) is 0, 61, or 6 i , depending on the symmetr

class ~C! and on l @whether (m,n) is odd or even and
whetherm5n or mÞn].

Finally the two-particle orbital eigenfunctions are symm
trized ~S! or antisymmetrized~A! combinations of one-
particle orbital eigenfunctions:
9-2
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c l 1l 2
S,A,(class 1̂ 2)~rW1 ,rW2!5

1

A2
@c l 1

(class 1)~rW1!c l 2
(class 2)~rW2!

6c l 1
(class 1)~rW2!c l 2

(Class 2)~rW1!#.

~7!

The orbital eigenfunction is symmetrized if the electrons
in the singlet spin state and antisymmetrized if they are in
triplet spin state.

The symmetry group of the two-particle system isC4
^ C4 and the eigenfunctions still separate in four symme
classes. The two-particle~2p! class is defined by the tota
phase gained under the action of an element of theC4^ C4

group (E^ Ĉ4 , Ĉ4^ Ĉ4, and so on!. This phase is simply the
product of the one-particle~1p! phases in the representatio
shown in Eqs.~5!. The 2p class is thus obtained in a simp
manner by ‘‘multiplying’’ the 1p classes. For instance, tw
1p states of class (21) form a 2p state of class (11) @pic-
torically, (11) ‘‘ 5’’ ( 21)^ (21)]. Thesame happens with
a 1p state of class (1 i ) combined with other from class
(2 i ). On the other hand, two 1p (1 i ) states form a (21)
2p state and so on.

A. Screened Coulomb interaction

For the electron-electron interaction we have used
‘‘Yukawa-type’’ short-range screened Coulomb potential

V~rW1 ,rW2!5
e2

4pe0e r

e2aurW12rW2u

urW12rW2u
, ~8!

where 1/a is the interaction range ande r is the dielectric
constant of the two-dimensional electron gas~2DEG! ~in
case of a GaAs 2DEG,e r510.9). The reason for this par
ticular choice of screening is twofold. First, it interpolat
between the pure Coulomb case and localized interacti
Also it gives an effective ‘‘interaction length’’ (a21)
which is easy to control. Second, the 1/r dependence is
maintained with the screening appearing as an expone
~as opposed to a power of 1/r ). This facilitates enormously
the calculation of the matrix elements, as we show in
Appendix. The rangea will be considered here as a fre
parameter.
16530
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The Hamiltonian for the two electrons without the ma
netic field is given by

Ĥ5(
i 51

2 S 1

2mi*
pW i

2D 1V~rW1 ,rW2!. ~9!

Since the kinetic energy~3! scales with 1/L2 and the inter-
action scales with 1/L, the electron-electron interaction term
dominates over the kinetic term for largeL. Thus, we define
an ‘‘effective potential strength’’V0 that grows linearly with
the dot sizeL:

V0[L
e2

4pe0e r
S 2m*

\2p2D , ~10!

so that we can write the matrix elements ofĤ in the nonin-
teracting basis in units of (p2\2)/(2m* L2):

^c l 1l 2
(C) uĤuc l 1l 2

(C) &5
p2\2

2m* L2
$Ēl 1l 2

1V0^c l 1l 2
(C) uV̂~r /L !uc l 1l 2

(C) &%,

~11!

where Ēl 1l 2
5(m1

21n1
21m2

21n2
2) is the kinetic energy in

units of (p2\2)/(2m* L2). This defines another free param
eterV0 ~or, equivalently,L), which controls the relative in-
teraction strength.

The next step is to calculate the matrix elements of
potential in the two-particle eigenfunction basis defined
Eq. ~7!. The repulsive potential does not break theC4^ C4
rotational symmetry of the Hamiltonian, since it depen
only on the distance between the electrons. Therefore,
interaction matrix is block diagonal in this representatio
i.e., the matrix elements

Vl 1l 2l
18 l

28
5^c l 1l 2

S,A,(class)uV̂uc l
18 l

28
S,A,(class)

& ~12!

are nonzero only inside the same symmetry block. F
totally symmetric ~antisymmetric! eigenfunctionsVl 1l 2l

18 l
28

breaks into a sum~difference! of a direct and an exchang
term. The general expression for theV̂ matriz elements
is given in terms of the general one-particle stat
Eq. ~6!, as
^c1
Ac2

BuV̂uc18
C c28

D &5F1
(A)F2

(B)F3
(C)F4

(D)@~11S1
(A)S2

(B)S18
(C)S28

(D)
!^ l 1l 2uV̂u l 18l 28&1~S1

(A)* S2
(B)* S18

(C)* 1S28
(D)

!^ l 1l 2uV̂u l 18 l̄ 28&

1~S1
(A)* S2

(B)* S28
(D)* 1S18

(C)
!^ l 1l 2uV̂u l̄ 18l 28&1~S1

(A)* S18
(C)* S28

(D)* 1S2
(B)!^ l 1 l̄ 2uV̂u l 18l 28&1~S2

(B)* S18
(C)* S28

(D)*

1S1
(A)!^ l̄ 1l 2uV̂u l 18l 28&1~S1

(A)* S2
(B)* 1S18

(C)S28
(D)

!^ l 1l 2uV̂u l̄ 18 l̄ 28&1~S1
(A)* S18

(C)* 1S2
(B)S28

(D)
!^ l 1 l̄ 2uV̂u l 18 l̄ 28&

1~S2
(B)* S18

(C)* 1S1
(A)S28

(D)
!^ l̄ 1l 2uV̂u l 18 l̄ 28&#. ~13!

The termŝ l 1l 2uV̂u l 18l 28& can be written explicitly with help of Eq.~2! as
9-3
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^ l 1l 2uV̂u l 18l 28&5
16

L4E sin
pm1x1

L
sin

pn1y1

L
sin

pm2x2

L

3sin
pn2y2

L
V~ urW22rW1u!sin

pm18x1

L

3sin
pn18y1

L
sin

pm28x2

L
sin

pn28y2

L
d2rW1d2rW2 .

~14!

Equation~13! can be further simplified using the proper

^ l 1l 2uV̂u l 18l 28&5^ l̄ 1 l̄ 2uV̂u l̄ 18 l̄ 28&. The integrals in Eq.~14! can
be evaluated by switching to relative polar (r ,u) and center-
of-mass coordinates. Thanks to the exponential form of
screening, three of the four integrals in Eq.~14! can be done
analytically. The remaining integral, over the relative po
angle u, is performed numerically. Most of the direct an
exchange elements involve less than 16 integrals. The n
ber is actually 16/2N whereN is the number of one-particle
states withm5n involved in either one of the two-particl
functions. All these facts reduce the number of numeri
integrals to be evaluated. The details of this calculation
given in the Appendix.

B. Magnetic field

For BÞ0, there are additional terms in the kinetic matr
element of Eq.~1! proportional toB and B2. These terms
lead to integrals combining sine and cosine functions
powers ofx andy, which can all be done analytically.

The terms linear inB ~involving p̂y and p̂y) contribute
imaginary parts to the matrix elements, breaking the deg
eracy of the (1 i ) and (2 i ) symmetry classes. This is
consequence of the time-reversal symmetry breaking.

III. EFFECTS OF INTERACTIONS: STRENGTH AND
RANGE

In this section, we show the numerical results obtain
with the exact diagonalization of the two-particle interacti
Hamiltonian without a magnetic field. We discuss the effe
of the two independent parameters of our model: the stren
V0 and the rangea. To change the intensity of the intera
tion relative to the kinetic energy we need to changeL @see
Eq. ~10!#. However, changingL changes the energy leve
even if V050. Therefore, in order to focus on the chang
induced only by the potential, we shall measure the energ
units ofp2\2/2m* L2 throughout this section. In these unit
the noninteracting eigenenergies are independent ofL; the
ground-state energy, in particular, is equal to 4.

A. Energy levels

We first consider the effects of the interaction strengthV0.
To increaseV0 relative to the kinetic energy we need
increaseL. That, however, decreases the effective range
the interaction. To keep the ratio between range and siz
the dot fixed and concentrate on the effects of the poten
strength, we shall keep therelative range1/(aL) fixed asL
16530
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FIG. 1. Energy levels as a function ofV0 for different values of
the reach parametera. ~a! a50 ~Coulomb interaction!, ~b! aL
51, and~c! aL510. Inset: avoided crossings on the (11)-singlet
~solid line! and (21)-singlet~solid squares! classes.
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FIG. 2. Electronic density for different values ofa21 andL. For each column, the reach parametera21 is fixed for increasing values o
L ~from top to bottomL510,100, and 1000 nm). From left to right, we havea21510,100, and 1000 nm. The Wigner molecule state
recovered fora215L51 mm.
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~or V0) is changed. When 1/(aL).1, the electrons ‘‘feel’’
the presence of each other all over the dot. For 1/(aL),1,
the interaction is more localized and the interaction ran
reduced.

Figure 1 shows the two-particle energy levels as a fu
tion of the interaction strength for different values ofaL. All
energy levels are shown for the four symmetry classes
both singlet and triplet configurations. The first panel sho
the Coulomb casea50. The interaction induces single
triplet gaps15 and removes several degeneracies in the ene
levels. It also promotes level repulsion~‘‘avoided cross-
ings’’! within each symmetry class. These are typical of s
tems with Gaussian Orthogonal Ensemble-type level spa
distribution. Although the number of levels does not allo
for a precise statistical analysis of the spectrum, the le
spacing histograms~not shown! display a distinctive differ-
ence between the noninteracting~Poisson-like! and the inter-
acting~GOE-like! cases. As the relative range decreases (aL
16530
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increases! the levels become less sensitive toV0 and the
avoided crossings narrow.

B. Ground-state properties

Recent works have investigated the formation of ‘‘Wign
molecule’’ type of ground states in polygonal quantum d
in the low-density limit.14,16,17 In this limit, the Coulomb
interaction between the electrons dominates over the kin
energy~the so-called ‘‘large-r s’’ limit ! and the ground-state
electron density shows pronounced peaks near the corne
the polygonal boundary.14

We have addressed the question of whether the fin
range character of the repulsive potential would change s
configuration. The low-density limit can be approached
makingV0→`. However, as discussed above, as the dot s
L increases, the interaction strength increases but the e
tive interaction rangea21 decreases. Figure 2 shows that
9-5
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FIG. 3. ~a! Electronic density,~b! probability density with one of the coordinates on a Wigner molecule peak@ uC0
(C)

„r1

5(0.2,0.2),r2…u2# showing a singletlike spatial correlation~c!. Panels~d!–~f! show the sampe plots for an excited triplet state@~1i! class#.
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depending on the value ofa21, the Wigner molecule state
can be suppressed, even for large dots. This figure show
ground-state electronic density

r~rW1!5E uC0~rW1 ,rW2!u2drW2 ~15!

for L510, 100, and 1000 nm anda21510, 100, and
1000 nm. Each column represents dots with the same w
L but with different values ofa. Each line has the sam
value of a but different sizes. The productaL is constant
along the diagonal. Even for the largest dot, with 1000 n
the Wigner molecule state is completely suppressed foraL
,10 ~first two plots on the last column!. Only when aL
51 ~last plot on the last column! does the electron densit
show pronunced peaks near the corners.

Figure 3 shows two examples of states with peaks n
the corners in the strong interaction limit. We see that,
16530
the

th

,

ar
l-

though the electronic densities of the two states look simi
the spatial correlations are very different, reflecting the f
that one of them is a singlet and the other a triplet. Fixingr1

at the center of one of the peaks,r̄15(0.2,0.2), the probabil-
ity densityuC(r15 r̄1 ,r2)u2 shows two peaks along the diag
onal for the singlet state and only one peak on the oppo
corner for the triplet state, sincec50 for r15r2 in this case.
The two-particle configuration is shown schematically f
both cases.

IV. EFFECTS OF THE INTERACTION
ON THE MAGNETIC PROPERTIES

A. Energy levels

Figure 4 shows the first energy levels as a function of
magnetic field forL5200 nm and different values ofa. The
first plot shows the noninteracting case (V050), where the
9-6
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FIG. 4. Energy levels as a function ofB for L5200 nm and
different values of the reach parametera21. ~a! Noninteracting
(V050), ~b! a215L/10, and~c! Coulomb potential (a50).
16530
singlet and triplet two-particle levels are degenerate. No
that the symmetry classes (1 i ) and (2 i ) are no longer de-
generate forBÞ0. Also, when the electronic interaction
switched on@Figs. 4~b! and 4~c!#, the singlet-triplet degen-
eracy is broken. The combination of these two effects le
to singlet-triplet crossings in the ground state for magne
fields of the order of a few tesla. This kind of oscillation h
been studied previously both theoretically~for the Coulomb
case! ~Refs. 13, 15, 20, and 21! and experimentally.22,23

The role of the potential rangea can also be seen from
these figures. In Fig. 4~b!, where the range is only one-tent
of the dot size, the splitting between the (1 i ) and (2 i )
classes is still very clear, but the scale of the energy leve
much closer to the noninteracting case. Also and more
portantly, there is only one singlet-triplet crossing in t
ground state, as opposed to the three crossings of the C
lomb case. For smaller values ofa21 these crossings ar
completely suppressed.

B. Partition function and susceptibility

In this subsection we consider the orbital magnetizat
and magnetic susceptibility of the interacting two-electr
system. The partition functionZ(B,T)5Tr$e2bĤ(B)% (b
[1/kBT) can be computed from the energy levels. The m
netization m(B) and the magnetic susceptibilityx(B)
5]m(B)/]B can be calculated from

m~B!52
1

A

]F

]B
5

1

bA

] logZ~B,T!

]B
, ~16!

whereF is the Helmholtz free energy andA5L2.
Figure 5 shows the magnetizationm(B,T), the suscepti-

bility x(B,T), and the interaction-induced susceptibili
x int5x2x (0) as a function ofB for a50 ~Coulomb poten-
tial! anda215L/10 ~short-range interaction!. x (0) is the sus-
ceptibility of the noninteracting system. Bothx(B,T) and
x int(B,T) are expressed in units of the Landau susceptibi
uxLu5e2/12pm* c2 and the temperature is expressed in un
of the mean level spacingD.

On the average,x(B,T) is diamagnetic, as in the nonin
teracting case~seex (0) in the inset!. However, the exchange
induced singlet-triplet crossings of the ground-state le
contribute paramagnetic fluctuations of the order of;3xL at
low temperatures. As discussed in the previous subsec
these crossings tend to disappear for short-range interact
For aL510 only one crossing survives.

For very low temperatures, only the ground state contr
utes significantly to the partition function andF'E0. In the
region close to the crossing,]E0 /]B is discontinuous with a
negative curvature, which explains the paramagnetic pea
x(B). For higher temperatures, the ‘‘anticrossing’’~positive
curvature! of the first excited state tends to compensate
ground state crossing and the fluctuations are attenuated

Figure 6 shows the behavior of the interaction-induc
susceptibility at zero magnetic fieldx int(B50,T) for the
Coulomb the and short-range (a215L/10) potentials and
different values of the strength parameterV0. The results
show paramagnetic and diamagnetic phases as aT increases,
with a diamagnetic minimum atT'5D. For low values of
V0 the susceptibility is again paramagnetic for highT. This
9-7
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FIG. 5. Magnetizationm(B), magnetic susceptibilityx(B), and interaction-induced susceptibilityx int5x2x (0) as a function on the
magnetic fieldB for a dot size ofL5200 nm and different values of the potential reach parametera ~left: a50 @Coulomb#, right:
a21520 nm). For low temperatures (T,D/2), the system features interaction-induced paramagnetic peaks. Inset: the noninte
magnetization and susceptibility.
165309-8
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type of behavior has been observed before for weak con
~Dirac d) type of interactions.3 Our results show that the
existence of paramagnetic and diamagnetic phases
x int(B50,T) might be more general and not so sensitive
the type of interaction.

V. DISCUSSION

This work was motivated in part by the experimental
sults of Lévy et al.,7 who measured the magnetic properti
of an ensemble of square dots containing a few thousa
electrons each in the balistic regime. Our objective in t
paper was to understand the effects of the residual electr
interaction in the simplest possible case: i.e., that of only t
electrons. We simulated the shielding of the bare Coulo
force by using an exponential type of cutoff, like that of t
Yukawa potential. The range of the interactiona was con-
sidered as a free parameter. The size of the dot, which
trols the relative strength of the potentialV0 with respect to
the kinetic energy, acts as a second parameter. Our re
show that bothV0 and a are important to determine th
properties of the energy spectrum and of the probability p
file of the ground state. We showed, in particular, that sh
range interactions may suppress the appearance of a W
molecule type of states even for strong interactions (V0
large!. The range of the interaction also affects the magn
susceptibility of the system. Short-range interactions mi
inhibit singlet-triplet oscillations of the ground state, su
pressing the paramagnetic fluctuations ofx(B). Finally we
have shown that the part of the susceptibility induced by
interaction presents paramagnetic and diamagnetic phas
a function of the temperature, in agreement with the res
obtained by a pure Diracd interaction.3

It is difficult speculate at this point if our results point
an explanation of the slow decay of the susceptibility w
the temperature, as observed experimentally by Levyet al.

FIG. 6. Interaction-induced zero-field susceptibilityxB50
int (T) as

a function of temperature for a Coulomb potential~left! and a
Yukawa potential witha215L/10 ~right! and different values of the
potential strengthV0.
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In a system with many electrons, the ground-state ene
oscillates as a function ofB even without electronic interac
tion. This type of oscillation is only due to the boundary, a
is responsible for the paramagnetic susceptibility of the g
Our results indicate that, besides this ‘‘boundary-induce
effect, the electronic interaction is responsible for further
cillations, this time between singlet and triplet states. Th
‘‘interaction-induced’’ oscillations also contribute to the su
ceptibility. In the present case of two electrons this contrib
tion turns out to be larger than that of the noninteract
case. Besides, the curves in Fig. 6 show thatx int(B50,T) is
sensitive to bothV0 and a. The peak ofx int(B50,T) at T
'D leads to a slightly slower decay of the overall suscep
bility. Although this result might be peculiar of few-particl
systems, there are similarities between our findings and th
obtained from semiclassical analysis and random phase
proximation ~RPA! perturbation theory in the high-densit
limit,3 such as the diamagnetic minima inx int(B50,T). This
might indicate that the interaction indeed plays an import
role in the behavior of the susceptibility with temperatu
although calculations with more electrons should be c
ducted to confirm this conjecture.
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APPENDIX CALCULATION OF THE INTEGRALS

In order to calculate the matrix element~14! we first no-
tice that the integrand can be decoupled using relative
center-of-mass coordinates. Since the masses are equa~we
set m15m2[1 for simplicity!, we haverW5rW22rW1 and RW

5(RW 21RW 1)/2. When the sine functions are written as a su
of complex exponentials,

sin 2mpxi5 (
e i521

1
e ie

e i iM ixi

2i
,

sin 2npyi5 (
h i521

1
h ie

h i iNi yi

2i
,

the integrand in Eq.~14! becomes

(
e ih i

~e1•••e28!~h1•••h28!

256

3S ei (a11a2)Xei (b11b2)Yei (a22a1)x/2ei (b22b1)y/2
e2ar

r D ,

~A1!

where

a15
pm1

L
e11

pm18

L
e18 , a25

pm2

L
e21

pm28

L
e28 ,
9-9
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b15
pn1

L
h11

pn18

L
h18 , b25

pn2

L
h11

pn28

L
h28 . ~A2!

The integrals on the center-of-mass coordinates can
be readly evaluated, at the cost of working on the comp
plane. However, one should note that the limits of integrat
of (x,y) and (X,Y) are not independent. In the rest of th
development, we will takeL[1 for the sake of simplicity.
This is equivalent to perform the calculations on an adim
sional variabler /L. In order to consider specific sizes for th
dot, one has to include an additional factor ofL multiplying
the whole integral and scalea accordingly.

The change of variables (x1 ,y1 ,x2 ,y2)→(x,y,X,Y) leads
us to four different sets of integration limits@the quadrants
on the (x,y) plane#. Next, we show the calculation of th
integral on the first quadrant (I 1). The calculation on the
other quadrants (I 2 ,I 3 ,I 4) is analogous. The total integral i
then I 5I 11I 21I 31I 4. On the first quadrant we have

I 15(
e ih i

~e1•••e28!~h1•••h28!

256

3S E dA1ei (a11a2)Xei (b11b2)Yei (a22a1)x/2ei (b22b1)y/2

3
e2aAx21y2

Ax21y2 D , ~A3!

where

E dA15E
0

1

dxE
0

1

dyE
x/2

12x/2

dXE
y/2

12y/2

dY. ~A4!

After doing the integrations on the center-of-mass coo
nates we are left with

I 15(
e ih i

~e1•••e28!~h1•••h28!

256

3H E
0

1E
0

1

f ~x,y!
e2aAx21y2

Ax21y2
dxdyJ , ~A5!

where the exact format off (x,y) depends on whether w
have (a11a2) or (b11b2) equal to zero or not. We ar
going to write it down explicitly in a moment.

A transformation to relative polar coordinates yields

I 15(
e ih i

~e1•••e28!~h1•••h28!

256

3H E
0

p/2E
0

r 1(u)

f ~r ,u!e2ardrduJ , ~A6!

wherer 1(u)51/cosu for 0,u,p/4 andr 1(u)51/sinu for
p/4,u,p/2. The integration overr can be done analyti
cally and we are left with a set of integrals overu:
16530
en
x
n

-

i-

I 15(
e ih i

~e1•••e28!~h1•••h28!

256 H E
0

p/2

F~u!duJ . ~A7!

As one can see from Eq.~A3!, the explicit form ofF(u)
depends whether (a11a2) and/or (b11b2) are equal to
zero or not. We now present the specific form ofF(u) for all
different possibilities.

~i! (a11a2),(b11b2)Þ0:

F~u!5
~21!

~a11a2!~b11b2! Fe(a11a21b11b2)
~eZa(u)r 1(u)21!

Za~u!

1
~eZb(u)r 1(u)21!

Zb~u!
1e(a11a2)

~12eZc(u)r 1(u)!

Zc~u!

1e(b11b2)
~12eZd(u)r 1(u)!

Zd~u! G , ~A8!

where

Za~u!52a2 i ~a1cosu1b1sinu!,

Zb~u!52a1 i ~a2cosu1b2sinu!,

Zc~u!52a2 i ~a1cosu2b2sinu!,

Zd~u!52a1 i ~a2cosu2b1sinu!.

~ii ! (a11a2)5(b11b2)50:

F~u!5
~eza(u)r 1(u)21!

za~u!

2
~cosu1sinu!

za
2~u!

„$eza(u)r 1(u)@za~u!r 1~u!21#11%…

1
~cosu sinu!

za
3~u!

$@ezar 1~za
2r 1

222zar 112!22#%.

~A9!

~iii ! (a11a2)50 and (b11b2)Þ0:

F~u!5e(b11b2)
~ezb(u)r 1(u)21!

zb~u!
2

~ezc(u)r 1(u)21!

zc~u!

2cosuFe(b11b2) $~ezb(u)r 1(u)@zb~u!r 1~u!21#11%

zb
2

2
$ezc(u)r 1(u)@zc~u!r 1~u!21#11%

zc
2 G . ~A10!

~iv! (a11a2)Þ0 and (b11b2)50:
9-10
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F~u!5e(a11a2)
~ezd(u)r 1(u)21!

zd~u!
2

~eze(u)r 1(u)21!

ze~u!

2sinuFe(a11a2) $ezd(u)r 1(u)@zd~u!r 1~u!21#11%

zd
2

2
$eze(u)r 1(u)@ze~u!r 1~u!21#11%

ze
2 G , ~A11!

where

za~u![2a1 i ~a2cosu1b2sinu!,
s

,

d

16530
zb~u![2a1 i ~a2cosu2b1sinu!,

zc~u![2a1 i ~a2cosu1b2sinu!,

zd~u![2a1 i ~b2sinu2a1cosu!,

ze~u![2a1 i ~b2sinu1a2cosu!.

All nontrivial integrals overu have been performed nu
merically.
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