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Short-range interactions in a two-electron system: Energy levels and magnetic properties
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The problem of two electrons in a square billiard interacting via a finite-range repulsive Yukawa potential
and subjected to a constant magnetic field is considered. We compute the energy spectrum for both singlet and
triplet states and for all symmetry classes as a function of the strength and range of the interaction and
magnetic field. We show that the short-range nature of the potential suppresses the formation of “Wigner
molecule” states for the ground state, even in the strong-interaction limit. The magnetic susceptiiiity
shows low-temperature paramagnetic peaks due to exchange induced singlet-triplet oscillations. The position,
number, and intensity of these peaks depend on the range and strength of the interaction. The contribution of
the interaction to the susceptibility displays paramagnetic and diamagnetic phases as a furittion of
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[. INTRODUCTION Levy et al.” where the orbital magnetic susceptibility was
measured for an ensemble of square dots containing of the
The study of mesoscopic systems has proved to be a ricbrder of 1000 electrons each. Although the independent par-
field to investigate explicit manifestations of quantum prop-ticle semiclassical theory explained most of the experimental
erties in nanometer and micron scalds. such systems, the findings?>™* the behavior of the susceptibility with tempera-
electron coherence length scales and mean free paths aretitfie does not come out correctly in this approach and still
general larger than the typical sample sizes, so that the upuzzles the theorists. The idea that the slow decay of the
derlying classical electronic motion plays an important role.susceptibility observed experimentallys opposed to the ex-
The nature of the classical motion—regular, mixed, orponential decay expected from semiclassical thgaguld
chaotic—reflects itself on some of the quantum properties obe due to electron-electron interactions was first investigated
the system, particularly in the energy level distribution.in Ref. 3 for a weak contadDirac &) type of interaction
These features have long been studied for nonintergctingising perturbation methods. In this article we study the ef-
and weakly interacting systers. fects of electronic interactions in a much simpler system,
In quantum dots, where few electrons are laterallywith only two electrons, but we present exdoumerical
confined? the electron-electron interaction is usually very results.
efficiently shielded by positively charged fixed ions and The choice of a Yukawa type of potential allows us to
other effects, so that the independent electron gas theory canterpolate between the pure Coulomb=0) and short-
often be used to understand the basic features of theange interactions. Besides, the calculation of the Hamil-
systent ! However, the residual interaction that survivestonian matrix elements can be reduced to one-dimensional
the shielding can sometimes play important roles. In recenintegrals, which can be calculated numerically. This allows
years, much attention has been given to interaction-induceds to compute the energy spectrum for the four rotational
effects in mesoscopic systerh& 1’ These effects are par- symmetry classes as a function of the interaction stre¥gth
ticularly important in the large-dot regime, where theand range X for both singlet and triplet states. We also
electron-electron Coulomb interaction overcomes the kineticonsider these results as a function of a constant magnetic
energy, forcing the ground state intdNdgner moleculéype  field of strengthB applied perpendicular to the square. We
of configurationt* compute the magnetic susceptibility at finite values of the
In mesoscopic systems the electronic interaction is usumagnetic field and temperature via the partition function.
ally not well approximated by a bare long-range Coulomb Our main results can be summarized as folloyls: V,
force, due exactly to screening effet¥sThe strength and introduces avoided crossings between the energy levels
range of the residual interaction, or the efficiency of thewithin each symmetry class, one of the signatures of quan-
screening, depend on many parameters, like the electron detuim chaos(2) « has a very important role in determining the
sity and size of the dot. It is therefore important to under-probability profile of the ground state, suppressing in some
stand the effects of the interaction as a function of its effeccases the Wigner molecule type of behavior even for strong
tive intensity and range. In this work we give a contributioninteractions(3) The effect of the interaction on the magnetic
in this direction, presenting exact results for the problem ofsusceptibility x(B) depends onw. In particular, for large
two electrons in a square quantum dot interacting via a remagnetic fields, singlet-triplet oscillations of the ground-state
pulsive finite-range Yukawa type of interactior\/(r) level lead to paramagnetic fluctuations on the two-electron
=Voe */r, and subjected to a uniform and constant mag-susceptibilityy(B), in contrast to the noninteracting diamag-
netic field of strengthB applied perpendicular to the dot. netic susceptibility. The position and intensity of these peaks
This model system was inspired by the experimental work othange with the range of the interactiéf) The contribution
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to the susceptibility induced by the interaction at zero mag- The eigenfunctions of a single particle in this square dot
netic field shows paramagnetic and diamagnetic phases asnth zero magnetic field are given by a normalized product
function of the temperature. This type of behavior has als®f sine functions,
been found for weak Diraé interactions’

This paper is organized_ as follpws: In Sec, Il we de;cribe Gmn(X,Y) = N— X sm—y, 2)
the system in detail. We discuss its symmetry properties and L
compute the matrix elements of the Hamiltonian. In Sec. llland the eigenenergies are simply
we present numerical results for the energy spectrum and

2) mar nmT
Si

ground-state electronic density as a function of the strength B h? 5 2 o 3
and range of the interaction. In Sec. IV we consider the mag- Emn_Zm* L2 7H(m*+n%). ©
netic properties of the system, and in Sec. V we discuss our

results. The square billiard is a highly symmetric system. It is invari-

ant under the action of eight symmetry operatidfwsir ro-
tations plus four reflectionswhich form theC,, symmetry
group. When the time-reversal symmetry is brokery., by

We consider a system where two electrons are confined ifhe application of a magnetic figldthe Hamiltonian is no
a square-shaped two-dimensional billiard of sizenteract- longer invariant under reflections. The group then reduces to
ing via an Yukawa type of potential and subjected to a uni-C,, formed by the four rotations generated®y (rotation by
form and constant magnetic field of strend@happlied per- 7/2). The symmetric eigenfunctions can be written as a lin-
pendicular to the dot. The Hamiltonian is given by ear combination of a particular eigenfunction and its

symmetry-related counterparts:

II. HAMILTONIAN AND MATRIX ELEMENTS

H= e 12, (Pt eBY/2)™ (pyi—eBX/2)* p(x.y) = (6Y) +Cao(x,y) + Cho(xy) + Clo(x,y).
o (4)
ealri-rel Rotatingy leads toC,¢= €'’y with (e'%)*=1. This, in turn,
+Vo |r . | +Vwaiis @ leads to four solutions foe'?: namely, +1, —1,+i, and
1 2

—i. We can thus separate the general eigenfunctighi
wherem* is the quasiparticle electron mass anghs is the  four “classes” (or representationaising the group’s charac-
square well potential. ter table!® as follows:

Emn(X,Y) if n=m (both odd,

(+1) =
Vi 04Y) %[cpmAX,y)(r)@nm(x,y)] it n#m;+(=) it n,m both odd(even,

Cmn(X,Y) if n=m (both even,

(=1) -
Umn (X,Y) %[Qomn(x,y)(;)%m(x,y)] if n#m;—(+) if n,m both odd (even,

1
P (xy) = ﬁ[%n(x,y)tisonm(x,y)]+(—) if m even (odd n odd (even,

P (xy) = ﬁhpmn(x,y):icpnm<x,y>]—<+> if m even (odd n odd (even. (5)

These equations can be written in a more compact form/\2 andS{“) is 0, =1, or =i, depending on the symmetry
as class (C) and onl [whether m,n) is odd or even and
whetherm=n or m#n].
P O=F (g +5¢), (6) Finally the two-particle orbital eigenfunctions are symme-
_ trized (S or antisymmetrized(A) combinations of one-
wherel=(m,n) and |=(n,m). HenceF(“ is either 1 or particle orbital eigenfunctions:
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The Hamiltonian for the two electrons without the mag-

.1 . .
U E L) = LA el ) netic field s given by
(class 1) = (Class 2) =~ R 2 1 . oo
=yl M)l )] H:E< P2 |+ V(). ©)
@ riem

The orbital eigenfunction is symmetrized if the electrons are>Nce the kinetic energgg) scales with w2 and the inter-
in the singlet spin state and antisymmetrized if they are in th&ction scales with 1/, the electron-electron interaction term
triplet spin state. dommates over the_k|net|c term for IargeThus, we deﬂ_ne
The symmetry group of the two-particle systemds @n “effec_tlve potential strength¥, that grows linearly with
®C, and the eigenfunctions still separate in four symmetryth® dot sizeL:
classes. The two-particl@p) class is defined by the total 5 N
phase gained under the action of an element ofdj®eC, Vo=L € ( 2m ) (10)
group E@C,, C,®C,, and so oh This phase is simply the dmeoe; | fi 272
product of the one-particl€lp) phases in the representation
shown in Egs(5). The 2p class is thus obtained in a simple
manner by “multiplying” the 1p classes. For instance, two
1p states of class<1) form a 2p state of classH1) [pic-

so that we can write the matrix elementskbfin the nonin-
teracting basis in units of#242)/(2m*L?):

torically, (+1) “="( —1)®(—1)]. Thesame happens with o e mh? o e c
a 1p state of class#i) combined with other from class <‘/fl(1l)2|H|‘/fl(1l)2>:2m* L2{EI1I2+V0<‘/f|(1|)2|V(r/L)|¢|(1|)2>}'
(—1). On the other hand, two 1pHi) states form a{ 1) (11)

2p state and so on. _
where E| ;= (mi+nf+m3+n?) is the kinetic energy in
A. Screened Coulomb interaction units of (w°42)/(2m* L?). This defines another free param-

For the electron-electron interaction we have used afterVo (or, equivalentlyl), which controls the relative in-

“Yukawa-type” short-range screened Coulomb potential ~ teraction strength. _
The next step is to calculate the matrix elements of the

potential in the two-particle eigenfunction basis defined by
Eq. (7). The repulsive potential does not break e C,
rotational symmetry of the Hamiltonian, since it depends
. ] ] . ) ] only on the distance between the electrons. Therefore, the
where 14 is the interaction range ang is the dielectric jnteraction matrix is block diagonal in this representation:

N ez e a|F17F2\
V(ry,ry)=

8

4meoer |ri—rp|

constant of the two-dimensional electron g&DEG) (N je. the matrix elements

case of a GaAs 2DEGs,=10.9). The reason for this par-

ticular choice of screening is twofold. First, it interpolates SA,(class) ¢y SA.(class

between the pure Coulomb case and localized interactions. Vll'z'ilézwlilz' WW@& 3 (12

Also it gives an effective “interaction length” ¢ 1) L
which is easy to control. Second, ther ldependence is are nonzero only |n§|de the same symmgtry block. For
maintained with the screening appearing as an exponentiif@!ly Symmetric (antisymmetri¢. eigenfunctionsVy, ;i

(as opposed to a power ofr}/ This facilitates enormously breaks into a suntdifference of a direct and an exchange
the calculation of the matrix elements, as we show in theerm. The general expression for thé matriz elements
Appendix. The rangex will be considered here as a free is given in terms of the general one-particle states,
parameter. Eq. (6), as

CAURIIIUE 02) = FRPROFOL(1+ SPSPSOSDN (1411113 + ({0 S SI9* + SO (11,1111
£ (SP* SE* SO 4 SO (11, V[T + (% SO* SO 4 5B (1 T V114 + (SP* SO S0
Sl VI115) + (S0 S 4+ SIOSD)111 U[T1T5) + (SP0* S0 + SPS) (1Tl V1T )
+(SPI*SO* 4 SSEN T 1,V T )

The terms(l,1,|V|1}1}) can be written explicitly with help of Eq2) as
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oo A6 mmiXy  wngyy;  TMpXp (a)
<I1I2|V|I1I2):F sin———sin———sin—-

mNYp . . TMiXg X
><smTV(|r2—rl|)sm? 20 ¢

! ! !
Yy mMRXy  TNRYo oo e
X sit———sin———=sin——d“r1d“r 5.

L L L
E,
(14 ’
Equation(13) can be further simplified using the property
(V1Y = (141, V[I115). The integrals in Eq(14) can K 6 Class +1 (singlet)
. . . +—— Class +1 {triplet)
be evaluated by switching to relative polar, §) and center- — Class -1 {singlet)
of-mass coordinates. Thanks to the exponential form of the ' +— Class -1 (tripled
. . . &—=4 Class +i,-i (singlet)
screening, three of the four integrals in Ef4) can be done +——a Class +i,-i (triplef)
analytically. The remaining integral, over the relative polar 0,
V 100

angle 0, is performed numerically. Most of the direct and
exchange elements involve less than 16 integrals. The num-
ber is actually 16/2 whereN is the number of one-particle
states withm=n involved in either one of the two-particle
functions. All these facts reduce the number of numerical
integrals to be evaluated. The details of this calculation are
given in the Appendix.

B. Magnetic field

For B#0, there are additional terms in the kinetic matrix E V)
element of Eq.(1) proportional toB and B2. These terms

lead to integrals combining sine and cosine functions and )
powers ofx andy, which can all be done analytically. X 2 o6 Class +1 (singlet
The terms linear irB (involving p, and p,) contribute o hEDeo A
imaginary parts to the matrix elements, breaking the degen- 7 Pl i
eracy of the (-i) and (—i) symmetry classes. This is a A~ Class +1,-i (riplet
consequence of the time-reversal symmetry breaking. o5 v 0

Ill. EFFECTS OF INTERACTIONS: STRENGTH AND
RANGE

In this section, we show the numerical results obtained
with the exact diagonalization of the two-particle interacting
Hamiltonian without a magnetic field. We discuss the effects
of the two independent parameters of our model: the strength
V, and the rangex. To change the intensity of the interac-
tion relative to the kinetic energy we need to chahgesee
Eqg. (10)]. However, changind. changes the energy levels E,
even if Vo=0. Therefore, in order to focus on the changes
induced only by the potential, we shall measure the energy in
units of ?#42/2m* L? throughout this section. In these units,

the noninteracting eigenenergies are independerit; adhe
. . . Class +1 {singlet)
ground-state energy, in particular, is equal to 4. e Class +1 (liplet
&—= Class -1 (singlet)

+—— Class -1 (friplet)
L—A Class +i,-i (singlet)
A. Energy levels 4—a Class +i,-i (triplet)
0
0 v 100

We first consider the effects of the interaction strengih
To increaseV, relative to the kinetic energy we need to
increaseL. That, however, decreases the effective range of FIG. 1. Energy levels as a function uf, for different values of
the interaction. To keep the ratio between range and size dhe reach parameter. (a) =0 (Coulomb interactio)) (b) alL
the dot fixed and concentrate on the effects of the potentia+1, and(c) «L=10. Inset: avoided crossings on the 1)-singlet
strength, we shall keep thelative rangel/(aL) fixed asL  (solid ling) and (—1)-singlet(solid squaresclasses.
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FIG. 2. Electronic density for different values af * andL. For each column, the reach parameter is fixed for increasing values of
L (from top to bottomL=10,100, and 1000 nm). From left to right, we have'=10,100, and 1000 nm. The Wigner molecule state is
recovered fore '=L=1 um.

(or Vp) is changed. When 14L)>1, the electrons “feel” increasek the levels become less sensitive Vg and the
the presence of each other all over the dot. Forllj<1, avoided crossings narrow.
the interaction is more localized and the interaction range

reduced. .
Figure 1 shows the two-particle energy levels as a func- B. Ground-state properties
tion of the interaction strength for different valuesdf. All Recent works have investigated the formation of “Wigner

energy levels are shown for the four symmetry classes ofmolecule” type of ground states in polygonal quantum dots
both singlet and triplet configurations. The first panel showsn the low-density limit**%”In this limit, the Coulomb

the Coulomb caser=0. The interaction induces singlet- interaction between the electrons dominates over the kinetic
triplet gaps® and removes several degeneracies in the energgnergy(the so-called “large-,” limit ) and the ground-state
levels. It also promotes level repulsiatiavoided cross- electron density shows pronounced peaks near the corners of
ings”) within each symmetry class. These are typical of systhe polygonal boundary.

tems with Gaussian Orthogonal Ensemble-type level spacing We have addressed the question of whether the finite-
distribution. Although the number of levels does not allowrange character of the repulsive potential would change such
for a precise statistical analysis of the spectrum, the leveleonfiguration. The low-density limit can be approached by
spacing histograméot shown display a distinctive differ- makingV,—«. However, as discussed above, as the dot size
ence between the noninteractifRpisson-like¢ and the inter- L increases, the interaction strength increases but the effec-
acting(GOE-like) cases. As the relative range decreasds ( tive interaction ranger™! decreasesFigure 2 shows that,
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FIG. 3. (a) Electronic density,(b) probability density with one of the coordinates on a Wigner molecule qé&léf)(rl
=(0.2,0.2)r,)|?] showing a singletlike spatial correlatign). Panels(d)—(f) show the sampe plots for an excited triplet s{dtei) clasg.

depending on the value af %, the Wigner molecule state though the electronic densities of the two states look similar,
can be suppressed, even for large dots. This figure shows tlilee spatial correlations are very different, reflecting the fact

ground-state electronic density that one of them is a singlet and the other a triplet. Fixipg
at the center of one of the peak_§,= (0.2,0.2), the probabil-
p(fy) = J W o(Fy,5)2dT, (15 ity density|\If(lr1=r_1,r2)|2 shows two peaks along the diag-
onal for the singlet state and only one peak on the opposite

corner for the triplet state, singe=0 forr,=r, in this case.

for L=10, 100, and 1000 nm and '=10, 100, and . . LT :
1000 nm. Each column represents dots with the same WidtThe two-particle configuration is shown schematically for

L but with different values ofa. Each line has the same oth cases.

value of @ but different sizes. The produeilL is constant

along the diagonal. Even for the largest dot, with 1000 nm, IV. EFFECTS OF THE INTERACTION
the Wigner molecule state is completely suppressecdyior ON THE MAGNETIC PROPERTIES

<10 (first two plots on the last columnOnly when alL

=1 (last plot on the last columrdoes the electron density

show pronunced peaks near the corners. Figure 4 shows the first energy levels as a function of the
Figure 3 shows two examples of states with peaks neamagnetic field fol. =200 nm and different values @f. The

the corners in the strong interaction limit. We see that, alfirst plot shows the noninteracting casé,&0), where the

A. Energy levels
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(a) singlet and triplet two-particle levels are degenerate. Notice
that the symmetry classes-{) and (—i) are no longer de-
generate foB#0. Also, when the electronic interaction is
switched on[Figs. 4b) and 4c)], the singlet-triplet degen-
eracy is broken. The combination of these two effects leads
to singlet-triplet crossings in the ground state for magnetic

2.0

fields of the order of a few tesla. This kind of oscillation has
been studied previously both theoreticalfgr the Coulomb
S| casé (Refs. 13, 15, 20, and 2lnd experimentall§?23
% 104 The role of the potential range can also be seen from
‘ these figures. In Fig.(®), where the range is only one-tenth
o559 QClass +1 ki of the dot size, the splitting between the-i) and (—i)
A £3Clss 4 inget) classes is still very clear, but the scale of the energy levels is
’ & Clase-1 (ool much closer to the noninteracting case. Also and more im-
e o Shass -1 Uibley portantly, there is only one singlet-triplet crossing in the
/ // VCIass—i (singlet) ’ .
L7 _ 7 Class (ulpisy ground state, as opposed to the three crossings of the Cou-
) U leve 1 .
0.0,% 02 0.8 ?Or&bplg?sli.si(;; rser;l:l(lalgr values af * these crossings are
B(T) '
(b) B. Partition function and susceptibility
2.5 ¢ In this subsection we consider the orbital magnetization
" s and magnetic susceptibility of the interacting two-electron
;,a %og ettt ] system. The partition functiorZ(B,T)=Tr{e P"®} (B
%AA‘AA."933,;;;82539;;;%;;5;!:;'.“.“'Wﬁ... bt = 1_/kB'I_') can be computed from the_energy Ievgl_s_. The mag-
eii%gm,sef“““ v;:g"f%" froee netization m(B) and the magnetic susceptibility(B)
‘g ?Q,eggg;gasze....,g.\,ﬂ;s-:':": =dm(B)/dB can be calculated from
= o :.XA;:MAA . 2i2 °°°gev co02828 2
GEJ 15 ﬁ%ﬁ:;:;ZZ“ A"fAAAA;AAéeWYAAA;Axiz““;;OV! B 1 JF 1 a|og Z(B’T) 16
w SN ww.YY..:::‘:“aoooosgv m(B)=— A B 7@ — B (16)
e e whereF is the Helmholtz free energy anl=L2
it o°°°vvv"v' = .
T Al Figure 5 shows the magnetizatiomB,T), the suscepti-
bility x(B,T), and the interaction-induced susceptibility
x™=x—x© as a function oB for =0 (Coulomb poten-
05 . tial) anda~=L/10 (short-range interactiony(®) is the sus-
0.0 0.4 0.8 ceptibility of the noninteracting system. Bo(B,T) and
B(M ¥'"(B,T) are expressed in units of the Landau susceptibility
(c) |xL|=e?/127rm* c? and the temperature is expressed in units
s e - of the mean level spacing.
LTS ?:“ 9?“983 m§ ey ,&m,f On the averagey(B,T) is diamagnetic, as in the nonin-
&9 -n x v¥e vv"' W . . .
g%f?ﬁ : ”i S m&“fgseeg?""si teracting caséseey(?) in the inset. However, the exchange-
3.5 1% Wv‘;%é%é ? AAggég induced singlet-triplet crossings of the ground-state level
.g...“m.,,m::;;;g::;;;;"j;;,‘,;" Y?fxe 3¢ contribute paramagnetic fluctuations of the order@y, at
. fi"iveav"'é'”q""' g%vvgw 200g05ast” low temperatures. As discussed in the previous subsection,
R Ty “"%Wffl:;::;:;‘5:9'!"""'"" these crossings tend to disappear for short-range interactions.
E L Sgg&éé-" For aL =10 only one crossing survives. _
i A““...mgA,g“i’f..A;.%s 3% For very low temperatures, only the ground state contrib-
28T n‘“%om;ggosgiwgeeewwa © gt 1 utes significantly to the partition function afid~E,. In the
Yy #9990y rvvrr YT o Class +1 (singlef . . . . . .
0006388+ * Class +1 (tlrip?et) region close to the crossingk,/dB is discontinuous with a
Ry negative curvature, which explains the paramagnetic peak in
* Glass -1 ffj;%? x(B). For higher temperatures, the “anticrossingositive
v Class - (singlet) curvature of the first excited state tends to compensate the
15 , 7 Clssilipley ground state crossing and the fluctuations are attenuated.
00 é’(% 0.8 Figure 6 shows the behavior of the interaction-induced

susceptibility at zero magnetic fielg""(B=0,T) for the
Coulomb the and short-rangex{1=L/10) potentials and
different values of the strength paramelé§. The results
FIG. 4. Energy levels as a function & for L=200 nm and show paramagnetic and diamagnetic phasesTamereases,
different values of the reach parameter!. (a) Noninteracting with a diamagnetic minimum af~5A. For low values of
(Vo=0), (b) @ *=L/10, and(c) Coulomb potential ¢=0). V, the susceptibility is again paramagnetic for highThis
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=
Ex |
0 04 ’Bj.s
(f) B(T)

FIG. 5. Magnetizatiorm(B), magnetic susceptibility(B), and interaction-induced susceptibilig/= x— x©) as a function on the
magnetic fieldB for a dot size ofL=200 nm and different values of the potential reach parametéleft: «=0 [Coulomb, right:
a~ =20 nm). For low temperaturesTKA/2), the system features interaction-induced paramagnetic peaks. Inset: the noninteracting

magnetization and susceptibility.
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xi”t(B=0) xT In a system with many electrons_, the ground-_ste_lte energy
oscillates as a function d@ even without electronic interac-

o5 =00 (Coulomb) _at=100 tion. This type of oscillation is only due to the boundary, and
| —— V,=10.0 is responsible for the paramagnetic susceptibility of the gas.
s——= V=20.0 Our results indicate that, besides this “boundary-induced”
osk T w0 effect, the electronic interaction is responsible for further os-
o cillations, this time between singlet and triplet states. These
V,=70.0 “interaction-induced” oscillations also contribute to the sus-
= ceptibility. In the present case of two electrons this contribu-
= o tion turns out to be larger than that of the noninteracting
@ case. Besides, the curves in Fig. 6 show {18(B=0,T) is
"= sensitive to bothV, and a. The peak ofy'"™(B=0,T) at T

~A leads to a slightly slower decay of the overall suscepti-
bility. Although this result might be peculiar of few-particle
systems, there are similarities between our findings and those
obtained from semiclassical analysis and random phase ap-
proximation (RPA) perturbation theory in the high-density
limit,® such as the diamagnetic minimaytf'(B=0,T). This
might indicate that the interaction indeed plays an important
FIG. 6. Interaction-induced zero-field susceptibilitf)' ,(T) as  role in the behavior of the susceptibility with temperature,
a function of temperature for a Coulomb potentisdft) and a  although calculations with more electrons should be con-
Yukawa potential withe ~1=L/10 (right) and different values of the ducted to confirm this conjecture.
potential strengthv,,.
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This work was motivated in part by the experimental re-
sults of Levy et al,” who measured the magnetic properties
of an ensemble of square dots containing a few thousands In order to calculate the matrix elemefitd) we first no-
electrons each in the balistic regime. Our objective in thigtice that the integrand can be decoupled using relative and
paper was to understand the effects of the residual electrongenter-of-mass coordinates. Since the masses are egeal
interaction in the simplest possible case: i.e., that of only tWaset m; =m,=1 for simplicity), we haver=r,—r; and R
electrons. We simulated the shielding of the bare Coulomb:(§2+ R;)/2. When the sine functions are written as a sum
force by using an exponential type of cutoff, like that of the :

. : . of complex exponentials,
Yukawa potential. The range of the interactianwas con-
sidered as a free parameter. The size of the dot, which con- € esiMixi
trols the relative strength of the potenth) with respect to sin 2marx; = 2 T
the kinetic energy, acts as a second parameter. Our results §=-1

APPENDIX CALCULATION OF THE INTEGRALS

1

show that bothV, and « are important to determine the Lo emiNiy,
properties of the energy spectrum and of the probability pro- sin 2nry; = 2 77'—
file of the ground state. We showed, in particular, that short- n=-1 2

range interactions may suppress the appearance of a Wign@fe integrand in Eq(14) becomes
molecule type of states even for strong interactiolg (

large). The range of the interaction also affects the magneti (€1 - €x)(m1- - 7m3)

susceptibility of the system. Short-range interactions migh 256

. . . . . . €7

inhibit singlet-triplet oscillations of the ground state, sup-

pressing the paramagnetic fluctuationsy@B). Finally we et ) X ( Bt BN i (e e Y/2mi (B B2 &
have shown that the part of the susceptibility induced by the X | €1 " ®2%e! (P17 #Yglleamax/Zl(B2= A0y p
interaction presents paramagnetic and diamagnetic phases as

—arl

a function of the temperature, in agreement with the results (A1)
obtained by a pure Diraé interaction® where
It is difficult speculate at this point if our results point to , ,
an explanation of the slow decay of the susceptibility with Ty ™y Ty Ty
the temperature, as observed experimentally by Letvgl. =T atT T E T et e,

165309-9
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7Ny mny 7N, mn, | (€1---€)(n1- -~ 1)) J”’z
Br=——mt—|—m, B~ —mt—7- (A2) |1—€i2m 556 . F(6)do;. (A7)

The integrals on the center-of-mass coordinates can thegs one can see from EqA3), the explicit form of F(#6)
be readly evaluated, at the cost of working on the compleXjepends whethera( + a,) and/or (3;+ 8,) are equal to

plane. However, one should note that the limits of integration,erg or not. We now present the specific fornF¢#) for all
of (x,y) and (X,Y) are not independent. In the rest of this gifferent possibilities.

development, we will take.=1 for the sake of simplicity. (i) (@4+ @), (B1+ Bo) #0:

This is equivalent to perform the calculations on an adimen-

sional variable’ /L. In order to consider specific sizes for the

dot, one has to include an additional factorLofmultiplying F(0)= (-1

the whole integral and scate accordingly. (a1t az)(BrtB2)
The change of variablex{,y1,X2,Y2) —(X,¥,X,Y) leads

(eza(e)rl(f))_ 1)
Z,(0)
(1_ ezc(o)rl(g))

elartaztB1+p57)

(e%o(0ra(0) — 1)

us to four different sets of integration limifshe quadrants o Ty elagtay)
on the &,y) pland. Next, we show the calculation of the Zy(6) Z(0)
integral on the first quadrant {). The calculation on the (1—eZd(Ora(0))
other quadrantsl¢,l 3,l,) is analogous. The total integral is +elB1t82) —} (A8)
thenl=1,+1,+13+1,4. On the first quadrant we have Z4(6)
(€1---€) (1~ 1b) where
=2, 256
€i 7 . .
Z:(0)=—a—i(aicos6+ B,sinb),
X jdAlei(al+az)xei(Bl*ﬁz)Yei(azfal)X/Zei(ﬁzfﬁl)y/z
Zp(0)=—a+i(a,cosf+ B,Sing),
o~ aVx?+y?
PO — (A3) Z(0)=—a—i(ac080— B,Sinb),
where Z4(0)=—a+i(ay,cosf— B,Sinb).
f dAl=fldxfldyj17X/2de17y/2dY. (A4) (il) (ay+ az)=(B1+52) =0:
0 0 x/2 yiI2
. . . . (eza(ﬁ)rl(g)_l)
After doing the integrations on the center-of-mass coordi-F(g)= ————
nates we are left with z,(0)
, , (cosf+sing) (O)r1(6)
=S (e1---€) (71 77) —W({ea 10[zy(0)re(6)—1]+1})
1_Ei7li 256 2
cosésind
101 g VX7 +y? +g{[ezarl(zzrz—harﬁ2)—2]}.
X f f f(x,y)————=dxdyl,  (A5) z3(6) o
o o Gy o

where the exact format of(x,y) depends on whether we
have (,+ a5) or (B;+3,) equal to zero or not. We are (iii) (a1t @;)=0 and (B;+ B,) #0:
going to write it down explicitly in a moment.
A transformation to relative polar coordinates yields (200 1) (gZ(Ora(0) _ 1)
F(g):e(ﬁl‘*'ﬁz) _
Zb( 0) Zc( 9)

2OnOrzy(0)r,(0)—11+1}

|1:Z (€1-- 'fé)(ﬂl' e 7lé)

v 296 —cosg| elP17F2) ite

w2 (r4(6) zﬁ
x{f f f(r,0)e”“'drd6}, (AB)
o Jo {ex("1l0[ z,(O)r,(6)— 1]+ 1}

> (A10)
wherer (0) =1/cos6 for 0< < m/4 andr (6)=1/siné for Z;
wl4<9#<mw/2. The integration over can be done analyti-
cally and we are left with a set of integrals ower (iv) (a1 +ay)#0 and B,+B5)=0:

165309-10
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OO 1) (%) 1)

F(g):e(a1+az)(e

z4(6) Z,(0)
. {eZd(ﬂ)rl(a)[zd( o)r( 9)_1]+1}
a1t a
_S|n0 e( 1 2) Z(Zj

{0 z(g)ry()-1]+ 1}

Z

(A11)

where

Z,(0)=—a+i(ayc0s6+ B,Sinb),

PHYSICAL REVIEW B6, 165309 (2002

Zy(0)=—a+i(a,cos6— B4Sind),
z(0)=—a+i(aycos0+ B,Sin0),
z4(0)=—a+i(BySinf— a,c0sb),
Zo(0)=—a+i(B,Sin O+ a,cosh).

All nontrivial integrals overé have been performed nu-
merically.
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