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We present a simple and efficient numerical method to compute the eigenvalues and eigenfunctions of
two-dimensional billiards subjected to a constant magnetic field in the perpendicular direction. As examples we
present results for the circular billiard, where the method is particularly simple, and for the square billiard,
which is nonintegrable for nonzero fields.

PACS number~s!: 05.45.1b, 03.65.Ge

I. INTRODUCTION

In the last few years there has been an increasing interest
in the behavior of confined electrons subjected to a uniform
magnetic field. From the classical point of view, this subject
has a long history that starts with the work of Robnik and
Berry @1# and can be traced to the paper of Berglund and
Kunz @2#. The recent experiment of Levyet al. @3# has also
motivated several theoretical analyses from the quantum me-
chanical point of view@4–7#. These were mainly concerned
with the semiclassical behavior of the magnetic susceptibility
of an ensemble of noninteracting electrons at low tempera-
tures. The connection with the quantum Hall effect, where
there is an additional electric field in the plane of the elec-
trons, is also evident and of great importance@8,9#.

If the confining potential is that of a billiard, i.e., zero
inside a domainB and infinite outside, then, for zero mag-
netic field, the motion is along straight lines with specular
reflections at the boundary]B. In this case, the classical
dynamics can be completely described by looking only at
successive collisions of the particle with the boundary, since
the motion is otherwise trivial. This simplified view is real-
ized by thebouncing map, that gives the arc length along the
boundary where the collision occurs versus the cosine of the
angle with which the particle leaves towards the next colli-
sion. The quantum mechanical analogues of this simplifica-
tion are the so-calledboundary methods, which also reduce
the calculation of eigenvalues and wave functions to a prob-
lem involving ]B only.

If the magnetic fieldB is nonzero, a particle of unity mass
and charge moves along arcs of circles of radius (c51)
R5A2E/B, whereE is the particle energy, also reflecting
specularly at the boundary. Therefore, ifB is large enough,
there will be orbits that never touch the boundary, and, in
this case, the bouncing map cannot represent the classical
dynamics completely. This could induce one to the conclu-
sion that quantum mechanical boundary methods should not
apply in such a situation. In this paper we show that this is,
however, not true.

Some previous numerical examples of particles in perpen-
dicular magnetic fields have been considered either for
simple billiard shapes@10#, or for smooth potentials in weak
magnetic fields@7#. A very detailed quantum mechanical
study has also been presented for the case of a single line of
magnetic flux threading the billiard, the so-called Aharonov-
Bohm billiards @11,12#. The general case of a billiard in a

constant uniform magnetic field of arbitrary strength has,
however, not yet been tackled succesfuly. The aim of this
paper is to develop a method to treat such a general case.

The method we present here is based on the fact that
the solutions for the two-dimensional HamiltonianH

5 1
2 (p2e/cA)2 with “3A5Bẑ are well known in the open

space. Since the eigenfunctions are highly degenerated, a
proper linear combination that vanishes on a given boundary
can be found for some discrete values of the energy. The idea
is, therefore, to reduce the calculation of the coefficients of
such an expansion to a linear set of equations involving only
the billiard boundary. We emphasize, however, that this pro-
cedure is not equivalent to the so-calledboundary integral
equation method@13#, largely used in the solution of the
Helmholtz equation@14#, where one makes use of the
Green’s function to derive an equation where only the nor-
mal derivative of the wave functionc at the boundary is
necessary. Here, although we computec only at the bound-
ary, we need a formal expansion ofc that is valid in the
whole space. Similar methods are common in scattering
theory and have also been used recently to compute eigen-
values of billiards~see, for instance,@15#, and references
therein!.

This paper is organized as follows: in Sec. II we motivate
our basic procedure by looking first at the case of zero mag-
netic field. In Sec. III we show how to extend it to the case of
a constant magnetic field and in Sec. IV we present numeri-
cal results for the circle and square billiards. We compare
these results with those obtained by direct diagonalization
the Hamiltonian in the basis of field-free problem~which
works well for weak fields! and find very good agreement.
Contour levels of the probability density are also displayed
for a few states to illustrate the calculation of the eigenfunc-
tions.

II. FREE BILLIARDS

In this section we are going to motivate our numerical
method by looking first at billiards with no external fields.
The two-dimensional free particle Hamiltonian operator
H5 1

2p
2 written in polar coordinates reads

H52
\2

2 F1r ]

]r S r ]
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1

r 2
]2

]u2G . ~1!
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The solutions of the time-independent Schro¨dinger equa-
tion Hc5Ec that are regular at the origin are given by
C(r ,u)5Jm(kr)e

imu, whereJm(x) are integer Bessel func-
tions andE5k2/2. Since the eigenvalue is independent of
m, the most general eigenfuntion of eigenvalueE is

C~r ,u!5(
m

CmJm~kr !eimu. ~2!

If we now confine the particle to a billiardB containing
the origin, the eigenfunctions will be given by specific linear
combinations such as Eq.~2! such thatC(r ,u)u]B50,
where ]B is the billiard boundary. Of course, despite the
infinite number of functions entering in Eq.~2!, such a con-
dition can only be fulfilled for some discrete values ofk.

A numerical algorithm to compute the eigenenergies can

be implemented as follows: take a discrete set ofN points
along the boundary, then, rewriting Eq.~2! in terms of sines
and cosines, we get

C~r j ,u j !5 (
m51

M

Jm~kr j !@Cmcosmu1Dmsinmu#

1C0J0~kr j !50 ~3!

for all (r j ,u j )P]B. Choosing 2M115N, we get a set of
homogeneous linear equations whose nontrivial solution ex-
ists if

detS~k!50, ~4!

where

S~k!5S J0~kr1! J1~kr1!cosu1 J1~kr1!sinu1 ••• JM~kr1!cosMu1

A A A A

J0~krN! J1~krN!cosuN J1~krN!sinuN ••• JM~krN!cosMuN
D . ~5!

Plotting det(S) as a function ofk provides a nice way to
compute the eigenvalues. It is important to notice that this
procedure fails at a degenerated eigenvalue, since the deter-
minant ‘‘changes sign twice’’ at the same point. Therefore, if
the billiard has symmetries, they should be separated before
the method is applied. We have tested this numerical method
for the case of a square billiard and computed the first 30
energy levels using about 15 points along each side of the
square. The results obtained were accurate up to the sixth
significant figure. In the next section we shall show how this
method can be extended to include a magnetic field in the
z direction.

III. BILLIARDS IN A MAGNETIC FIELD

A. The Schrödinger equation for a constant uniform field

The Hamiltonian describing a particle of unity mass and
charge moving on thex-y plane and subjected to a magnetic
field B in the z direction is given by (c51)

H5 1
2 ~p2A!2, ~6!

where the vector potentialA, satisfying“3A5B(x,y) ẑ, is
defined up to the gradient of an arbitrary function. In the case
of a constant uniform magnetic field,B(x,y)5B0 , it is usual
to choose the Landau gaugeAL52B0yx̂. It leads to the
well-known Landau wave functionscL , which are simulta-
neous eigenfunctions ofH andpx , localized in they direc-
tion but not in thex direction, where it behaves like a plane
wave@16#. The eigenenergies, or Landau levels, are given by

Ekn5\B~n11/2! ~7!

and are constinuously degenerated, since they are indepen-
dent of thepx eigenvalue\k.

Although the Landau gauge is the most usual choice for
the vector potential, in this paper we shall work with the
symmetric gaugeAs5B0/2(2yx̂1xŷ), for reasons to be ex-
plained below. Then the Hamitonian assumes a simple form
in polar coordinates and reads

H5
1

2 S pr21 Lz
2

r 2 D 1
v2r 2

2
1vLz , ~8!

where

pr
252

\2

r

]

]r S r ]

]r D ,
Lz52 i\

]

]u
,

andv5vc/25B/2 is half the cyclotronic frequency.
This time it is thez component of the angular momentum

that commutes withH. Writing @17#

cs~r ,u!5eimuuumu/2e2u/2f m~u!, ~9!

whereu5r 2B/2\[(r /bs)
2, we find thatf satisfies

u
d2f

du2
1~ umu112u!

d f

du
1a f50 ~10!

with

a[
E2~m1umu11!

2\v
. ~11!
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Equation~11! can be recognized as the differential equa-
tion satisfied by the confluent~or degenerated! hypergeomet-
ric function F(2a,umu11,u) @16,18#, whose regular solu-
tion is given by the series

F~a,c,u!511
a

c

u

1!
1
a~a11!

c~c11!

u2

2!
1•••. ~12!

When the series is truncated, to ensure thatcs goes to
zero asu goes to infinity,a is set to an integer and the
Landau levels are again obtained. Also, the functionF be-
comes a Laguerre polynomial andcs , as opposed to the
Landau wave functionscL , becomes well localized. This is
the main reason for choosing the symmetric gauge.

B. The boundary condition

Let us now confine the charged particle to a billiardB
containing the origin. In analogy to the procedure described
in Sec. II, Eqs.~2!–~5!, we could try to combine several
degenerated eigenfunctions, Eq.~9!, and find the billiard
eigenenergies by imposing that these linear combinations go
to zero at the billiard boundary. This, however, would not
work here, since, contrary to the situation in Sec. II, the
Landau levels are discrete and, therefore, cannot be scanned
continuously. Also, including in the linear combination
eigenfunctions of different eigenenergies would not help,
since, by construction, this cannot produce an eigenfunction
of the same Hamiltonian operator.

The solution to this difficulty is to allow for unbounded
wave functions: the behavior at infinity will not be relevant if
we are going to look only at the finite area enclosed by the
billiard boundary. For the asymmetric solution this implies
considering the fulluntruncatedHermite series. For the sym-
metric case, which is more attractive because of the localiza-
tion of the wave functions, the solution becomes

cs
am~r ,u!5eimu~r /bs!

umue2r2/~2bs
2
!F~2a,umu11,r 2/bs

2!

~13!

and the eigenenergies

Eam52\vS a1
m1umu

2
1
1

2D , ~14!

wherea varies continuously. The wave functionscam ,m ~we
are omitting the subscripts) with

am5H a0[E/~2\v!21/2 if m<0

a02m if m>1
~15!

are all degenerated with energyE. Therefore, the linear com-
bination

cE~r ,u!5 (
m52`

`

Cme
imu~r /bs!

umue2r2/~2bs
2
!

3F~2am ,umu11,r 2/bs
2! ~16!

is the analogue of Eq.~2!. Notice that here the complex
exponentialeimu cannot be split into sines and cosines, since
cam ,m andca2m ,2m have different energies. Of course this
intrinsic complex character is a consequence of the magnetic
field. Notice also that there is noa priori impediment to
using negative values ofa. Truncating the sum over the
m’s from mi to mf we are left withmf2mi11 coefficients,
which we should determine using exactlyN5mf2mi11
points (r n ,un) along the billiard boundary and imposing that
cE go to zero at these points. The only difference is that now
the resulting determinant is complex and both its real and
imaginary parts should go to zero at the correct eigenvalue.
Writing this boundary condition explicitly gives

(
m5mi

mf

Cme
imun~r n /bs!

umue2r n
2/~2bs

2
!F~2a,umu11,r n

2/bs
2!50

~17!

for n51,2, . . . ,N, whose nontrivial solution is given by the
condition

detS~E!50, ~18!

where

S~E!5S fami
,mi

~r 1!e
imiu1

••• •••
famf

,mf
~r 1!e

imfu1

A A A

fami
,mi

~r N!eimiuN
••• •••

famf
,mf

~r N!eimfuND ~19!

and

fa,m~u!5uumu/2e2u/2F~2a,umu11,u!. ~20!

Once an eigenenergyE has been found, we can go back
to Eq. ~16! and solve it for the coefficientsCm . This deter-
mines the eigenfunctions and completes the calculation. In
the next subsection we discuss the behavior of the function
F and the choices ofmi andmf .

C. The function F and the sum over them’s

The confluent hypergeometric functionF can be com-
puted easily from its series, Eq.~12!. Figure 1 shows a nu-
merical example where, instead of plottingF itself, we show
the behavior of the radial part of the wave function,f(u),
Eq. ~20!. When a is an integern ~solid curve!, F is a
polynomium andf(x) goes to zero asu→`. For slightly
larger~smaller! values ofa, f(u) goes to1` (2`) if n is
odd. If n is even the behavior at infinity changes sign. The
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number of zeros off is determined by the integer part ofa.
If a is negative~the argument ofF is positive! then there are
no zeros.

For a fixed value of the energy E and
a05E/(2\v)11/2, we see that, asm→`, F→1. For posi-
tive m’s, we have am1m5a0 and F(m2a0 ,m11,u)
→eu. Then, asumu→`

fam ,m~u!→H uumu/2e2u/2 if m,0

um/2eu/2 if m.0

and, since our wave function has to go to zero at the bound-
ary, we expect it to have no components on largeumu ’s,
either positive~becausef goes to zero ifu,1 and to infinity
if u.1) or negative ~becausef is nonzero only near
u.Am→`). This indicates that the expansion~16! is a good
representation of the wave function.

One important guide to the numerical calculations is the
counting functionN(E)[(Q(E2En), whose classical limit
~or Weyl term! for billiards isNw(E)5AE/(2p\2), where
A stands for the area enclosed by]B. This expression is
also valid for billiards in perpendicular magnetic fields.
Therefore, when scanning the determinant~19! as a function
of the energy, it might happen that a pair of levels that lie
close together is missed by the computation. This lack of
levels will be felt immediately byN(E), indicating that a
finer scanning should be made in that region.

It is not very easy to estimate how manym’s, or points
along the boundary, are actually needed to achieve a good
convergence of the eigenvalues. In the case of the square
billiard we have used approximately 20 points on each side
of the square. To test the accuracy of the numerical results
one should first redo the calculations using a slightly in-
creased number of points and compare the results with the
previous computation. Also, and this turns out to be a crucial
test, one should check whether the real and imaginary parts
of the determinant~19! go to zero at the same point. There-
fore, when scanning the energy at steps ofDE, if one finds
that both Re@det(S)# and Im@det(S)# change sign between
two consecutive points, one should refine the energy grid,
makingDE→DE/2, for instance, and see to what precision

they keep passing through zero in the same interval. In any
case, however, there is always an optimum number of basis
functions to be used. If we use much more than this, the
contribution of these extra states to the wave function might
be so small that we introduce lines of nearly zeros in our
determinant, spoiling the numerical convergence.

IV. NUMERICAL RESULTS

In this section we apply the method just developed to two
model problems: the circular and the square billiards. In the
circular billiard the angular momentum is still a good quan-
tum number and the classical problem is also integrable. For
the square billiard, on the other hand, the geometry seems to
be one of the most inappropriate to work with circular func-
tions. Even in this case, however, the method works well.

A. The circular billiard

The circular billiard is an almost trivial case, since the
problem is separable in cylindrical coordinates. A previous
theoretical analysis of this problem has been presented by
Rensink@19#. The calculation of the eigenvalues is reduced
to find the zeros of the confluent hypergeometric function
and, therefore, can be said to beexact. In this respect the
calculation is very much like that of the zero-field case,
where we have to find the zeros of Bessel functions. Setting
the billiard radius to 1/Ap, so as to have unity area, we have
the equation

F„2a,umu11,B/~2p\!…50, ~21!

which should be solved fora. The eigenenergies are then
given by Eq.~14!. Notice that since Eq.~21! depends only on
umu, for eacha there will be two states associated, the one
with negativem having the lowest energy. Also, the separa-
bility of the problem implies that the energies will exhibit
level crossings when the magnetic field is varied. We have
computed the first 100 eigenstates fromB50 to B54 at
steps of 0.025. In Fig. 2 we show the first 50 eigenvalues.
ForB around 3 or 4 and low energies, we can see very neatly
the levels clustering into the Landau levels. As we go to
higher energies we notice a few gaps between the levels.

FIG. 1. Behavior of the radial part of the wave function as given
by Eq. ~20! for m59. The solid line corresponds toa55.0, the
short-dashed line toa54.8, and the long-dashed line toa55.2.

FIG. 2. First 50 eigenvalues of the circular billiard as a function
of the magnetic fieldB for \50.05.
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These gaps are a numerical artifact due to the rapid increase
in the density of level crossings with the energy. They dis-
appear with a finer grid inB.

B. The square billiard

The square billiard with a nonzero magnetic field is non-
integrable, since the angular momentum is not conserved be-
tween consecutive bounces of a trajectory with the boundary.
The important classical parameter is not the energyE nor the
magnetic fieldB, but the radiusR5A2E/B. Here, as in the
previous example, we set the billiard area equal to 1.

Although the purpose of this paper is to describe a nu-
merical method for doing quantum mechanical calculations,
it is instructive to look first at the classical behavior to un-
derstand the quantum output in the light of semiclassical
theory. In Fig. 3 we show the bouncing map, i.e., the map
between consecutive collisions with the boundary, for
R52.0, R51.0, andR50.5. In this figure thex axis shows
the arc lengths along the boundary where the collision oc-
curs counted from the lower left corner of the square, and the
y axis showsp, the cosine of the angle between the tangent
of the trajectory just after the collision and the corresponding
side of the square. Although thex axis should go from zero
to four, we show only the part from 0 to 1, since the other
quarters are similar.

For R.0.5 all trajectories necessarily hit the boundary
and the bouncing map is a complete representation of the
dynamics. ForR,0.5, however, a fraction (122R)2 of the
trajectories stay circling inside the square, never touching the
boundary. This same fraction of phase space is, therefore,
completely regular and does not show up in the bouncing
map. From Fig. 3 we see that the magnetic field has a very
strong effect on the classical dynamics and it acts in a com-
plicated way: the limitsR→0 andR→` are both integrable
@1,2# and in the interval in which 0.4<R<20, the regular
portion of phase space oscillates asR changes. Therefore, we
expect to find both neat level repulsion and very narrow
avoided crossings for intermediate values ofB.

The quantum mechanical calculations can be performed
in two different ways: the first option is to use the wave
functions of the zero-field problem, which have the correct
boundary condition, as a basis to diagonalize the matrix with
non-zeroB. The second option is to use the method devel-
oped in the previous section. For low values of the magnetic
field both methods work and their results can be compared.
For high values ofB, however, the diagonalization is very
poor while our procedure works even better. We emphasize
that the diagonalization procedure is possible only if the
zero-field wave functions are known before-hand, otherwise
these wave functionsand the matrix elements would have to
be computed numerically before the diagonalization.

Before we display the results of the numerical calcula-
tions, we notice that the symmetryu→u1p/2 survives the
application of the magnetic field. IfU is the operator that
rotates byp/2, then, the eigenfunctions ofH are also eigen-
functions ofU with eigenvaluesu51, i , 21, and 2 i .
Therefore, them’s in Eqs.~16! and ~17! are multiples of 4,
being 0, 1, 2, or 3mod~4!, respectively. ForB50 the levels
for u51, for example, arep2\2(n21m2)/2 with (n,m) both
odd@with (n,m) or (m,n) counting as a single level#, or both

even withnÞm. For very largeB and low energies, on the
other hand, the levels should cluster at the Landau levels
\B(n11/2) with a degeneracy ofB/(2p\).

We have computed the first 30 eigenenergies for the sym-
metry classu51 for B in the interval 0 to 4 at steps of 0.1 as
shown in Fig. 4. The thick dotted lines are curves of constant
R, whose value is written close to the corresponding curve.
We see from this figure that, as expected from the classical
bouncing map, the energy levels present some very narrow
avoided crossings, probably due to the presence of the large

FIG. 3. Bouncing map for the square billiard for~a! R52.0; ~b!
R51.0, and~c! R50.5.

53 4559EIGENVALUES AND EIGENFUNCTIONS OF BILLIARDS IN A . . .



stability island of the lozenge orbit that persists for a wide
range ofB’s. In Fig. 5 we display the relative error~times
104)in the calculations atB50.2, (En

diag2En)/En
diag where

En are obtained with the method proposed here andEn
diag are

obtained by diagonalizing a 3073307 matrix~including only
the u51 symmetry class! and find very good agreement.
Similar comparisons atB51.0 andB54.0 give errors of the
same order of magnitude.

From the point of view of computational time, atB50.2
the diagonalizations are very efficient and a 3073307 matrix
leads to a total of 150 eigenvalues converged with 4 figures
of precision~counting only theu51 symmetry class!. This
takes around 4 min of CPU in a Digital AlphaStation 250.
An equivalent computation with the method of this paper
would take about 10 min. AtB54.0, however, a 9003900
diagonalization would furnish only around 50 eigenvalues
with the same precision and would take about 2 h of CPU
~remember that the matrices are complex!. The application of
our method, on the other hand, is not very sensitive toB and
would take only a few minutes to compute the eigenvalues.

Figure 6 shows the probability densityucu2 for some
eigenstates atB52.0 computed as described at the end of
Sec. III B. Parts~a! and~b! show the first and second eigen-
states, respectively. Parts~c! and ~d! show states number 7
and 25 where thescarof the lozenge orbit is visible.

V. CONCLUSIONS

We have presented a numerical method to compute eigen-
values and eigenfunctions of billiards in a constant magnetic
field. As numerical examples we have examined the two im-
portant cases of the circle and the square billiards. The cir-
cular billiard is particularly simple and the method reduces to
find the zeros of the hypergeometric confluent function. For
other geometries we combine these functions and impose
that the wave function go to zero at the boundary. For simple
cases like the square, the eigenfunctions for zero magnetic
field are known analytically and could also be used as a basis
to diagonalize the Hamiltonian operator. The convergence,
however, tends to decrease very fast as the field strength
increases. For more complicated~nonintegrable! cases the
diagonalization procedure becomes very hard, since a first
numerical calculation to get the zero field basis is necessary.
The method proposed here works well for all values of the
magnetic field, except very close to zero, where the width
b5A2\/B has a singularity. It is important to emphasize
that the square billiard is perhaps one of the most compli-
cated cases for the application of this method, since we are
using circular hypergeometric functions to adjust functions
that go to zero at a square. We believe that ellipses and
conformal maps of the circle, for instance, would produce
even better results.

An interesting point that comes about with this method is
the fact that, although the bouncing map cannot represent
completely the dynamics of these systems if the magnetic
field is too intense, since there will be a considerable fraction
of orbits that never touch the boundary, the quantum me-
chanical problem can still be reduced to a boundary problem.

FIG. 4. First 30 eigenvalues of symmetryu51 for the square
billiard as a function of the magnetic fieldB for \50.05. The thick
dashed lines are curves of constant classical radius,E5R2B2/2.
The numbers close to each curve denote the corresponding value of
R.

FIG. 5. Relative error times 104 between a 3073307 diagonal-
ization and the method of this paper for the first 40 levels of sym-
metryu51 atB50.2.

FIG. 6. Contour levels ofuc(r )u2 for the eigenstates number 1
~a!, 2 ~b!, 7 ~c!, and 25~d! at B52.0. The eleven contour lines
shown in each figure are 0.99, from 0.8 to 0.1 at steps of 0.1 and
0.01 of the maximum probability density.
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In that case the solutions with nearly integera’s are selected,
since this is the only way to avoid a blowup of the wave
function. Therefore, quantum mechanically, the boundary is
alwaysseenby the wave function, even if it recedes to in-
finity.
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